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Introduction
Alterations in bidirectional brain-gut microbiota interactions are 
believed to be involved in the pathogenesis of well-known brain-
gut disorders such as irritable bowel syndrome (IBS) and related 
functional gastrointestinal (GI) disorders (1, 2) and have more 
recently been implicated as a possible mechanism in the patho-
physiology of several brain disorders including autism spectrum 
disorders (ASDs) (3, 4), Parkinson’s disease (5), disorders of mood 
and affect (3, 6), and chronic pain (7). However, there is consid-
erable controversy over the magnitude as well as the sites, path-
ways, and molecular mechanisms within the gut/brain axis that 
are responsible for these alterations. The intestinal microbiota 
and its metabolites have been shown to be involved in modulating 
GI functions, given their ability to affect intestinal permeability 
(8–11), mucosal immune function (9–14), intestinal motility (15) 
and sensitivity (14, 16), and activity in the enteric nervous sys-
tem (ENS) (reviewed in ref. 17). Additionally, preclinical evidence 
suggests that the microbiota and its metabolites are likely to be 
involved in modulating behaviors and brain processes, including 
stress responsiveness (reviewed in ref. 18), emotional behavior 
(reviewed in ref. 19), pain modulation (reviewed in refs. 3, 20), 
ingestive behavior (reviewed in ref. 21), and brain biochemistry 
(reviewed in ref. 22).

To date, there is limited high-quality evidence regarding 
alterations of microbial ecology or production of microbial-de-
rived metabolic products in human patients with brain or gut-
brain disorders (11). For example, there is inconclusive evidence 
from human studies regarding the beneficial effects of manipulat-
ing the microbiota with prebiotics and antibiotics in patients with 
IBS, even though meta-analyses suggest a small therapeutic effect 

for probiotics (reviewed in refs. 23, 24). Furthermore, it is not clear 
whether alterations observed in the microbiota of patients with 
these disorders arise from primary alterations at the gut microbial 
interface (bottom-up effects) and/or changes in brain-to-gut sig-
naling (top-down effects).

Despite the limited clinical evidence, a large and growing 
number of review articles have appeared in the literature (3, 5, 
25–27), extrapolating the preclinical findings to human diseases 
and even to human brain development (28). However, other than 
a series of case reports on the development of psychotic symptoms 
following broad-spectrum antibiotic intake (29, 30), there is lim-
ited clinical evidence that acute alteration of the intestinal micro-
biota has an effect on clinical symptoms (5, 31–34).

This article critically reviews the current preclinical litera-
ture, explores the current evidence in humans consistent with the 
preclinical findings, and identifies translational research areas 
required to identify a role of the gut microbiota in modulating the 
brain and the gut/brain axis.

Gut microbiota effects on the brain: preclinical 
evidence
Several experimental approaches have been used to study the 
modulatory effect of gut microbiota on gut-brain interactions, 
including gut microbial manipulation with antibiotics (35), fecal 
microbial transplantation (35, 36), and germ-free (GF) animal 
models (ref. 37 and Figure 1). Despite the limitations of these 
approaches, considerable progress has been made from the first 
seminal observation by Sudo and colleagues in experimental ani-
mals that the absence of a normal gut microbiota can have signifi-
cant effects on adult stress responsiveness and that these altera-
tions can be partially reversed by colonization of the gut (37). A 
range of microbiota-related effects have been reported in relation 
to anxiety-like behavior (38–45), depression-like behavior (42, 
45–48), nociceptive responses (7, 49–53), stress responsiveness 
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metabolism. Finally, the recently reported alterations in the per-
meability of the blood-brain barrier in GF mice is likely to result 
in significantly altered access of gut microbial metabolites to the 
brain (66). Despite the extensive remodeling of biological systems 
in the GF animal, the fact that some observed behaviors and brain 
changes could be reversed by reconstitution of pathogen-free 
microbiota (conventionalization) validates some of the conclu-
sions drawn. Nevertheless, as the GF animal has no counterpart in 
human brain development, premature conclusions about the rele-
vance of these findings to humans should be avoided. Broad-spec-
trum antibiotics have well-documented transient effects on the 
composition and diversity of fecal microbiota (35) even though 
the effects on mucosa-associated microbial communities are not 
known. Furthermore, antibiotic-related effects may be mediated 
by the associated mucosal immune activation reported with such 
interventions (67).

Of reports published since 2010 using different strains of mice 
and rats, different strains of probiotics, and different experimental 
paradigms (ref. 22 and Figure 1), a range of effects of gut micro-
bial modulation was reported on emotional behavior (38–43, 48, 
68–70), learning and memory (42, 71, 72), social interactions (48, 
58, 73), and ingestive behaviors (55). Results of these studies are 
summarized in Tables 1–4.

Emotional behavior. When viewed together, reported find-
ings demonstrate an increase in emotional behavior associated 
with infection/infestation with pathogens (38–40, 70); a reduc-
tion of basal or induced anxiety-like behavior in animals with 
normal gut microbiota, resulting from different, orally adminis-
tered probiotics (41–43, 47, 52, 53, 56, 74, 75); and both reduced 
(38–40, 70) and increased anxiety (72) in rodents that have been 
raised in the absence of a gut microbiota. A reduction in depres-
sion-like behaviors was observed in different rodent models 
with normal gut microbiota, following administration of a pro-
biotic (42, 48). Depression-like behavior in these models was 
induced by maternal separation (47) and experimental myocar-
dial infarction (MI) (48).

(42, 43), feeding behavior, taste preferences, and metabolic con-
sequences (refs. 54–56 and summarized in Tables 1, 2, 3, and 4).

The GF model has several limitations that suggest that 
researchers should be cautious when extrapolating the findings 
to humans. GF animals are born in aseptic conditions, which may 
include removal from the mother by Cesarean section and imme-
diate transfer of the newborn to an isolator, where all incoming air, 
food, and water are sterilized. There is a wide range of differences 
in brain (and gut) biochemistry (39, 57); hypothalamic/pituitary/
adrenal (HPA) axis responses (37); and affective (38–48), social 
(48, 58–60), metabolic function, and ingestive behaviors (54–56) 
between GF animals and control animals that have normal or 
pathogen-free flora and were reared by normally colonized moth-
ers (39, 40). Thus, observed brain and behavioral changes could 
be mediated by the lack of gut microbiota directly or indirectly 
through one or several of the non-brain–related alterations. Recent 
evidence suggests that the intrauterine environment is not ster-
ile (61), and one may even speculate that maternal gut microbial 
metabolites originating from the maternal gut microbiome may 
have an influence on fetal brain development. Furthermore, as 
GF pups are raised by GF mothers, the absence of fecal microbes 
may interfere with well-characterized maternal behaviors, such as 
arched-back nursing and anogenital licking. These behaviors have 
been associated with epigenetic changes at stress-related genes 
(62) that regulate the development of systems within the CNS 
(63). However, in one study where maternal behavior was ana-
lyzed on the second and third days postpartum, no effect of the 
GF status on such maternal behaviors was observed (37). Altered 
signaling of the cecum to the brain, secondary to the massive cecal 
dilation associated with this model, could alter development of 
brain regions processing such input. GF mice are leaner than con-
trol animals, despite consuming more calories (64, 65). Metabolic 
changes secondary to the loss of an important source of calories 
(gut microbiota–generated short-chain fatty acids [SCFAs]) for 
the developing organism may affect brain development and alter 
the activity of brain circuits involved in feeding behavior and 

Figure 1. Experimental paradigms and readouts 
of the gut microbiota/brain axis in humans and 
rodents. Preclinical studies have used a range of 
experimental paradigms to study the role of the 
gut microbiota in gut-brain interactions (blue 
text). Readouts used in these preclinical studies 
are listed to the right of the rat brain. Except for 
GF status, the same experimental paradigms 
can be used in human studies. In contrast to 
rodents, subjective responses and structural and 
functional brain imaging are suitable readouts in 
human subjects. Notice the considerable differ-
ence between the relative proportion of cortical 
and subcortical structures between the human 
and rodent brain.
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Table 1. Effects of gut microbial modulation on rodent emotional behavior

Reference Sample Method Biological readouts Behavioral readouts
Emotional behaviors
Neufeld et 
al. (40)

Adult female 
Swiss-Webster 

mice

GF vs. conventionally raised SPF mice: 
Locomotor activity in activity chambers

Elevated plus maze test
Serum corticosterone levels

Gene expression

In GF mice:  
Total distance traveled in activity chambers did not differ 

Increased open-arm exploration in plus maze test 
Increased concentrations of corticosterone levels 

Decreased NMDA subunit NR2B mRNA expression in central amygdala 
Decreased BDNF expression in dentate gyrus layer of hippocampus 

Decreased 5-HT1A expression in dentate gyrus layer of hippocampus

Decreased anxiety-like behavior

Clarke et al. 
(38)

Adult male and 
female Swiss-
Webster mice

GF vs. SPF mice: 
Anxiety-like behavior tested using the light-

dark box test

GF mice had: 
Increased concentrations of 5-hydroxytryptamine and 

5-hydroxyindoleacetic acid in the hippocampus 
Increased concentrations of tryptophan (serotonin precursor) in males 

Decreased BDNF levels in the hippocampus

Decreased anxiety-like behavior

Bercik et al. 
(41)

Adult male AKR 
mice

Mice with normal flora: 
Chronic DSS colitis 

B. longum NCC3001 on the 3rd cycle of DSS 
Step-down and light preference tests 

BDNF mRNA measured in neuroblastoma 
SH-SY5Y cells

Chronic colitis was associated with increased anxiety-like behavior 
Anxiety-like behavior was normalized by B. longum NCC3001 

treatment 
NCC3001 treatment had no effect on BDNF mRNA expression in 

neuroblastoma SH-SY5Y cells, but decreased excitability of enteric 
neurons

Increased anxiety-like behavior following colitis, 
which was normalized by B. longum NCC3001 

treatment

Bravo et al. 
(42)

Adult male 
BALB/c mice

Broth gavage with L. rhamnosus (JB-1) or 
without bacteria 

Stress-induced hyperthermia 
Elevated plus maze test 

Fear-conditioning paradigm 
Open-field paradigm 

Forced swim test

Treatment with L. rhamnosus (JB-1) induced: 
Increased GABA (B1b) mRNA cingulate and prelimbic cortex 

Decreased GABA (B1b) mRNA in expression in hippocampus, amygdala, 
and locus coeruleus 

Increased ABA (Aα2) in hippocampus 
Decreased GABA (Aα2) mRNA expression in prefrontal cortex and 

amygdala

Mice treated with L. rhamnosus (JB-1) showed 
decreased anxiety- and depression-like behaviors

Desbonnet, 
et al. (47)

Adult pregnant 
Sprague–Dawley 

dams and 
offspring

Mice underwent MS 
Administration of B. infantis 

Treatment with citalopram hydrobromide 
Forced swim test 

Measurement of cytokine concentrations 
in whole blood samples, monoamine levels 

in brain, central and peripheral HPA axis 
indicators

MS mice had decreased NA content in the brain, increased peripheral 
IL-6 release, and increased amygdala CRF mRNA levels 

In MS mice, B. infantis treatment resulted in normalization of the 
immune response and restoration of basal NA concentrations in the 

brainstem

MS mice had decreased swim behavior and 
increased immobility in forced swim test 

Mice treated with B. infantis had decreased 
anxiety-like behavior

Arseneualt-
Breard et al. 
(48)

Adult male 
Sprague–Dawley 

rats

MI was induced in anesthetized rats treated 
with probiotics (L. helveticus R0052 and  

B. longum R0175) or vehicle (maltodextrin) 
Forced swim test 

Passive avoidance step-down test 
Intestinal permeability (FITC-dextran)

Increased intestinal permeability in MI rats 
Probiotics reversed/restored intestinal permeability

MI rats displayed depression-like behaviors 
(decreased social interaction, decreased 
performance in forced swim test, passive 

avoidance in step-down test) 
L. helveticus R0052 and B. longum R0175 reversed 

depression-like behavior after MI
Crumeyrolle-
Arias et al. 
(44)

Adult female GF 
and pregnant 
SPF F344 rats

Open field test 
Social interactions 

Serum corticosterone (CRF) concentrations

GF rats exhibited: 
Increased CRF mRNA in hypothalamus 

Decreased GR mRNA expression in hippocampus 
Decreased dopaminergic turnover rate in hippocampus, frontal cortex, 

and striatum 
Increased CRF levels after the open field stress test

Absence of gut microbiota in F344 rats increased 
reactivity to stress and anxiety-like behavior, and 

reduced social interactions

Savignac et 
al. (45)

Adult male 
BALB/cOlaHsd 

mice

Administration of B. longum 1714, B. breve 
1205, antidepressant escitalopram, or vehicle 

Stress-induced hypothermia FITC-dextran 
Tests: marble burying, elevated plus maze, 

open field, tail suspension, forced swim

No group differences in corticosterone levels Bifidobacteria strains caused decreased anxiety-
like behavior in marble-burying test 

B. longum 1714 associated with reduced stress-
induced hyperthermia 

B. longum 1714 associated with decreased 
depression-like behavior in tail suspension test 

B. breve 1205 associated with decreased anxiety-
like behavior in elevated plus maze 

Escitalopram associated with decreased anxiety-
like behavior in marble burying test

CRF, corticotrophin-releasing factor; GR, glucocorticoid receptor; 5-HT1A, 5-hydroxytryptamine 1A; MI, myocardial infarction; MS, maternal separation; NA, 
noradrenaline; SPF, specific pathogen free.
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thalamic (HPA axis) and nonhypothalamic (anxiety-like behav-
ior) components of central stress circuits may be affected differ-
entially by the GF conditions, depending on species and mouse 
strain, a response pattern not seen in the majority of anxiety 
models in which these two components of the stress response are 
generally congruent. These findings suggest that the increased 
HPA axis activity in GF animals may represent a response of the 
organism to the loss of microbiota-related energy sources. How-
ever, two studies have reported evidence for both increased anx-
iety-like behavior and HPA axis hyperresponsiveness in BALB/c 
mice (76) and in F344 male rats (44).

Epithelial permeability. Alterations in gut epithelial permea-
bility have been described in IBS (77) and in some patients with 
autism and schizophrenia (78). Gut microbiota and probiotics 
play an important modulatory role on intestinal barrier function 
(79, 80). Recent evidence has shown that the probiotic B. fragi-
lis normalizes increased intestinal epithelial permeability in an 
ASD mouse model (60).

Brain-signaling systems. Several studies showed reduced 
expression of brain-derived neurotrophic factor (BDNF) in the 
brains of GF animals (primarily in hippocampus) (35, 38, 39, 72) 
and increased BDNF expression in infection models (70). Other 
reported regional changes in receptor expression include GABA 
receptor A and B subunits (which mediate the effects of the major 

Learning and memory. While improvement of impaired memory 
function by probiotics was observed in a rodent model of diabetes 
(71), several studies showed a worsening with exposure to a patho-
gen (72), GF status (39), and administration of a probiotic (42).

Social interactions and ASD-like behaviors. Gut microbiota sta-
tus was found to reduce social interactions in GF mice (58), and 
probiotics improved social interactions in a post-MI rat model 
(48, 58, 73). Gut microbiota–associated behavioral changes 
were reported in different ASD mouse models using valproic 
acid administration (59) or maternal infection (60); in the latter 
instance, treatment with the probiotic Bacteroides fragilis had a 
beneficial effect on some of the behavioral abnormalities (60).

Ingestive behavior. A limited number of studies suggest that gut 
microbial composition can influence ingestive behavior (54, 55, 57). 
Some of these effects are likely mediated by significant alterations 
in intestinal taste receptor, fatty acid receptors, intestinal transport 
mechanisms, and changes in the release of satiety hormones.

HPA axis responsiveness. Increased basal or stimulated HPA 
axis activity (measured as blood corticosterone or ACTH levels) 
was reported in GF Swiss-Webster and BALB/c mice (38, 40, 72), 
while a probiotic-induced reduction of corticosterone levels was 
observed in normal mice (42). The association of increased HPA 
axis responses and reduced anxiety-like behaviors observed in 
several of the studies performed in GF mice suggests that hypo-

Table 2. Effects of gut microbial modulation on learning and memory in rodents

Reference Sample Method Biological readouts Behavioral readouts
Learning and memory
Davari et al. 
(71)

Adult male Wistar rats Control and diabetic rats received normal 
regimen or probiotic supplementation (mixture 

of L. acidophilus, B. lactis and L. fermentum) 
Streptozocin-induced diabetes model 

Morris water maze 
Recording of EPSPs in CA1 area of the 

hippocampus 
Measurements: serum levels of glucose, insulin, 

SOD, and 8-OHDG

Probiotic supplementation was associated with: 
Improved spatial memory and restored hippocampal  

LTP in diabetes model 
Increased levels of SOD 

Increased insulin and decreased glucose levels 
Decreased 8-OHDG factor 

Increased synaptic transmission in hippocampus

Probiotic mixture caused improved 
learning and memory in diabetes model

Gareau et al. 
(72)

Adult female Swiss–
Webster and adult female 

C57BL/6 mice

GF vs. SPF status 
Infection with Citrobacter rodentium 

Tests: 
Water avoidance stress test, novel object test, 

T-maze test (examine natural tendency to 
explore novel environments), light-dark box 

test

Not applicable GF mice (with or without stress) showed 
reduced memory compared with controls 
C57BL/6 mice treated with C. rodentium 

showed no behavioral abnormalities, 
improved memory compared with 

controls, and reduced stress-induced 
memory loss

Diaz Heijtz 
et al. (39)

Adult male NMRI mice GF mice vs. conventionally raised SPF mice 
Measurements: 

DA receptor (D1 and D2) expression 
DARPP-32 expression

GF mice had: 
Increased DA D1 receptor mRNA levels in hippocampus 

Decreased DA D1 receptor in striatum and nucleus 
accumbens 

No significant differences in DA D2 and DARPP-32

Reduced cognitive function in GF group

Bravo et al. 
(42)

Adult male BALB/c mice Broth gavage with L. rhamnosus (JB-1) or 
without bacteria 

Stress-induced hyperthermia 
Elevated plus maze 

Fear-conditioning paradigm 
Open-field paradigm 

Forced swim test

With L. rhamnosus (JB-1) treatment: 
Region-dependent alterations in GABA (B1b) 

mRNA in the brain: expression increased in cortical 
regions (cingulate and prelimbic), but decreased in 

hippocampus, amygdala, and locus coeruleus 
GABA (Aα2) mRNA expression decreased in prefrontal 
cortex and amygdala, but increased in hippocampus

L. rhamnosus (JB-1) treatment reduced 
cognitive abilities (measured by 
extinguishing fear conditioning)

DA, dopamine; EPSP, potentiated excitatory postsynaptic potential; LTP, long-term potentiation; 8-OHDG; 8-hydroxy-2′-deoxyguanosine; SOD, 
superoxide dismutase.
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Table 3. Effects of gut microbial modulation on rodent social and autism-like behaviors and ingestive behaviors

Reference Sample Method Biological readouts Behavioral readouts
Social and autism-like behaviors
Desbonnet  
et al. (58)

Adolescent and adult 
male GF mice

Conventionally colonized mice vs. GF mice 
that underwent bacterial colonization after 

weaning 
Three-chambered sociability test

Not applicable Compared with conventionally colonized 
mice, GF mice showed: 

Increased social avoidance 
Reduced preference for social novelty 

Decreased time engaged in social 
investigation 

Increased time engaged in repetitive 
self-grooming behavior during social 

interaction 
Behaviors were normalized following 

bacterial colonization of GF mice
Arseneualt-
Breard et al. 
(48)

Adult male Sprague–
Dawley rats

MI induced in anesthetized rats treated with 
L. helveticus R0052 and B. longum R0175) or 

vehicle (maltodextrin) 
Forced swim test 

Passive avoidance step-down test 
Intestinal permeability (FITC-dextran)

Increased intestinal permeability in MI rats 
Intestinal permeability reversed/restored by probiotics

MI rats displayed reduced social 
interaction and performance in forced 

swim and step-down tests 
Probiotics reversed behavioral effects 

of MI

de Theije et 
al. (59)

Pregnant BALB/c 
females and their 
male and female 

offspring

Autism-like behavior induced by prenatal 
exposure to valproic acid in pregnant females 

Pups were exposed to the social behavior  
test after weaning 

Inflammatory markers measured in brain  
and intestinal tissue

Pups exposed to valproic acid demonstrated: 
Decreased social behavior 

Increased expression of neuroinflammatory markers in male 
and female brains 

Males had epithelial cell loss and neutrophil infiltration in 
intestinal tract 

Male pups had decreased serotonin levels in prefrontal cortex, 
amygdala, and small intestine 

Reduced serotonin levels in brain and intestine in a sex-
specific manner

Pups exposed to valproic acid showed 
reduced social behavior

Hsiao et al. 
(60)

Pregnant C57BL/6N 
mice and offspring 

MIA model was used to evaluate the effect of 
maternal infection on autism-like behaviors 

in offspring

In MIA offspring: 
Porphyromonadaceae, prevotellaceae, unclassified 

bacteriodales, and lachnospiriceae were more abundant 
Significant alterations in 8% of all serum metabolites, 

including increased 4EPS 
In control animals, administration of 4EPS caused autism-like 

behaviors 
B. fragilis treatment of MIA offspring led to significant 

restoration in relative abundance of bacteroidia and clostridia 
of the family lachnospiraceae 

B. fragilis treatment of MIA offspring restored serum 
metabolite levels, especially 4EPS

MIA offspring showed ASD-like behaviors 
Treatment of MIA offspring with B. fragilis 

ameliorated defects in communicative, 
stereotypic anxiety and sensorimotor 

behaviors and did not affect social 
behavior deficits

Ingestive behavior
Duca et al. 
(54)

Adult male C57BL/6J 
mice 

GF mice vs. NORM mice: 
Preference for and acceptance of fat 

emulsions 
Changes in lingual and intestinal fatty  

acid receptors, intestinal peptide content,  
and plasma levels of gut peptides

Compared with NORM mice, GF mice had: 
Increased preference for and intake of intralipids 

Increased lingual CD36 and decreased intestinal expression of 
fatty acid receptors GPR40, GPR41, GPR43, and GPR120 and 

satiety peptides CCK, PYY, and GLP-1 
Number of enteroendocrine cells decreased in ileum and 

increased in colon 
Reduced levels of circulating leptin and ghrelin, altered  

plasma lipid metabolic markers indicative of energy deficits

GF mice showed increased preference for 
and caloric intake of fats

Vijay-Kumar 
et al. (55)

Adult male and 
female C57BL/6 mice 

Gut microbiota from TLR5-deficient mice  
was transferred to WT GF mice

Compared with GF mice, TLR5-deficient mice exhibited 
hyperlipidemia, insulin resistance, metabolic syndrome, 

adiposity

TLR5-deficient mice showed hyperphagia, 
which was transferable to GF mice by 

fecal transplant

4EPS, 4-ethylphenylsulfate; MIA, maternal immune activation.
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inhibitory neurotransmitter in the brain) (42), NMDA receptor 
subunits (which mediate some of the effects of the excitatory neu-
rotransmitter glutamate) (70), serotonin 1A (40), and tryptophan 
and tryptophan metabolite levels (38). Some of these changes in 

neuroreceptor expression were correlated with altered emotional 
behaviors (39, 40, 42, 70), implying an interaction between micro-
bial composition and behavior. Results of studies in which such 
measures were assessed are summarized in Tables 1–4.

Table 4. Effects of gut microbial modulation on rodent HPA axis and stress responsiveness and epithelial permeability

Reference Sample Method Biological readouts Behavioral readouts
HPA axis and stress responsiveness
Gareau et al. 
(72)

Adult female Swiss–
Webster and adult  

female C57BL/6 mice

GF vs. conventionally raised SPF mice infected 
with C. rodentium 

Tests: water avoidance stress test, novel object 
test, T-maze test (examine natural tendency to 

explore novel environments), light-dark box test 
CRF levels were measured

C. rodentium infection resulted in decreased  
CRF levels, colonic epithelial cell hyperplasia, and 

colonic Ifng mRNA

Poorer memory in GF mice (with or 
without stress) 

Poorer memory in C57BL/6 mice infected 
with C. rodentium when exposed to stress

Bravo et al. 
(42)

Adult male BALB/c  
mice

Broth gavage with L. rhamnosus (JB-1) or without 
bacteria 

Stress-induced hyperthermia 
Elevated plus maze 

Fear conditioning paradigm 
Open field paradigm 

Forced swim test

Treatment with L. rhamnosus (JB-1) induced: 
Decreased stress-induced corticosterone response 
GABA (B1b) receptor mRNA expression increased in 

cortical regions (cingulate and prelimbic) 
GABA (B1b) receptor mRNA expression decreased 

in subcortical regions (hippocampus, amygdala and 
locus coeruleus) 

GABA (Aα2) mRNA expression decreased in prefrontal 
cortex and amygdala but increased in hippocampus

Mice treated with L. rhamnosus (JB-1) 
showed reduced anxiety- and  

depression-like behaviors

Clarke et al. 
(38)

Adult male and female 
Swiss–Webster mice

GF vs. SPF mice 
Light-dark box test 

Stress-induced corticosterone (novel 
environment)

GF mice had: 
Increased corticosterone concentrations following 

acute stressor in males and females 
Increased 5-hydroxytryptamine and 

5-hydroxyindoleacetic acid levels in hippocampus 
Increased concentrations of tryptophan (serotonin 

precursor) in males 
Decreased BDNF levels in the hippocampus

GF mice had reduced anxiety-like 
behavior

Neufeld et 
al. (40)

Adult female Swiss–
Webster mice

GF vs. SPF mice 
Measurements: locomotor activity, CRF levels, 

gene expression 
Elevated plus maze test

Compared with SPF mice, GF mice had: 
Increased corticosterone levels 

Increased open arm exploration in elevated plus 
maze test 

Decreased NMDA receptor subunit NR2B mRNA 
expression in central amygdala 

Decreased BDNF expression in dentate gyrus layer 
Decreased 5-HT1A expression in dentate gyrus layer

GF mice had reduced anxiety-like 
behavior

Crumeyrolle-
Arias et al. 
(44)

Adult female GF and 
pregnant SPF F344 rats

GF vs. SPF mice 
Open-field test 

Social interactions 
CRF levels

Compared with SPF F344 rats, GF rats exhibited: 
Increased CRF levels after open-field stress test 

Increased CRF mRNA in hypothalamus 
Decreased GR mRNA expression in hippocampus 

Reduced dopaminergic turnover rate in hippocampus, 
frontal cortex, and striatum

GF rats exhibited increased reactivity 
to stress and anxiety-like behavior and 

fewer social interactions

Epithelial permeability
Hsiao et al. 
(60)

Adult pregnant  
C57BL/6N mice and 

offspring

MIA model was used to link maternal infection  
to increased autism risk in offspring 

Measurement: intestinal permeability before  
and after B. fragilis

MIA offspring had GI barrier defects, as reflected  
by increased translocation of FITC-dextran across  

the intestinal epithelium, into the circulation 
B. fragilis treatment of MIA offspring: 

Improved GI barrier defect 
Significantly restored relative abundance 
of bacteroidia and clostridia of the family 

lachnospiraceae 
Restored serum metabolites (especially 4EPS) to 

control levels

MIA offspring showed ASD-like behaviors 
B. fragilis treatment of MIA offspring: 

Ameliorated defects in communicative, 
stereotypic anxiety, and sensorimotor 

behaviors 
Did not affect social behavior deficits

Arseneualt-
Breard et al. 
(48)

Adult male Sprague–
Dawley rats

MI was induced in anesthetized rats 
Rats received either L. helveticus R0052 and  
B. longum R0175 or vehicle (maltodextrin) 

Intestinal permeability evaluated by FITC-dextran

Increased intestinal permeability in MI rats 
Probiotics reversed/restored intestinal permeability

MI rats displayed fewer social interactions 
and poorer performance in forced swim 

and step-down tests 
Probiotics reversed behavioral  

effects of MI
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Role of gut microbiota in brain development
Given the important role of perinatal influences on the developing 
nervous system and the well-documented effects of adverse early 
life influences on the gut/brain axis, there is a strong rationale to 
implicate the gut microbiota in these processes (refs. 22, 81, and 
Figure 2). In animal models, prenatal and postnatal stress can 
alter the composition and total biomass of the enteric microbiota 
(82, 83). The majority of studies have compared adult behaviors, 
brain findings, and physiological responses, such as activation of 
the HPA axis, between animals born into and raised in a GF envi-
ronment and animals raised in a laboratory cage environment. A 
smaller number of studies have reported data showing a role of gut 
microbiota in the effect of early adverse life events on adult behav-
ior. Support for such long-lasting consequences for adult pheno-
types of early life perturbations of the gut microbiota comes from 
two recent studies of the effects of early life antibiotic administra-
tion on adult visceral pain sensitivity (84) and metabolism (85).

Perinatal stress models. Extensive preclinical literature has 
characterized the effects of perinatal stress on the adult CNS, 
including the HPA axis (86), and brain systems involved in emotion 
(63), pain modulation (87–89), and in intestinal function (87). The 
brain and behavioral effects of perinatal stress observed in rodent 
models show high translational validity for a range of human dis-
eases, including functional GI disorders (90, 91) and psychiatric 
disorders (92) in which early adverse life events have been estab-
lished as an important vulnerability factor. This extensive body of 
research, including molecular and epigenetic mechanisms, was 
generated without taking the gut microbiota into account. How-

ever, more evidence has been reported for the involvement of 
the gut microbiota in these perinatal stressors in brain and asso-
ciated behavioral changes, starting with initial reports showing 
that both maternal stress and maternal separation had an effect 
on the gut microbiota (82). Monkeys subjected to maternal sepa-
ration between six and nine months of age showed gut microbi-
ota changes characterized by shedding of lactobacilli three days 
following separation, with the return of normal lactobacilli levels 
seven days later. Adult rats that had undergone maternal separa-
tion showed altered fecal microbial composition compared with 
normally reared control animals (88). It remains unclear whether 
the reported microbiota changes following perinatal stress are 
simply a consequence of the well-established changes in stress 
reactivity and altered regional autonomic nervous system (ANS) 
regulation of gut motility and secretion (leading to a change in 
microbiota environment) or whether other factors play a role. 
However, in view of the reported effects of altered microbiota 
signaling to the brain, it is possible that an alteration in the brain/
gut microbiota/brain loop during certain developmental windows 
contributes to the adult phenotype of these animals.

Adult stress models. Considerable evidence supports the role 
for stress and its mediators in modulating the intestinal micro-
biota in adults (refs. 82, 93, 94, and reviewed in ref. 26). In adult 
mice, psychosocial stress reduced the proportion of Bacteroides 
but increased the proportion of Clostridia in the cecum (95). In the 
same study, stress-induced increases in IL-6 and chemokine (C-C 
motif) ligand 2 (MCP1) were observed, and these changes were 
correlated with certain bacterial species. Additional studies are 
needed to determine whether gut microbial alterations observed 
in preclinical studies and some patient studies with stress-sensi-
tive GI disorders, such as IBS, result from stress-induced accel-
eration of regional intestinal transit, intestinal secretion, or other 
effects of stress on the intestinal microbiota.

When viewed together, these studies support a role of the gut 
microbiota in modulating emotional, nociceptive, and feeding 
behaviors in rodents. Comprehensive reviews of these studies, 
including speculation about possible human implications, have been 
published (2, 4, 17–19, 22, 23, 25, 26, 96–99). The intriguing preclin-
ical results should inform the design of human studies in the future.

Gut microbiota and human brain function and 
behavior
In contrast to the emergence of a rich and robust preclinical liter-
ature on various aspects of microbiota-brain interactions, limited 
information is available from human studies. This may be due to 
(a) the increased complexity of studying the human microbiota, 
which is affected by wide variations in diet, environmental influ-
ences, sex-related differences, and genetic variation; (b) the diffi-
culty of measuring subtle changes in human emotional and cogni-
tive function; and (c) underlying functional and possibly structural 
changes in the human CNS. Gut microbial organization patterns 
have been associated with two clinical phenotypes. A recent study 
in babies with infant colic, often thought to be a risk factor for the 
development of IBS and anxiety disorders, showed reduced over-
all diversity, increased density of Proteobacteria, and decreased 
numbers of Bacterioides compared with healthy babies (33). A 
growing number of studies in IBS patients have provided evidence 

Figure 2. Influences on the gut microbiota/brain axis in the perinatal 
period. Multiple factors affecting the maternal gut microbiota can influ-
ence brain development in utero via microbial metabolites, drug- 
derived chemical metabolites, and inflammatory changes. Postnatally, 
the newborn’s microbiota is strongly influenced by the maternal vaginal 
or skin-derived microbiota (depending on the mode of delivery) during 
birth and by various nutritional factors (breast vs. infant formula feeding). 
Modified with permission from Trends in Molecular Medicine (139).
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probiotic had a reduced response to the emotional recognition 
task across a wide network of brain regions that included sensory 
and emotional regions. There were no differences in self-report-
ing of symptoms of anxiety or depression between the treatment 
groups; however, the fMRI alterations suggest a basic change in 
responsiveness to negative emotional stimuli in the environment. 
A second brain imaging study evaluated the effects of gut micro-
biota modulation via administration of a nonabsorbable antibi-
otic in patients with hepatic encephalopathy and mild cognitive 
impairment (32). Performance on a cognitive task improved, along 
with fMRI evidence for increased subcortical brain activity and 
improved fronto-parietal connectivity during the task. In another 
study using the same underlying disorder and antibiotic treat-
ment, cognitive function was also improved after an eight-week 
treatment course, in conjunction with changes in serum metabo-
lites presumed to be of bacterial origin (101). The mechanisms by 
which the brain changes in response to these experimental pertur-
bations of the gut bacteria is not clear but may include some of the 
gut/brain signaling mechanisms shown in Figure 3.

Bidirectional interactions of the intestinal 
microbiota and CNS
The CNS modulates the GI tract and ENS via the sympathetic 
and parasympathetic branches of the ANS, as well as via the 
HPA axis. These CNS influences can affect the enteric microbi-

for alterations in gut microbial composition (reviewed in refs. 11, 
23), even though a causal role of these microbial changes in clini-
cal symptoms has not been established.

Effect of interventions targeting the gut microbiota. Another 
approach to determining the effects of the gut microbiota on brain 
function has been to use self-reporting measures as a proxy for 
changes in brain function after modulating the microbiota with 
probiotics. In a randomized, placebo-controlled study of healthy 
men and women, psychological distress and anxiety improved 
after taking a Lactobacillus- and Bifidobacterium-containing pro-
biotic compared with those taking a matched control product, 
though another study using a different Lactobacillius probiotic 
failed to confirm these findings (69, 100). Limitations in study 
design, including sample size, baseline mood of the subject sam-
ple, instruments used to collect the mood symptoms, interindivid-
ual variation in terms of microbial composition, and differences 
between the probiotics may have accounted for the discrepancy in 
results. Another approach has been to use functional MRI (fMRI) 
to assess human brain changes in response to modulation of the gut 
microbiota. One study has shown that chronic ingestion of a pro-
biotic consortium changed functional brain responses in healthy 
women (31). In this study, the response to an emotional face recog-
nition task was measured with fMRI in healthy women before and 
after taking four weeks of active probiotic, nonfermented dairy 
product, or no treatment at all. The women who had ingested the 

Figure 3. Bidirectional interactions within the gut 
microbiota/brain axis. A network of specialized 
target/transducer cells in the gut wall functions 
as an interface between the microbiota and the 
host lumen. In response to external and bodily 
demands, the brain modulates these specialized 
cells within this network via the branches of the 
ANS (sympathetic and parasympathetic/vagal 
efferents) and the HPA axis. Such modulation 
can be transient, such as in response to transient 
perturbations, or long lasting, such as in response 
to chronically altered brain output. The microbiota 
is in constant bidirectional communication with 
this interface via multiple microbial signaling path-
ways, and this communication is modulated in 
response to perturbations of the microbiota or the 
brain. The integrated output of the gut microbial–
brain interface is transmitted back to the brain via 
multiple afferent signaling pathways, including 
endocrine (metabolites, cytokines, and microbial 
signaling molecules) and neurocrine (vagal and 
spinal afferents). While acute alterations in this 
interoceptive feedback can result in transient 
functional brain changes (GI infections), chronic 
alterations are associated with neuroplastic brain 
changes. Potential therapies aim to normalize 
altered microbiota signaling to the ENS and central 
nervous system. FMT, fecal microbial transplant; 
ICC, interstitial cell of Cajal.
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example of signaling molecules that allow for direct host-to-mi-
crobe signaling. Different types of stressors can increase not only 
local and plasma levels but also luminal levels of catecholamines 
such as norepinephrine in the gut (118, 119). Some pathogens can 
change their proliferative activity in response to exogenous cate-
cholamines in vitro (120). For example, norepinephrine can stim-
ulate proliferation of several strains of enteric pathogens (119) 
and increase the virulent properties of Campylobacter jejuni (121). 
However, the effect of catecholamines on nonpathogenic organ-
isms and other microbial signaling molecules on gut microbiota 
composition and metabolic activity in healthy individuals and in 
disease is not known.

Microbe-to-host signaling by microbial signaling molecules. A 
number of signaling molecules have been identified through which 
the gut microbiota might communicate with host systems such as 
the ENS (17) and the brain (Figure 3). Quorum-sensing molecules 
used by microbes to communicate with each other (including 
metabolites and neurotransmitter homologs) are also recognized 
by host cells and may influence enteroendocrine cells, immune 
cells, and nerve endings in the gut (reviewed in ref. 2). Metabolites 
produced by gut microbes including SCFAs, metabolites of bile 
acids, and neuroactive substances such as GABA, tryptophan pre-
cursors and metabolites, serotonin, and catecholamines, including 
free metabolite (105) and cytokines released during the immune 
response to microbes (95), can signal to the host via receptors on 
local cells within the gut. These factors can also signal via neuro-
crine (afferent vagal and possibly spinal) pathways and endocrine 
mechanisms to targets well beyond the GI tract, including vagal 
afferents in the portal vein and receptors in the brain (Figure 1). A 
significant proportion of metabolites identified in the circulation 
are of gut microbial origin (122), providing the theoretical basis for 
a vast gut microbiota–to–brain signaling system.

Fermentable carbohydrates such as acetate, propionate, and 
butyrate, which enter the colon and are converted into SCFAs, 
are a well-studied example of microbial-derived metabolites. 
Primary SCFAs have a number of physiologic effects, including 
reduction of food intake, improvement of glucose tolerance, 
modulation of lymphocyte and neutrophil function, and activa-
tion of epithelial cell signaling pathways (15, 123–127). Signaling 
through GPCRs, as well as transport of SCFAs by SLC5A8 and 
the resultant physiological effects, are affected by dietary intake 
of fermentable fiber (128). Different types of SCFA receptors 
have been identified on enteroendocrine cells and on neurons 
of the submucosal and myenteric ganglia (129). A diet supple-
mented with Bifidobacterium breve was associated with increased 
fatty acid concentrations in the brain; however, the mechanisms 
underlying these effects are not known (75).

In summary, there are multiple mechanisms by which the 
microbiota can influence interactions between the gut and the 
nervous system (Figure 2). Regardless of the sequence of events 
leading to a state of dysbiosis in a particular disorder, alterations to 
the microbial community are likely to affect the bidirectional com-
munication between the gut and brain. Such influences may occur 
early in life and affect the development of the nervous system, the 
brain’s interaction with the intestine, and the HPA axis; in adults, 
these influences may act on fully developed circuits (reviewed in 
refs. 3, 17, 20, and Figure 3). Some of these signaling mechanisms 

ota indirectly by altering its environment and directly via a large 
number of signaling molecules (Figure 3 and reviewed in ref. 2). 
Both branches of the ANS regulate gut functions such as regional 
motility, secretion of acid, production of bicarbonates and 
mucus, maintenance of epithelial fluid, permeability of the intes-
tine, and the mucosal immune response (Figure 3 and reviewed 
in ref. 102). Most of these functions, except for sympathetic- and 
cortisol-mediated immune regulation, are affected by sympa-
thetic and parasympathetic influences on the circuits of the ENS. 
Regional and overall changes in GI transit are expected to affect 
the rate of delivery of nutrients (such as prebiotics, including 
resistant starches and certain dietary fibers) to the enteric micro-
biota, gas composition, and other aspects of the luminal environ-
ment (reviewed in ref. 2).

ANS modulation of the gut microbial environment. Impaired 
intestinal transit, caused by compromised migrating motor com-
plexes (an ENS-generated motor pattern characteristic of the 
fasting state of the GI tract that is under parasympathetic mod-
ulation), is associated with an increase in microbial colonization 
(bacterial overgrowth) in the small intestine (103). A reduced 
number of giant migrating contractions in the colon has been 
reported in patients with slow-transit constipation (104) and 
might contribute to symptoms in some patients with IBS and con-
stipation. Alternatively, accelerated intestinal transit, character-
ized by an increased number of giant migrating contractions, is 
observed in some patients with diarrheal disorders such as diar-
rhea-predominant IBS (105). The frequency of regular migrat-
ing motor complexes is influenced by the frequency of food 
intake, quality of sleep, and stress. Acute stress is associated with 
increased parasympathetic output to the small and large intestine 
and reduced vagal output to the stomach (102). Even though they 
have not been studied outside the setting of bacterial overgrowth, 
these alterations in gut transit are likely to have a major impact on 
the composition and organizational structure of the gut microbi-
ota in different regions of the GI tract.

ANS-mediated modulation of mucus secretion is likely to 
have important effects on the size and quality of the intestinal 
mucus layer, an important habitat for the biofilm, where most 
enteric microbiota reside (106). The ANS also affects epithe-
lial mechanisms involved in activation of the immune system 
by the gut. This activation can occur directly through modula-
tion of the response of the gut immune cells (e.g., macrophages 
and mast cells) to luminal bacteria with antimicrobial peptides 
(107) or indirectly by altering access of luminal bacteria to gut 
immune cells. For example, several preclinical studies have 
demonstrated that stressful stimuli can increase the permea-
bility of the intestinal epithelium, facilitating translocation of 
luminal organisms and inducing an immune response in the 
intestinal mucosa (108–113).

Modulation of gut microbiota by host-derived signaling mole-
cules. In addition to CNS-induced changes in the gut environment, 
signaling molecules used by the host for neuronal and neuroen-
docrine signaling, including but not limited to catecholamines, 
serotonin, dynorphin, GABA, and cytokines, may also be released 
into the gut lumen by neurons, immune cells, and enterochro-
maffin cells (98, 114). This process is likely modulated by the 
CNS (115–117). Catecholamines are a particularly well-studied 
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demonstrating associations between gut microbial alterations 
and IBS (reviewed in refs. 11, 23, 133), infant colic (5), hepatic 
encephalopathy (101), craving in alcohol dependence (131), 
depression (134), and Parkinson’s disease (135). In addition, 
small but consistent beneficial effects of probiotic intake have 
been reported in IBS (23). However, clinical observations have 
failed to reveal major effects of transient perturbations of the 
gut microbiota on human behavior.

The main effect of the gut microbiota perturbations on the 
brain may occur at times of lower diversity and instability of 
the gut microbiota (infants and the elderly) (136–138) and dur-
ing brain development (perinatal and infant period) (139). Dur-
ing the prenatal period, the developing brain is first exposed 
to maternal gut-derived metabolites and may be exposed to 
intrauterine microbes (61). During birth, the newborn’s gut 
microbiota is shaped by the maternal vaginal (or skin) micro-
biota (reviewed in refs. 22, 81). Even though the possibility 
that pre- and postnatal influences on the microbiota can affect 
brain development is intriguing (Figure 2), there has not been 
any research in humans characterizing the effect of maternal 
microbiota modulation on fetal brain development and adult 
sequelae of such modulation. As shown in Figure 1, the human 
gut/brain axis fundamentally differs from the rodent axis pri-
marily because of the great expansion of the prefrontal cortex 
and the frontoinsular regions, which play a major role in human 
emotional regulation.

Carefully designed translational and clinical studies are 
required to determine how alterations in these interactions 
begin and how they are sustained over time. These studies 
should include longitudinal characterization of microbiota and 
metabolomic profiles of large cohorts of carefully phenotyped 
patients (including host genetics [ref. 140], dietary habits, med-
ication use, health status, and comorbid illness), compared with 
carefully matched individuals without the disease. Controlled 
interventional studies are also needed to test the effects of pre-
biotics, probiotics, antibiotics, dietary modifications, and pos-
sibly fecal microbial transplantation in patients with disorders 
in which altered gut microbiota–to–brain signaling has been 
implicated. These studies should include analyses of changes 
in intestinal microbiota and metabolomics profiles to correlate 
any effects on GI functions and symptoms with specific micro-
bial changes. It will also be important to study infants to deter-
mine how alteration of the microbiota early in life affects brain 
development and the interactions between the gut and brain, 
and whether reagents designed to reduce dysbiosis can change 
these interactions.
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can occur in the presence of an intact epithelium (e.g., via vagal 
signaling) but are likely enhanced and altered in the context of 
increased intestinal permeability induced by stress (130, 131) or 
mucosal inflammation (60). Further studies are needed to eval-
uate how alterations in these microbe-host interactions and the 
resulting alterations in gut–brain communications affect the brain 
functionally and structurally.

Translational implications
One may speculate that the evolutionarily conserved symbiotic 
relationship between a host and its gut microbiota developed in 
large part for metabolic reasons, providing the organism with 
additional energy from ingested food components that require 
microbial degradation prior to absorption by the host. The 
rapid functional adaptability of the gut microbiota to different 
diets, as well as the solid preclinical and clinical evidence for an 
important role of the gut microbiota in normal and pathological 
metabolic function and the extensive remodeling of signaling 
systems related to ingestive behavior and intestinal absorption 
in the GF mouse, is consistent with this hypothesis. From this 
viewpoint, the observation of robust changes in the HPA axis in 
GF animals could be explained primarily by metabolic reasons 
rather than in terms of psychological stress responsiveness. The 
microbiota-related signaling molecules that communicate with 
the host may initially have developed in the context of this met-
abolic challenge. It has been speculated that the gut microbiota 
may influence the host’s digestive tract (motility, secretion) and 
ingestive behavior (e.g., signaling systems in the gut and the 
brain), assuring an optimal supply and delivery of its required 
nutrients (21, 54, 57). The initial primitive gut-brain signaling 
system may have been greatly expanded and differentiated to 
the current inter-kingdom signaling system through gene trans-
fer with host epithelial cells and development of long-distance 
signaling mechanisms to other brain systems that are involved in 
emotion regulation, cognition and memory, and pain sensitivity. 
Another intriguing hypothesis recently proposed by Stilling et 
al. posits that during evolution, microbe-brain interactions criti-
cally influenced brain evolution towards the development of the 
social brain (28). According to this hypothesis, epigenetic mech-
anisms and lateral gene transfer (132) may have played crucial 
roles in this process. Based on existing preclinical and clinical 
data, it is safe to assume that the gut microbiota form a crucial 
link in the bidirectional interactions between the intestine and 
the nervous system, and that some of the alterations that affect 
these interactions are likely to involve changes in the gut micro-
biota of patients.

Despite the initial exciting preclinical findings, skepticism 
is warranted when extrapolating findings to human physiology 
and disease. It is not known whether results obtained in very 
strictly controlled preclinical conditions such as GF mice are 
relevant to human physiology and pathophysiology. There is 
currently limited evidence from epidemiological or high-qual-
ity clinical studies to show major effects of the normal gut 
microbiota or microbiota modulation with dietary changes, pre-
biotics, probiotics, or antibiotics on gut-brain interactions or on 
brain function (i.e., affect, cognition) in healthy adult humans 
or in human disease. Recently published studies include data 
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