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Lymphangiogenesis, the growth of lymphatic vessels, is essential in embryonic development. In adults, it is involved 
in many pathological processes such as lymphedema, inflammatory diseases, and tumor metastasis. Advances dur-
ing the past decade have dramatically increased the knowledge of the mechanisms of lymphangiogenesis, includ-
ing the roles of transcription factors, lymphangiogenic growth factors and their receptors, and intercellular and 
intracellular signaling cascades. Strategies based on these mechanisms are being tested in the treatment of various 
human diseases such as cancer, lymphedema, and tissue allograft rejection. This Review summarizes the recent 
progress on lymphangiogenic mechanisms and their applications in disease treatment.

Introduction
Lymphatic vessels form an elaborate vascular system through-
out the skin and in most internal organs. They interdigitate with 
blood vessels and play important functions in interstitial fluid 
drainage, lipid absorption, and immune responses. It seems that 
most lymphatic vessels originate from veins during embryonic 
development and then undergo extensive expansion and remod-
eling to form a hierarchical, mature vessel network consisting of 
lymphatic capillaries, precollectors, and collecting vessels, which 
conduct lymph fluid through the LNs and back to the blood cir-
culation (1). SOX18 and COUP-TFII transcription factors coop-
erate to activate PROX1, which marks cells within the embryonic 
veins that will differentiate to lymphatic endothelial cells (LECs) 
(2). Migration of PROX1+ cells away from the embryonic veins 
requires VEGFC (3). Subsequent lymphatico-venous separation 
is mediated by podoplanin, which triggers platelet aggregation 
to block the entry of blood into the emerging lymphatic vessels 
(4, 5). Lymphangiogenesis, or the growth of lymphatic vessels 
from preexisting vessels, is the major if not exclusive mode of 
lymphatic growth. Knowledge of the mechanisms regulating 
lymphangiogenesis has grown significantly since the discovery 
of lymphangiogenic growth factors and receptors over 15 years 
ago (6–8). This Review provides an overview of the growth fac-
tors and signaling mechanisms in lymphangiogenesis and of the 
recent advances in their application for therapeutic purposes in 
preclinical models and in the clinic.

Lymphangiogenic pathways and mechanisms
VEGFC/D and VEGFR3. Signaling via VEGFC/D and VEGFR3 is 
perhaps the most central pathway for lymphangiogenesis (1, 6). 
VEGFC is essential for the sprouting of ECs from embryonic veins 
that are committed to the lymphatic lineage. The first LECs in 
embryos sprout from the cardinal vein to form a lymphatic net-
work during embryonic development (3, 9). A paracrine VEGFC 
gradient induces sprouting, and biallelic Vegfc deficiency is 
embryonic lethal (3). Vegfc+/– mice are born alive but suffer from 
lymphatic deficiency and subsequent lymphedema (3). Similarly, 
inhibition of VEGFR3 signaling during the formation of lym-

phatic vessels induces lymphatic regression and lymphedema in 
mouse embryos and neonates (10). Interestingly, rare alternatively 
spliced transcripts encoding soluble forms of VEGFR2 (sVEGFR2) 
and VEGFR3 (sVEGFR3) may limit the local activity of VEGFR3 in 
some tissues, such as the cornea (11, 12).

A number of growth factors induce the dimerization and auto-
phosphorylation of their tyrosine kinase receptors (13), which 
then serve as docking sites for downstream signaling molecules 
to coordinately regulate cellular responses (14). VEGFC-induced 
VEGFR3 activation leads to phosphorylation of the serine kinas-
es AKT and ERK, which promotes LEC proliferation, migration, 
and survival (15). PI3K, the upstream activator of AKT, was 
found to interact directly with phosphorylated VEGFR3 and to 
mediate LEC tube formation and migration (16). Interestingly, 
while VEGFC induces strong ERK activation in both LECs and 
blood vascular ECs (BECs), it induces strong AKT activation only 
in LECs (17). Likewise, deletion of the PI3K catalytic subunit 
Pik3ca or a regulatory subunit Pik3r1 in mice leads to defective 
lymphatic growth and maturation without a major blood vas-
cular phenotype (18, 19). These findings suggest that AKT has 
a distinct function in LECs. Downstream signal transduction of 
VEGFR3 also involves the Rho GTPase Rac1 (20). Endothelium-
specific Rac1 deletion results in impaired blood-lymphatic vessel 
separation during embryonic development, and Rac1-silenced 
LECs fail to migrate toward VEGFC (20). The proteolytically pro-
cessed form of VEGFC induces heterodimerization of VEGFR2 
and VEGFR3 in LECs (21), but the signaling specificity of such 
heterodimers is incompletely understood.

Missense mutations in the tyrosine kinase domain of VEGFR3 
are responsible for about 70% of cases of an autosomal dominant 
primary congenital lymphedema known as Milroy disease (22, 23). 
Additionally, a homozygous recessive mutation has been identi-
fied in a lymphedema patient (24, 25). The dominant mutants not 
only fail to respond to VEGFC stimulation, but also inhibit the 
activation of a cotransfected WT VEGFR3, whereas the recessive 
mutant showed reduced activation without the dominant nega-
tive activity (22, 24). A further screen of lymphedema patients 
has recently identified a frameshift Vegfc mutation that failed to 
induce lymphatic sprouting when overexpressed in zebrafish (26). 
Thus, evidence from mouse models and human patients indicates 
that the VEGFC/VEGFR3 signaling axis is the major driving force 
of lymphangiogenesis.

Conflict of interest: Kari Alitalo is a scientific adviser for Laurantis Pharma and has a 
research grant from MedImmune Inc.

Citation for this article: J Clin Invest. 2014;124(3):878–887. doi:10.1172/JCI71603.



review series

 The Journal of Clinical Investigation   http://www.jci.org   Volume 124   Number 3   March 2014 879

VEGF and VEGFR2. VEGF/VEGFR2 signaling is less important 
than VEGFC/VEGFR3 signaling for lymphangiogenesis. Exog-
enous VEGF165 as well as VEGFE, a viral-derived VEGF that 
activates only VEGFR2, can induce lymphatic vessel enlarge-
ment but very little sprouting (27). In tumor xenograft models, 
VEGF overexpression can induce peritumoral lymphangiogenesis 
and LN metastasis (28, 29). However, secondary effects may be 
involved, as VEGF recruits VEGFC/D-producing macrophages 
to sites of its expression (30–32). Notably, VEGFE-activated 
VEGFR2 cannot rescue the lack of lymphatic vessels resulting 
from VEGFR3 blockade (27). It seems that VEGFA can restrict 
lymphangiogenesis indirectly via an endogenous trapping mecha-
nism involving VEGFR2 upregulation in BECs with subsequent 
sequestration of VEGFC (33). On the other hand, VEGFC-
induced angiogenesis is attenuated in the presence of abundant 
lymphatic vessels (34). These results suggest that the bioavailabil-
ity of VEGFs also plays a role. Constitutive deletion of Vegfr2 from 
lymphatic vessels leads to hypoplastic but functional lymphatic 
vessels in embryos and adult mice (35). Thus, VEGF appears to be 
a weak lymphangiogenic factor.

A recent study has shed some light on the weak lymphangiogenic 
potential of VEGF. It was shown that lymphatic sprouting induced 
by VEGF is profoundly enhanced by concomitant inhibition of the 
Notch pathway, whereas the strong lymphatic sprouting induced 
by VEGFC was not increased by Notch inhibition (36). These data 
suggest that the Notch pathway restricts VEGF activity in LECs.

Collagen and calcium-binding EGF domain-containing protein 1. The 
secreted collagen and calcium-binding EGF domain-containing 
protein 1 (CCBE1) was recently identified as a highly conserved 
lymphangiogenic factor in zebrafish (37) and mice (9, 38). Simi-
lar to Vegfc-deleted embryos, embryos lacking Ccbe1 fail to form 
lymphatic vessels (9, 38). Furthermore, mutations in the CCBE1 
gene have been identified as a cause of the Hennekam syndrome, 
a primary human lymphedema (39). CCBE1 alone induces little 
lymphangiogenesis but markedly enhances the lymphangio-
genic activity of VEGFC (38). The mechanism of this molecular 
interaction is still unknown.

Semaphorins and neuropilins. Previously know for their importance 
in guiding axon migration in the CNS, semaphorins (SEMAs) and 
neuropilins (NRPs) have recently received much attention for their 
involvement in angiogenesis and lymphangiogenesis, as well as 
tumor growth (40, 41).

NRP2 is expressed in embryonic veins before lymphatic vessels 
are formed, and in lymphatic vessels at later stages (42, 43). Nrp2- 
deficient mice have a grossly normal cardiovascular system, but the 
small lymphatic vessels and capillaries are absent or markedly reduced 
(44). VEGFC and VEGFD bind to NRP2 and induce its cointernaliza-
tion with VEGFR3, although NRP2 complexes with VEGFR3 even 
in the absence of these ligands (45). An antibody that specifically 
blocks VEGFC binding, but not SEMA binding to NRP2 (46), inhibits  
VEGFC-induced VEGFR3 activation and lymphatic sprouting in vitro 
and in neonatal mice (46, 47). These findings indicate that NRP2 is a 
VEGFC coreceptor that facilitates VEGFR3 signaling.

The NRP1 ligand SEMA3A is enriched in LECs compared 
with BECs (48), particularly in the lymphatic valves (49). Loss of 
SEMA3A function, either by genetic targeting or by specific block-
ade of its interaction with NRP1, impairs lymphatic valve leaflet 
elongation during development (48, 49). Moreover, although 
no NRP1 can be detected in the collecting lymphatic vessel seg-
ments between the valves (lymphangions), it is highly expressed in 

the valves (47). Analogous to the repulsive signaling between the 
SEMAs and NRPs in axon guidance, it has been suggested that the 
repulsion between SEMA3A and NRP1 facilitates the migration of 
valve leaflet cells from the vessel wall (49).

Angiopoietins and TIE2. Three angiopoietins and two TIE recep-
tors form another system of endothelial-specific signaling (50). 
Loss-of-function studies of ANG1 and TIE2 in adult lymphatic 
vessels are not yet available; however, two gain-of-function studies 
indicate that ANG1 induces TIE2 phosphorylation in LECs and 
promotes lymphatic sprouting and growth (51, 52). Also, mouse 
ANG3 and its human cognate ANG4 promoted lymphatic sprout-
ing and neovessel formation in a wound-healing model (53).

In contrast to the paracrine action of ANG1 produced by a vari-
ety of cells, including pericytes, SMCs, and fibroblasts, ANG2 is 
mainly produced by ECs and acts in an autocrine manner (54). 
Ang2-deleted C57BL/6 mice survive to birth without major  
cardiovascular defects; however, they develop lymphatic hypopla-
sia, chylous ascites, and peripheral edema (55). In the skin, the 
Ang2-deficient lymphatic vessels fail to remodel from a primi-
tive plexus into two layers of distinct collecting vessels and capil-
laries (56). Consequently, the dermal lymphatic vessels provide 
poor fluid drainage (56). In the intestine, the growth of lacteals 
is arrested at the base of intestinal villi, and the mesenteric col-
lecting lymphatic vessels lack intraluminal valves (55, 56). Also, 
TIE1 deletion was recently shown to induce defective lymphatic 
vasculature development (57).

The exact role of ANG2 in pathological lymphangiogenesis in 
adults is still unclear. In wound healing, ANG2 overexpression 
induces lymphangiogenesis at the wound margin (53). It is not 
known whether this is a direct effect of ANG2 on lymphatic ves-
sels, since ANG2 also promotes the influx of inflammatory cells 
(58, 59), which stimulate lymphangiogenesis by secretion of growth 
factors and cytokines. Lymphatic-specific loss of ANG2 in cancer 
and other pathological conditions should answer these questions.

FGF2. Besides the more endothelial-specific factors, regulators 
of lymphangiogenesis include FGFs, hepatocyte growth factor, 
platelet-derived growth factor, insulin-like growth factors, endo-
thelin-1, and netrin-4 (1, 60). However, many of these factors tar-
get a number of other cell and tissue types without specificity to 
the vascular system, and thus only a few of them are considered 
in this Review. The FGF family consists of 23 members that regu-
late a variety of biological functions in development, cancer, and 
angiogenesis (61). FGF2 induces LEC proliferation, migration, 
and survival as well as lymphangiogenesis in the mouse cornea, 
alone or in synergy with VEGFC (62–65). However, it is not yet 
understood whether FGF2 directly induces lymphangiogen-
esis or if it acts indirectly via modulation of VEGFC/VEGFR3/
VEGFR2 signaling.

In cultured LECs, FGF2 activates AKT and ERK to induce LEC 
proliferation, migration, and survival (62, 66). Loss of FGFR1 
activity via gene silencing or a tyrosine kinase inhibitor abro-
gates the FGF2-induced LEC responses (62, 63). In contrast, 
these FGF2-induced responses were not inhibited by a VEGFR3-
blocking antibody or tyrosine kinase inhibitor (62, 63). Thus, 
these data suggest that FGF2 induces lymphangiogenesis directly 
by activating FGFR1 on LECs. However, FGF2 stimulation also 
increases VEGFC expression in BECs and SMCs (64). Moreover, 
blockade of VEGFR3 signaling inhibits FGF2-dependent corneal 
lymphangiogenesis (62, 64). These results indicate that FGF2 acts 
indirectly to promote lymphangiogenesis. Interestingly, LYVE1, 
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a common lymphatic marker with elusive function, was recently 
found to bind FGF2 and to promote FGF2-induced signaling acti-
vation and lymphangiogenesis (67). Overall, such results could be 
explained if, for example, FGFR1 and VEGFR3 bind a common 
signal transducer in LECs.

Sphingosine 1-phosphate. Sphingosine 1-phosphate (S1P) is a 
bioactive lysophospholipid that regulates vascular morphogen-
esis, vessel tone, endothelial permeability, leukocyte adhesion, 

and inflammation (68, 69). In vitro, S1P induces LEC migration 
and tube formation via the S1P1/Gi/PLC/Ca2+ pathway (70, 71). 
Moreover, S1P stimulates ANG2 secretion from LECs much more 
potently than from BECs (72). Given that ANG2 is required for 
lymphatic development (55, 56), S1P may act synergistically with 
ANG2 in lymphangiogenesis. In vivo, S1P induces lymphangio-
genesis in the Matrigel plug assay (70). S1P also can act in an 
autocrine manner. When Sphk1 was deleted from the mouse lym-

Table 1
Examples of using lymphatic mechanisms for therapeutics in experimental models

Disease model Mechanism of manipulation Major findingsA References

    Inhibition of pathological lymphangiogenesis
Corneal transplantation rejection VEGFC/D trap Improves graft survival 11, 12,  
  or suture-induced corneal inflammation   93
  Heart transplantation rejection VEGFC/D trap Inhibits LEC-derived chemokine production 95 
 and antibody blockade and immune cell trafficking;  
  improves allograft survival
Obliterative bronchiolitis VEGFC/D trapping Inhibits T cell responses 136 
  and obliterative bronchiolitis development
Chemical carcinogenesis in the skin VEGFC/D trap Fewer tumors and delayed onset;  137 
  reduced macrophage number and inflammation
Melanoma and lung, prostate,  VEGFC/D trap Suppresses LN and distal metastasis 138–141 
  and bladder cancer xenografts
Tumor xenografts VEGFC and NRP2 Inhibits distal lymphatic dilation,  92 
 blocking antibody SMC remodeling, and post-sentinel LN metastasis
Neuroblastoma xenograft Anti-VEGFD Inhibits lymphatic metastasis 142
Breast and gastric cancer Anti-VEGFR3 Suppresses LN and distal metastasis 143–145
Orthotopic breast,  VEGFR3 TK inhibitor Suppresses tumor growth and LN metastasis 146 
  spontaneous pancreatic cancer
Lung cancer xenograft TK inhibitor of VEGFR2/3 Suppresses tumor growth 147
Heterotopic brain cancer Anti-NRP2 Suppresses metastasis to LNs and lungs 46 
  and othotopic breast cancer
Breast cancer Blocking of NRP2-VEGFR3 A somatotropin peptide binds 99 
 complex formation to NRP2 and attenuates VEGFR3 signaling
Pancreatic cancer xenograft Anti-ephrinB2 Suppresses angiogenesis, tumor growth 100
Lung cancer xenograft Anti-ANG2 Inhibits tumor growth and LN metastasis 103
Breast cancer SphK1 inhibitor Inhibits tumor growth and LN metastasis 71
Breast cancer Anti-CXCL12 Synergistically inhibits metastasis 148 
  with anti-VEGFC treatment
Suture-induced inflammatory Recombinant  Suppresses inflammatory lymphangiogenesis  115 
  lymphangiogenesis thrombospondin-1
Airway inflammation Anti–TNF-α Reduced leukocyte influx, LV remodeling,   109 
  and LN hypertrophy
HNSCC mTOR inhibition Suppresses tumor lymphangiogenesis 108 
  and LN metastasis; improves survival
Pancreatic cancer Suppresses tumor-derived VEGFC mTOR inhibitor reduces metastasis 107
Breast cancer xenograft NSAIDs Inhibits VEGFD-induced 122 
  prostaglandin synthesis, and thereby 
  collecting lymphatic vessel dilation and metastasis
Melanoma Photodynamic laser therapy Destroys tumor-bearing lymphatic vessels 149 
  and inhibits metastasis

    Induction of therapeutic lymphangiogenesis
Primary lymphedema VEGFC application Reduces primary lymphedema in Chy mice 43
Secondary lymphedema VEGFC application Reduces surgery-induced lymphedema in rabbits 126
Secondary lymphedema LN transfer and VEGFC application Recovery of lymphatic 125, 130,  
  vessel structure and function 131, 150
Hypercholesterolemia VEGFC application Improves RCT 133

AIn addition to inhibition of lymphangiogenesis. HNSCC, head and neck squamous cell carcinoma; TK, tyrosine kinase.
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phatic endothelium, S1P was absent from the lymph but not from 
the serum, and the lymphatic capillaries developed an irregular 
morphology characterized by disorganized cell-cell junctions 
(73). These results suggest that the LEC-derived S1P is required 
for normal lymphatic patterning.

BMP9 and ALK1. BMP9 and its receptor, activin receptor-like 
1 (ALK1), belong to the TGF-β superfamily. In a recent study, 
inhibition of ALK1 with a soluble extracellular domain of the 
receptor or a specific blocking antibody in neonatal mice result-

ed in a reduction in lymphatic capillary density and growth 
(74). Similarly, deletion of Bmp9 significantly reduced the 
number and maturation of lymphatic valves, leading to defec-
tive lymphatic drainage (75). Moreover, BMP9 upregulates the 
expression of a number of LEC genes that control lymphatic 
valve formation (75).

Notch1 and ephrin B2. In addition to the paracrine regulation 
of LECs by soluble growth factors secreted into the lymphatic 
vessel microenvironment, adjacent LECs undergo an intricate 

Figure 1
Growth factor and cytokine signaling pathways in lymphangiogenesis. Growth factors derived from tumor cells, inflammatory cells, or other cell 
types activate their receptors on the surface of LECs and initiate various signaling cascades, leading to lymphatic vessel growth. Coordinately, 
these factors regulate cell migration, proliferation, and survival and vessel dilation and remodeling. Interactions between adjacent LECs via ANG/
TIE2, DLL4/Notch1, and EFNB2/EPHB4 also contribute to the regulation of lymphangiogenic activity. Note that in contrast to ANG1, ANG2 is 
predominantly an autocrine ligand and that both angiopoietins bind with equal affinity to TIE2 and induce in trans ligand receptor complexes 
among ECs (103). Inhibitors that target the various involved molecules are indicated in red, and some of the key signaling consequences in blue.
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communication among themselves via the Notch and ephrin/
Eph pathways.

Significant progress has been made during the recent decade in 
the establishment of the role of Notch signaling in the tip/stalk 
cell specification during angiogenic sprouting (76, 77). However, 
only a few studies thus far have addressed Notch signaling in 
lymphatic vessels. Notch1 and Notch4 are expressed by LECs in 
the dermis and in tumors (78). In zebrafish and mouse neonates, 
Notch inhibition impaired lymphatic development (79); however, 
in adult mice and in 3-dimensional sprouting assays of cultured 
LECs, Notch inhibition induced lymphatic sprouting synergisti-
cally with VEGF (36). Consistent with this observation, condition-
al deletion of Notch1 from the LECs during embryonic develop-
ment increased LEC numbers and lymph sac size (80).

The lymphatic vessels in ephrin B2 (Efnb2) mutant mice are 
hypoplastic, mispatterned, and devoid of intraluminal valves, and 
the mutant mice develop chylothorax (81). EFNB2 in LECs facili-
tates VEGFR3 signaling by inducing its internalization into endo-
somal vesicles to maximize its signaling output (82).

Endogenous inhibitors of lymphangiogenesis. Suppressive mecha-
nisms exist in most biological processes to maintain balance and 
homeostasis. TGF-β, IFN-γ, BMP2, and endostatin are examples 
of factors that are lymphangiogenesis suppressing. TGF-β inhibits 
LEC proliferation, cord formation, and migration toward VEGFC 

in vitro, and also inhibits tumor- and wound healing–associated 
lymphangiogenesis in vivo (83–85). IFN-γ secreted by T cells sup-
presses LN lymphangiogenesis through the classic JAK/STAT 
pathway (86). Endostatin, a proteolytic fragment of type IV col-
lagen, can apparently inhibit tumor lymphangiogenesis by sev-
eral mechanisms (87). BMP2 is induced in BECs, but not LECs, 
via VEGFR2 signaling (88). Normally, BMP2 signaling activity is 
reduced in developing LECs. However, when overexpressed, BMP2 
negatively regulates the formation of LECs by downregulating 
PROX1 via miR-31 and miR-181a (89). It is likely that many other 
signals impinge on lymphangiogenesis regulation by inhibiting 
various necessary signal transduction events.

Translation of lymphangiogenic mechanisms into 
therapeutics
Although many lymphangiogenic mechanisms in both physiology 
and pathology remain elusive, a framework of the major signaling 
mechanisms can be drawn (Figure 1). An important question is 
how one can take advantage of these mechanisms to manipulate 
lymphangiogenesis for therapeutic purposes. Such attempts have 
already been made in numerous preclinical disease models (Table 1), 
including cancer (Figure 2) and lymphedema (Figure 3).

Inhibition of pathological lymphangiogenesis. Lymphangiogenic sig-
naling is highly active during development and decreases to very 

Figure 2
Inhibition of tumor-induced lymphangiogenesis and vessel remodeling. VEGFC/D is commonly produced by tumor cells and by inflammatory 
cells in tumors, and the resulting growth factor gradient induces the sprouting and growth of lymphatic vessels toward the tumor. Tumor-derived 
VEGFC/D also induces dilation, SMC remodeling, and increased pulsation of the collecting vessels. These tumor-induced processes can be 
attenuated by antibodies targeting the VEGFC/VEGFD/VEGFR3 signaling pathway. TKI, tyrosine kinase inhibitor.
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low levels in adulthood; however, these pathways can be re-activat-
ed in pathological conditions (90). Aberrant growth or activation 
of lymphatic vessels is associated with cancer and some chronic 
inflammatory diseases (91). In cancer, tumor-induced lymphan-
giogenesis facilitates lymphatic metastasis, and in allogeneic tissue 
transplants, inflammatory lymphangiogenesis contributes to full-
blown immune responses to the grafts.

Direct inhibition of VEGFR3 signaling. Since VEGFC/VEGFR3 sig-
naling is the most potent and specific lymphangiogenic pathway, 
it has attracted the most attention and effort as a target for drug 
development (Table 1; ref. 91). VEGFR3 signaling can be directly 
inhibited at several levels: by trapping the ligands with sVEGFRs, 
blocking ligand-receptor binding or receptor dimerization with 
antibodies, and by inhibiting the VEGFR3 tyrosine kinase (Figure 1).  
Inhibition of VEGFR3 signaling suppresses tumor lymphangio-
genesis and LN metastasis in a variety of tumor models (Table 1). 
Interestingly, tumors also induce dilation of distal lymphatic ves-
sels, remodeling of the associated SMCs, and frequency modula-
tion of their pumping activity; these disease-associated changes 
were reversed by VEGFC or NRP2 blockade (92).

Similar inhibitors may prove useful in tissue transplantation, as 
inhibition of VEGFR3 signaling suppresses tissue allograft–induced 
lymphangiogenesis and improves graft survival in mouse models  
(11, 12, 93–95). Notably, the neo-lymphatic vessels induced in tumors 
or allografts are not only passive conduits; they also secrete chemo-
kines such as CCL21 to attract tumor cells or immune cells (95–98).

Besides blocking ligand-receptor binding, prevention of recep-
tor dimerization and subsequent receptor transactivation is 
another effective approach that provides additive inhibition when 
used with antibodies that block ligand binding (17). Future stud-

ies will determine whether such strategies can be translated into 
effective therapeutics.

Targeting VEGFR3 coreceptors. VEGFR3 signaling can also be 
attenuated by targeting its coreceptors. Specific inhibition of 
VEGFC binding to NRP2 with a blocking antibody has been 
shown to suppress tumor lymphangiogenesis and metastasis to 
sentinel LNs and lungs (46). Binding of NRP2 by a somatotropin 
peptide inhibits VEGFR2/VEGFR3/NRP1/NRP2 complex forma-
tion, leading to reduced tumor lymphangiogenesis (99). Further-
more, EFNB2 is required for full VEGFR3 activity (82) and a spe-
cific blocking antibody inhibiting the EFNB2/EPHB4 interaction 
suppresses tumor lymphangiogenesis (100).

Blocking other lymphangiogenic factors. ANG2-blocking antibod-
ies have been shown to inhibit tumor angiogenesis and growth  
(101, 102). Recently, these antibodies were also shown to inhibit 
tumor lymphangiogenesis and LN metastasis, presumably via 
an effect on EC-cell junctions (103). Furthermore, S1P levels are 
elevated in breast cancer patients, and in a mouse model of breast 
cancer, a SPHK1 inhibitor reduced tumor angiogenesis and lym-
phangiogenesis and decreased the overall tumor burden as well 
as LN and lung metastasis (71). Notch pathway inhibition with 
γ-secretase inhibitors and anti-DLL4 antibodies leads to excessive 
yet nonproductive angiogenesis, which inhibits tumor growth 
(104, 105). Notch inhibition also induces lymphatic sprouting and 
outgrowth (36, 80). Future studies will determine whether Notch 
inhibition similarly leads to nonproductive lymphangiogenesis 
and reduced lymphatic metastasis.

Inhibition by indirect mechanisms. Future therapeutic strategies 
might also be based on indirect downregulation of VEGFC expres-
sion in the microenvironment of lymphatic vessels. For example, 

Figure 3
VEGFC-induced regeneration of lymphatic vessels for the treatment of lymphedema. Surgery, infection, or trauma damages the lymphatic 
vessels, leading to secondary lymphedema. Adenoviral VEGFC treatment with or without LN transplantation may be used to restore functional 
lymphatic vessels at the damaged site. Adenoviral VEGFC expression reaches peak levels soon after injection and lasts for about two to three 
weeks. The newly generated lymphatic vessels undergo intrinsic remodeling processes, finally maturing into collecting vessels with associated 
SMCs and intraluminal valves within six months in mice and pigs (125, 131). The blue curve indicates the quantitative dynamics of VEGFC 
expression. Original magnification, ×40.
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knockdown or inhibition of FGFR2 (106) or mTOR (107, 108) 
in tumor cells inhibits VEGFC production, leading to reduced 
tumor lymphangiogenesis and metastasis. However, such strate-
gies might suffer from lack of specificity.

Inflammatory cytokines, such as TNF-α (109) and IL-1α (110), 
stimulate lymphangiogenesis by recruiting VEGFC/D-secreting 
inflammatory cells (111, 112). Endotoxin also induces lymphan-
giogenesis indirectly by stimulating LECs to secrete chemokines 
that attract VEGFC/D-producing macrophages (113). Inhibi-
tion of inflammatory cell infiltration or inflammatory signaling 
pathways in general reduces the supply of lymphangiogenic fac-
tors. TNF-α–blocking antibodies and deletion of TNF receptor 
diminish leukocyte influx during airway infection and the asso-
ciated lymphatic vessel remodeling and LN hypertrophy (109). 
Systemic or local depletion of macrophages alleviates suture-
induced inflammatory lymphangiogenesis in the cornea (30, 114). 
In particular, VEGFC/D production by CD36+ macrophages is 
inhibited by endogenous thrombospondin-1, and treatment with 
recombinant thrombospondin-1 suppresses corneal lymphangio-
genesis (115). A cyclooxygenase-2 inhibitor also suppresses lym-
phangiogenesis, presumably by inhibiting VEGFC/D production 
from prostaglandin-activated macrophages (116). Furthermore, 
anti-VEGF treatment also limits inflammatory lymphangiogen-
esis (117, 118). In addition to its possible direct anti-lymphangi-
ogenic effects, anti-VEGF can block the recruitment of VEGFR1- 
expressing inflammatory cells (30–32), and its anti-angiogenic 
activity may reduce the influx of inflammatory cells in general.

Inflammation-associated lymphangiogenesis is beneficial in some 
cases. Blockade of lymphangiogenesis causes bronchial lymph-
edema and exacerbates airflow obstruction (119) and worsens the 
edema induced by delayed-type hypersensitivity (117, 120). More-
over, it delays antigen clearance and inflammation resolution (114). 
In contrast, enhancement of inflammation-induced lymphangio-
genesis by VEGFC overexpression alleviates edema (114, 117, 120). 
Nevertheless, caution is needed when inducing lymphangiogenesis 
for facilitation of inflammation resolution, as this might, in theory, 
also increase the drainage of unfiltered pathogens and inflamma-
tory mediators through the lymphatic vasculature (121).

Targeting lymphangiogenic signaling pathways downstream of VEGFR3. 
Signaling molecules and effectors downstream of the lymphatic 
endothelial growth factor receptors are also targetable. VEGFD 
signaling, but not VEGFC signaling, suppresses expression of a 
prostaglandin-degrading enzyme in the collecting lymphatic ves-
sels (122). The resulting accumulation of prostaglandins induces 
dilation of the collecting vessels and facilitates cancer metastasis, 
a process that can be inhibited by prostaglandin inhibitors (122). 
Several lymphangiogenic factors activate mTOR in LECs, and 
mTOR inhibition blocks lymphangiogenesis (66). In an appar-
ent positive feedback loop, mTOR inhibition reduces VEGFR3 
protein level by promoting its degradation in LECs, thereby 
decreasing their responsiveness to lymphangiogenic factors 
(123). MEK1/2 and Rac1 have emerged as important signaling 
molecules downstream of VEGF/S1P/FGF2 in a screen for drugs 
capable of inhibiting lymphatic sprouting (124). Since many of 
the drugs used in the screen are available or are in clinical trials 
for cancer therapy, it would be interesting to test whether they 
also have anti-lymphangiogenic activities.

Therapeutic lymphangiogenesis and recovery of lymphatic function. 
Lymphedema is characterized by the impairment of lymphatic 
transport capacity due to abnormal vessel development or destruc-

tion. Currently, lymphedema is a life-long disease without effective 
treatment. Lymphangiogenic growth factor therapy may become 
the most appropriate form of curative treatment for most second-
ary lymphedemas (Figure 3) (91).

Unprocessed forms of VEGFC and VEGFD signal preferentially 
through VEGFR3 (7). VEGFC gene therapy can restore a func-
tional network of lymphatic vessels and reduction in edema in pri-
mary (43) and secondary lymphedema mouse models (125, 126). 
While full-length VEGFC and VEGFD predominantly induced 
lymphangiogenesis, the VEGFR3-selective mutant form of VEGFC  
(VEGFC156S) (7, 127) induces only lymphangiogenesis in skeletal 
muscle and skin (128, 129). Furthermore, normal lymphatic func-
tion is restored when the K14-VEGFC156S transgene is introduced 
into Chy mice that suffer from hereditary lymphedema (43).

Transient overexpression of VEGFC promotes lymphatic capil-
lary growth, followed by long-term lymphatic vessel remodeling, 
differentiation, and maturation, resulting in the formation of a 
functional network of collecting lymphatic vessels with valves and 
smooth muscle cell coverage (125). When VEGFC gene therapy 
was combined with LN transplantation in a mouse model of post- 
mastectomy lymphedema, the functional outcome was enhanced. 
Restoration of functional afferent and efferent lymphatic vessels 
was obtained, which prevented the regression of the transplanted 
LNs (125). Similar strategies have been used to repair damaged 
lymphatic vessels in a large animal model (130). In pigs, both 
VEGFC and VEGFD gene therapy induced robust growth of lym-
phatic vessels in a surgically LN-evacuated groin area, causing a 
significant improvement in postsurgical lymphatic drainage (131).

Obesity, diabetes, and atherosclerosis raise significant health 
concerns of increasing importance. Obesity is associated with 
impaired lymphatic vessel function in humans and mice (132, 133). 
Lymphatic vessels have been recently identified as a critical regula-
tor of reverse cholesterol transport (RCT), which removes excess 
cholesterol from peripheral tissues (133, 134). RCT was severely 
impaired when lymphangiogenesis was blocked in mice receiving 
transplanted atherosclerotic aortas, or when lymphatic drainage in 
peripheral tissues was surgically obstructed (133, 134). In contrast, 
restoration of lymphatic drainage by VEGFC treatment in hyper-
cholesterolemic mice improved RCT (133). Thus, enhancement of 
lymphatic function might represent a new therapeutic approach to 
prevent cholesterol accumulation in diseases such as atherosclero-
sis, diabetes, and dyslipidemia.

Conclusions and future perspectives
Agents that target lymphangiogenesis may also affect blood vessels, 
inflammatory cells, tumor-associated macrophages, and tumor 
cells. Thus, reduced lymphangiogenesis in a tumor or in inflamed 
tissue may be secondary to, for example, reduction in VEGFC secre-
tion or infiltration of growth factor-producing inflammatory cells. 
While it is important to distinguish specific effects from indirect 
or concomitant side effects for basic research, it may be less crucial 
for disease outcome, as lymphangiogenesis, angiogenesis, and neo-
plasia share many pathways and mechanisms. Targeting the com-
mon components of these processes may yield additional benefits; 
however, the benefits of multi-targeting should be weighed against 
the risk of side effects. Further investigations are required to deter-
mine the best strategy for lymphangiogenesis inhibition in each 
case. When promoting lymphangiogenesis, the approach should be 
specific to lymphatic vessels in most cases, employing factors with 
minimal angiogenic or potentially deleterious activities.
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