
Research article

398 The Journal of Clinical Investigation   http://www.jci.org   Volume 124   Number 1   January 2014

MYC-driven accumulation  
of 2-hydroxyglutarate is associated  

with breast cancer prognosis
Atsushi Terunuma,1 Nagireddy Putluri,2 Prachi Mishra,1 Ewy A. Mathé,1 Tiffany H. Dorsey,1  

Ming Yi,3 Tiffany A. Wallace,1 Haleem J. Issaq,4 Ming Zhou,4 J. Keith Killian,5  
Holly S. Stevenson,5 Edward D. Karoly,6 King Chan,4 Susmita Samanta,2 DaRue Prieto,4  

Tiffany Y.T. Hsu,2 Sarah J. Kurley,2 Vasanta Putluri,2 Rajni Sonavane,2 Daniel C. Edelman,5  
Jacob Wulff,6 Adrienne M. Starks,1 Yinmeng Yang,1 Rick A. Kittles,7 Harry G. Yfantis,8  
Dong H. Lee,8 Olga B. Ioffe,9 Rachel Schiff,10 Robert M. Stephens,3 Paul S. Meltzer,5  
Timothy D. Veenstra,4 Thomas F. Westbrook,2 Arun Sreekumar,2 and Stefan Ambs1

1Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA.  
2Department of Molecular and Cell Biology, Verna and Marrs McLean Department of Biochemistry, Alkek Center for Molecular Discovery,  

Baylor College of Medicine, Houston, Texas, USA. 3Advanced Biomedical Computing Center, SAIC-Frederick, Inc., NCI, Frederick, Maryland, USA.  
4Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., Frederick National Laboratory of Cancer Research,  

Frederick, Maryland, USA. 5Genetics Branch, CCR, and Clinical Molecular Profiling Core, NCI, NIH, Bethesda, Maryland, USA.  
6Metabolon, Inc., Durham, North Carolina, USA. 7University of Illinois, College of Medicine at Chicago, Chicago, Illinois, USA.  

8Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA.  
9Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA.  

10Lester and Sue Smith Breast Center and Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA.

Metabolic profiling of cancer cells has recently been established as a promising tool for the development 
of therapies and identification of cancer biomarkers. Here we characterized the metabolomic profile of 
human breast tumors and uncovered intrinsic metabolite signatures in these tumors using an untargeted 
discovery approach and validation of key metabolites. The oncometabolite 2-hydroxyglutarate (2HG) accu-
mulated at high levels in a subset of tumors and human breast cancer cell lines. We discovered an association 
between increased 2HG levels and MYC pathway activation in breast cancer, and further corroborated this 
relationship using MYC overexpression and knockdown in human mammary epithelial and breast cancer 
cells. Further analyses revealed globally increased DNA methylation in 2HG-high tumors and identified a 
tumor subtype with high tissue 2HG and a distinct DNA methylation pattern that was associated with poor 
prognosis and occurred with higher frequency in African-American patients. Tumors of this subtype had a 
stem cell–like transcriptional signature and tended to overexpress glutaminase, suggestive of a functional 
relationship between glutamine and 2HG metabolism in breast cancer. Accordingly, 13C-labeled glutamine 
was incorporated into 2HG in cells with aberrant 2HG accumulation, whereas pharmacologic and siRNA-
mediated glutaminase inhibition reduced 2HG levels. Our findings implicate 2HG as a candidate breast 
cancer oncometabolite associated with MYC activation and poor prognosis.

Introduction
Gene expression profiling studies of breast cancer led to the 
discovery of disease subtypes and expression patterns that are 
predictive of disease outcome (1–3). Recently, metabolomics 
emerged as a new discovery tool with the promise of identify-
ing targetable metabolic dependencies of cancer cells (4, 5). 
Oncogenes like MYC and tumor-suppressor genes like TP53 
affect cancer cell survival through regulation of cell metabolism 
and mitochondrial biogenesis (6–8). New essential metabolo-
mic pathways for tumor growth have been described for breast 
and other cancers (4, 9–12), and “public” somatic mutations in 
metabolic enzymes were recently discovered. Isocitrate dehy-
drogenase 1 (IDH1) and IDH2 mutations are mainly restricted 
to gliomas and leukemias and promote tumor development by 
turning the 2 enzymes into catalysts for the production of onco-

genic 2-hydroxyglutarate (2HG), which causes epigenetic repro-
gramming (13–16). These findings suggest that human tumors 
acquire discrete metabolic networks that define disease aggres-
siveness and response to therapy.

Here, using an unbiased metabolomics approach supported 
by validation of key metabolites, we examined metabolite sig-
natures in breast cancer and differences between African-Amer-
ican (AA) and European-American (EA) patients. A highlight 
of our study was the finding of markedly elevated 2HG in a 
subgroup of breast tumors with MYC activation, a distinct 
DNA methylation pattern, and poor clinical outcome. We 
also identified breast cancer cell lines of mostly basal-like and 
mesenchymal origin that aberrantly accumulated 2HG, reach-
ing levels 100-fold above those in other breast cancer cell lines 
and in noncancerous mammary epithelial cells. Experimen-
tally, we linked glutamine metabolism and MYC activation to 
increased intracellular 2HG and provided evidence that mito-
chondrial enzymes are involved in the aberrant accumulation 
of 2HG in breast cancer.
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Results
The abundance of 352 known and 184 unknown metabolites in 
67 human breast tumors and 65 tumor-adjacent noncancerous 
tissues (Supplemental Tables 1 and 2; supplemental material 
available online with this article; doi:10.1172/JCI71180DS1) was 
measured using an untargeted mass spectrometry–based profiling 
approach (discovery set). Quantitative differences for key metabo-
lites were validated in 70 estrogen receptor–negative (ER-negative) 
tumors (Supplemental Table 3) and 36 adjacent noncancerous 
tissues (validation set) with targeted assays at 2 additional labo-
ratories. 27 tumor samples and 19 tumor-adjacent noncancerous 
tissue pairs were common to the discovery and validation studies 
and were analyzed on all platforms. This overlap in tissues between 
the discovery and validation studies was chosen to evaluate pos-
sible platform-specific effects in the measurement of metabolites.

Intrinsic metabolite signatures exist in breast tumors. Examination of 
the discovery set yielded 296 tissue metabolites that were detect-
able in more than 40% of samples. A subset of metabolites was 
elevated in tumors and delineated those from adjacent noncan-
cerous tissues in both discovery and validation phases (Figure 1 
and Supplemental Figure 1). Robust metabolite contrasts were 
seen between tumors of different grades and ER statuses (Supple-
mental Figures 2 and 3), while only subtle differences emerged 
comparing tumor metabolic profiles according to patient age, 
disease stage and node status, menopausal status, body mass 
index, or socioeconomic status (Supplemental Figure 2). Differ-
ences in tumor metabolite abundance by household income and 
neoadjuvant therapy were initially observed, but further analysis 
indicated that tumor ER status may confound this association. 
In an ER-stratified analysis, both household income and neoadju-
vant therapy had only modest effects on the tumor metabolome. 
These findings are consistent with the presence of robust intrinsic 
metabolome signatures in primary human breast tumors that per-
sist with disease progression and mirrors findings from the gene 
expression studies (17, 18). However, unlike gene expression sig-
natures that correlate with various hormonal subtypes of breast 
cancer and hence distinguish them as discrete subtypes (1, 19), 
metabolite signatures by themselves delineated luminal A tumors 
from others, but did not separate HER2-positive tumors (both 
ER-negative and ER-positive) from HER2-negative, ER-negative 
tumors (Supplemental Figure 4).

Because our study population was ethnically diverse and race/eth-
nicity matched for tumor ER status and triple-negative/basal-like  
disease (Supplemental Table 1), we analyzed tissue metabolite 
differences comparing the AA patients (n = 32; average West Afri-
can ancestry, 83.2%) with EA patients (n = 35; average European 
ancestry, 97.6%). Using unsupervised hierarchical clustering, we 
were able to separate both ER-negative and triple-negative tumors 
into distinct subclusters that were enriched for AA or EA patients  
(P < 0.05, AA vs. EA in ER-negative tumors, Fisher’s exact test;  
Figure 1, C and D). Overall, 50–80 metabolites were different 
between AA and EA patients in ER-negative and triple-negative 
tumors, whereas almost 200 metabolites distinguished triple-
negative tumors from adjacent benign tissue (false discovery rate 
[FDR], <5%; Figure 1E and Supplemental Table 4).

2HG preferentially accumulates in ER-negative and basal-like tumors. 
Several classes of metabolites were consistently elevated in ER-
negative versus ER-positive tumors, including lyso(phospho)lipids, 
carnitines, and N-acetyl amino acids (Supplemental Figure 5 and 
Supplemental Table 5). ER-negative tumors also showed a robust 

accumulation of 2 mitochondrial metabolites, N-acetyl-aspartate 
(NAA) and 2HG. Both metabolites were significantly elevated in 
breast tumors in general (NAA, 13.4-fold vs. paired adjacent non-
cancerous tissue; 2HG, 4.6-fold; FDR, <1%), but most robustly in 
ER-negative tumors (NAA, 2-fold vs. ER-positive tumors; 2HG, 
2.8-fold; FDR, <5%), and specifically in tumors of the basal-like/
mesenchymal subtype (NAA, 2.4-fold vs. ER-positive; 2HG, 4.0-
fold; FDR, <5%). NAA has previously been described as a brain-spe-
cific metabolite that is elevated in patients with Canavan’s disease 
because of deleterious aspartoacylase (ASPA) gene mutations that 
inhibit the hydrolysis of NAA (20). Matched microarray data from 
our study showed that transcript levels of ASPA were reduced in 
breast tumors in general (Supplemental Figure 5), but most signifi-
cantly within the ER-negative tumor group (3%–4% residual expres-
sion, array-based; FDR, <1%), which suggests a possible cause for 
increased tumor-associated NAA.

On the other hand, 2HG is a known oncometabolite in gliomas 
and leukemias (13–16). Our analysis showed that 2HG accumu-
lated up to 100-fold in a subset of breast tumors compared with 
most adjacent noncancerous tissues, in which it was present at 
low levels (Figure 2A). A targeted quantitative analysis in 60 ER-
negative tumors showed that this metabolite reached concentra-
tions of 1–20 mmol/kg tissue in about one-third of these tumors  
(Figure 2B). These observations were further validated in 14 human 
breast cancer cell lines and 3 noncancerous mammary epithelial cell 
lines: 5 of the 14 breast cancer lines had notably high intracellular 
2HG concentrations in the 2–5 mM range, about 100-fold higher 
than that in noncancerous lines (Figure 2B and Supplemental 
Table 6). Furthermore, among these 5 cell lines with high 2HG,  
3 had basal-like and mesenchymal characteristics (MDA-MB-231, 
MDA-MB-468, and SUM159T), 1 was ER-negative with an HER2 
amplification (HCC-1419), and only 1 had luminal characteristics 
(MDA-MB-361). Analysis of both tumors and cell lines yielded con-
sistent results, which indicates that tumors and breast cancer cell 
lines with high 2HG tend to be ER-negative and frequently belong 
to the basal-like/mesenchymal breast cancer subtype.

Highly increased 2HG has been reported from gliomas and leuke-
mias with hotspot mutations in either the cytosolic IDH1 or the mito-
chondrial IDH2, which cause the enzyme to produce 2HG (13–15). 
Sequencing of the 67 breast tumors in the discovery set did not reveal 
the presence of these hotspot mutations in any of the tumors. Thus, 
2HG accumulates in breast tumors in the absence of IDH mutations 
and reaches concentrations in the millimolar range, comparable to 
those found in IDH-mutant gliomas and leukemias (14).

2HG-high tumors exhibit a distinct DNA methylation pattern. Accu-
mulation of 2HG is known to cause the inhibition dioxygenases 
like the TET family of 5-methylcytosine (5mC) hydroxylases, lead-
ing to decreased levels of 5-hydroxymethylcytosine (5hmC) and 
a DNA hypermethylation phenotype (16, 21). We tested whether 
exposure to 2HG would have a similar effect in the breast cancer 
cell line MCF7, which has low endogenous 2HG. Addition of 2HG 
induced a significant shift in the 5hmC/5mC ratio in these cells 
(Supplemental Figure 6), consistent with decreased 5hmC levels 
because of TET inhibition. The finding led us to examine the rela-
tionship between genome-wide DNA methylation patterns and 
levels of 2HG in 62 breast tumors. We observed that 2HG-high 
breast tumors exhibited a genome-wide DNA hypermethylation 
phenotype (Figure 2C). Moreover, genome-wide DNA methyla-
tion variation classified the tumors into 3 different subgroups, 
of which subgroups I and III were separated by their distinct  
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methylation patterns, whereas subgroup II showed an interme-
diate pattern (Figure 3A). A significant relationship emerged 
between these subgroups and tumor 2HG levels (Figure 3A). Sub-
group III had the highest 2HG levels and predominately consisted 
of ER-negative tumors and tumors from AA patients, but exhib-
ited reduced DNA methylation at the IDH2 locus and increased 
IDH2 expression (Supplemental Figure 7). Moreover, 2 other 
metabolites that have an effect on DNA methylation, S-adenosyl-
methionine (SAM) and S-adenosylhomocysteine (SAH), were also 
increased in subgroup III tumors (Figure 3B).

Molecular characteristics of subgroup III/2HG-high tumors are markers of 
poor prognosis. To assess the clinical significance of the DNA methyla-
tion–defined subgroup III with high 2HG, we performed a survival 
analysis in our study population and also assessed patients in pub-
licly available datasets using subgroup-associated DNA methylation 
and gene expression signatures. Patients with subgroup III tumors 
showed significantly decreased breast cancer–specific survival com-
pared with patients in subgroup I (Figure 3C and Supplemental 
Table 7). The DNA methylation characteristics of subgroup III were 
also significantly associated with poor survival among 234 previ-

Figure 1
Differences in metabolite patterns between breast tumors and adjacent noncancerous tissues and AA and EA patients. (A) Principal component 
analysis for breast tumors (n = 67) and adjacent noncancerous tissues (n = 65) using the top 50 metabolites that showed the most different abun-
dance across tissues. These metabolites were detected in >80% of all samples. (B) Z-score plots representing the deviation of the 50 metabolites 
in tumor (brown) and adjacent noncancerous tissue pairs (light blue; n = 65) from the average of the noncancerous tissues in linear scale. (C and D)  
Unsupervised hierarchical clustering of ER-negative (C, n = 34, 16 AA and 18 EA) and triple-negative (D, n = 17, 8 AA and 9 EA) breast tumors 
based on 296 named metabolites. Colors denote sample classes (green, AA; yellow, EA) or basal-like subtype in D (brown, n = 15). Yellow frames 
in C and D highlight metabolites decreased in a subset of breast tumors, representing mostly EA patients. (E) Number of differential metabolites 
(fold change, >2.5 or <0.4; FDR, <5%) in the comparisons in C and D.
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ously described patients from the Jules Bordet Institute in Belgium 
(Figure 3D, Supplemental Table 8, and ref. 22). Furthermore, gene 
expression characteristics of subgroup III and 2HG-high tumors 
were significantly associated with poor outcome in multiple datasets 
(Figure 4 and Supplemental Tables 9–12).

Accumulation of 2HG can induce stem cell–like features in 
tumors, as indicated by previous studies (16, 23). Thus, we inves-
tigated subgroup III tumors for the presence of these features and 
observed that most subgroup III tumors exhibited DNA hyper-
methylation at multiple loci encoding inhibitors of the WNT sig-

naling pathway, with an associated decrease in expression of these 
genes (Figure 5). Furthermore, Kyoto Encyclopedia of Genes and 
Genomes–based (KEGG-based) pathway analysis ranked the WNT 
pathway as among those most likely affected by altered methyla-
tion in subgroup III tumors (Supplemental Table 13). In addition, 
breast tumors in subgroup III contained a transcriptional signa-
ture of ES cells, as revealed by a gene set analysis (Table 1).

2HG accumulates in breast tumors with MYC pathway activation. The 
absence of IDH mutations in breast tumors suggested a novel 
mechanism for 2HG accumulation in breast cancer. Because MYC 
has a dominant function in mitochondrial biogenesis and a strong 
influence on the cell metabolism, specifically glutamine oxidation 
(6, 8), we asked whether MYC activation is linked to 2HG accumu-
lation in breast cancer. A previously described core MYC signature 
(24) was examined in the gene expression compendium obtained 
from 61 tumors in our present study in order to ascertain MYC 
pathway activation. Notably, 24 of 61 tumors (39%) expressed 
this core MYC signature (Figure 6A). Next, we assessed the asso-
ciation of the MYC signature with 2HG levels, DNA methylation 
subgroup status, and race/ethnicity. This analysis revealed a strik-
ing overlap between elevated 2HG levels in tumors and their MYC 
activation status (odds ratio [OR], 11.3; 95% CI, 3.4 to 37.4; i.e., an 
11.3 increased odds of aberrant 2HG accumulation in a tumor 
with vs. without the core MYC signature; P < 10–4). Similar overlaps 
with MYC activation status were observed for DNA methylation 
subgroup III tumors (OR, 12.8; 95% CI, 3.6 to 45.5; P < 10–4) and 
tumors from AA patients (OR, 4.4; 95% CI, 1.3 to 16.0; P < 0.01) 

Figure 2
Aberrant accumulation of 2HG in 
breast cancer and its relationship 
with genome-wide DNA methyla-
tion in breast tumors. (A) Relative 
abundance of 2HG in breast tumors 
and adjacent noncancerous tis-
sue for all paired samples (n = 65,  
33 ER-positive and 32 ER-nega-
tive) for the discovery set. (B) 2HG 
quantitation for ER-negative tumor 
(n = 60) and adjacent noncancer-
ous tissue (n = 29) in the valida-
tion set. P value was determined 
by paired t test (n = 29). Relative 
abundance of 2HG in 3 benign and 
14 cancerous human breast cell 
lines is also shown. (C) Normalized 
genome-wide DNA methylation 
scores were calculated for breast 
tumors in the discovery set using 
Human Methylation 450 BeadChips 
data. 2HG-high tumors (median 
and above) had a significantly 
higher DNA methylation score than 
2HG-low tumors (below median), 
as determined by Welch t test.

Table 1
Gene set analysis scores using gene expression data for sub-
groups I–III and 3 previously reported gene expression datasets 
characterizing human ES cells

ES cell  Reference Subgroup I Subgroup II Subgroup III 
signature  (n = 19) (n = 19) (n = 21)
Wang 68 –1.06A –0.18 1.25B

Bhattacharya 69 –0.65A –0.22 0.79B

Ben-Porath 70 –0.54A –0.18 0.66C

Breast tumors in subgroup III contained a transcriptional signature of ES 
cells, but breast tumors in subgroups I and II did not. AInverse correlation 
between ES cell signature and tumor signature. BPositive correlation 
between ES cell signature and tumor signature (FDR, 0%). CPositive 
correlation between ES cell signature and tumor signature (FDR, 4%.)
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(Figure 6A). Importantly, the heightened prevalence of MYC acti-
vation in AA patients largely explained the observed metabolic dif-
ferences between these patients and EA patients. The metabolite-
based classification of ER-negative breast tumors into subclusters 
with predominately AA or EA patients was a classification driven by 
MYC pathway activation in these tumors (Supplemental Figure 8).

Having addressed the oncogenic driver for 2HG, we next sought 
to define the potential driver metabolite or biochemical pathway 
regulating 2HG levels in breast cancer. Thus, we performed a cor-
relation analysis looking for metabolites that followed the abun-
dance pattern of 2HG in the discovery and validation datasets. 
This analysis identified metabolites that followed the abundance 

Figure 3
A poor outcome tumor subgroup defined by DNA methylation and metabolite profiles. (A) Heat map representing 2,102 probes highlighting 
breast tumor subgroups I–III with distinct DNA methylation profiles. Colored bars below the heat map indicate sample classes: red, AA; blue, EA; 
brown, ER-negative. Percent AA and ER-negative cases in each subgroup is also shown. Box plots above show relative abundance of 2HG in 
each subgroup (box, interquartile range; line within box, median). Subgroup I is reference for fold difference. (B) Box plots representing relative 
abundance of SAH and SAM by subgroup. (C) Subgroup III tumors were associated with poor outcome. Kaplan-Meier curves with Cox regres-
sion analysis results are shown. HR, hazard ratio. (D) Association between subgroup III DNA methylation signature and breast cancer–specific 
survival in a publicly available dataset (22). The survival of patients with the subgroup III DNA methylation signature (Subgroup III signature-high) 
was significantly poorer than that of other patients. Kaplan-Meier curves with Cox regression analysis results are shown.
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pattern of 2HG, namely malate, glutamate, and NAA (Supple-
mental Figure 9). In contrast, levels of intratumor glutamine were 
inversely correlated with 2HG (r = –0.48; P < 0.001, Pearson corre-
lation test). This suggested that high glutamine utilization could 
be linked to 2HG accumulation. In addition, MYC is known to 
regulate glutamine utilization and glutaminase (GLS1) protein 
expression through a microRNA-mediated mechanism, leading 
to increased glutamine consumption (25). Hence, we measured 
GLS1 protein abundance in tumor extracts using mass spectrom-
etry. Tumors with high 2HG or those with subgroup III–associated 
DNA methylation profiles tended to overexpress GLS1 (Figure 6B),  
thus linking increased glutamine metabolism to 2HG accumula-
tion in breast cancer. Accordingly, both low glutamine levels in 

breast tumors (lowest 25%) and their associated gene expression 
signature were associated with decreased patient survival (Figure 7,  
A and B, and Supplemental Table 14).

We further assessed the link between glutamine and 2HG metab-
olism using a mass spectrometry–based flux analysis, wherein 
we monitored the incorporation of 13C-labeled glutamine into 
2HG in MCF7 breast cancer cells (with low endogenous 2HG) 
and MDA-MB-231 cells (with high 2HG levels). This experiment 
showed significantly augmented incorporation of the C13 label 
from glutamine into 2HG in MDA-MB-231 cells, but not in MCF7 
cells (Figure 8A). Furthermore, knockdown of GLS1 with siRNA 
significantly reduced intracellular 2HG in 2 breast cell lines with 
aberrant 2HG accumulation (MDA-MB-231 and SUM159T; 

Figure 4
Gene signatures for subgroup III 
and 2HG-high tumors are predic-
tors of poor survival. (A) Associa-
tion between the gene signature 
for subgroup III and breast can-
cer survival. Survival of patients 
with the gene expression signa-
ture of subgroup III (Subgroup III 
signature-high) was significantly 
decreased in 3 independent 
datasets (van de Vijver, ref. 2,  
n = 295; Kao, ref. 63, n = 327; 
Chin, Pawitan, Miller, and Des-
medt, refs. 64–67, n = 710). To 
generate the subtype III gene 
expression signature, subtype 
III and subtype I breast tumors 
were compared to identify 159 
and 296 genes that were con-
sistently up- and downregulat-
ed, respectively, in subtype III 
tumors. (B) Association between 
the gene signature for 2HG-high 
tumors and breast cancer sur-
vival. Survival of patients with 
the gene expression signature 
of 2HG-high tumors (2HG sig-
nature-high) was significantly 
decreased in the 3 independent 
datasets shown in A. Breast 
tumors with high levels of 2HG 
(top 33%) and low levels of 2HG 
(lowest 33%) were compared 
to identify 50 and 127 genes 
that were consistently up- and 
downregulated, respectively, in 
2HG-high tumors. Kaplan-Meier 
curves with Cox regression anal-
ysis results are shown.
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Figure 8B), while inhibition of mitochondrial GLS1 using the 
cell-permeable GLS1 inhibitor compound 968 (26) reduced 
intracellular 2HG by 80%–90% (Figure 8C). Lastly, we evaluated 
whether MYC expression alterations influence intracellular 2HG. 
In a proof-of-principle experiment, we examined 2HG levels in 
hTERT immortalized human mammary epithelial cells with 
inducible upregulation of MYC (27). This experiment showed that 
upregulation of MYC increased intracellular 2HG (Figure 8D). In 
contrast, inducible knockdown of MYC using 2 different shRNAs 
in SUM159T cells (with aberrant 2HG accumulation) resulted in 
significantly reduced intracellular 2HG levels (Figure 8E). These 
findings are consistent with the hypothesis that aberrant 2HG 
accumulation in breast cancer is glutamine dependent and com-
monly involves MYC activation.

Knockdown of mitochondrial ADHFE1 and IDH2 reduces 2HG. We 
next asked whether 2HG synthesis via glutamine is regulated 
by mitochondrial enzymes, namely hydroxyacid-oxoacid tran-
shydrogenase (ADHFE1) and IDH2, based on earlier reports in 
which these enzymes were implicated in mitochondria-associated, 
α-ketoglutarate–dependent (α-KG–dependent) production of 
D-2HG (16, 28). We targeted these enzymes with siRNA in 2HG-
high cells (Supplemental Figure 10). Knockdown of these enzymes 
led to a marked reduction of endogenous 2HG (Figure 9, A–C). 
Similar results were obtained upon constitutive knockdown of 
ADHFE1 with shRNA in MDA-MB-231 cells (Figure 9D). ADHFE1 
knockdown also resulted in moderate but significant inhibi-
tion of cell cycle kinetics and reduced migration and invasion in  

MDA-MB-231 and SUM159T cells (Supplemental Figure 11), sug-
gestive of an oncogenic role for ADHFE1. Lastly, we examined the 
role of the mitochondrial D-2HG–dehydrogenase (D2HGDG), 
which can also regulate 2HG levels in mammalian cells, in aber-
rant 2HG accumulation. Expression of D2HGDG was significant-
ly decreased by 4.3-fold in breast cancer cells with elevated 2HG 
levels (Supplemental Figure 12A), although in breast tumors, 
these prominent expression differences according to tumor 2HG 
status were not observed. We inhibited D2HGDG expression in 
MCF7 cells (with low 2HG levels) using siRNA, which induced 
a modest 1.6-fold increase of intracellular 2HG (Supplemental 
Figure 12B). Overall, these data are consistent with a glutamine-
driven mitochondrial metabolism regulating 2HG levels in breast 
cancer cells and the involvement of several mitochondrial enzymes 
in maintaining aberrant 2HG accumulation in breast cancer cells.

Inhibition of apoptosis by 2HG. To examine whether 2HG by itself 
may contribute to the pathogenesis of breast cancer, we performed 
additional experiments in which we exposed human mammary 
epithelial cells with low endogenous 2HG levels to exogenous 
D-2HG octylester (referred to herein as octyl-2HG). This cell-
permeable ester has previously been used in studies exploring 
2HG-induced phenotypes in other cancers (21, 23). Treatment of 
MCF7 and MCF12A cells with 1 mM octyl-2HG led to a >100-fold  
increased intracellular concentration of 2HG in these cells (Sup-
plemental Figure 13), mimicking 2HG levels of human breast 
tumors with aberrant 2HG accumulation. Next, we tested whether 
this accumulation in 2HG affects cell proliferation and the apop-

Figure 5
WNT pathway deregulation in subgroup III tumors. Box plots show relative gene expression levels, and bee swarm plots show DNA methylation 
M-values, of genes encoding various inhibitors of the WNT signaling pathway, including Wnt inhibitory factor 1 (WIF1), secreted frizzled-related 
protein 1 (SFRP1), SFRP2, SFRP4, Dickkopf-related protein 2 (DKK2), and DKK3, in subgroup I (n = 19) and subgroup III (n = 23). Expression 
of WNT pathway inhibitors was significantly reduced in subgroup III tumors (Welch test). Data were collected using GeneChip Human Gene 1.0 
ST arrays and Human Methylation 450 BeadChips. 
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totic response to serum starvation/glucocorticoid withdrawal. 
We found that octyl-2HG–treated MCF7 cells had a modest but 
significant increase in cell proliferation (Supplemental Figure 14),  
whereas 2HG reduced the extent of apoptosis in response to 
serum starvation/glucocorticoid withdrawal in both MCF10A and 
MCF12A cells (Figure 10).

Discussion
A highlight of our study was the finding of markedly elevated 2HG in 
a subgroup of breast tumors that were predominantly ER-negative  
and had poor clinical outcome. High 2HG was previously shown 
to induce DNA hypermethylation and enhance histone methyla-
tion through inhibition of 5mC hydroxylases and histone demeth-
ylases, leading to epigenetic alterations in gliomas and leukemias 
(16, 21, 23, 29). Consistent with these data, we observed that 2HG-
high breast tumors exhibited a hypermethylation phenotype. The 
majority of the 2HG-high tumors were also characterized by MYC 
activation and a discrete DNA methylation pattern that classified 

them as a DNA methylation–defined molecular subgroup of breast 
tumors, termed subgroup III, with a stem cell–like gene expression 
signature. Others have described molecular subgroups in breast 
cancer based solely on global DNA methylation pattern (22, 30). 
One such report defined 3 subgroups based on their DNA meth-
ylation profiles, one of which was enriched for basal-like tumors, 
similar to our subgroup III (30). Here, we further described this 
molecular subgroup as a class of tumors that accumulated 2HG 
and included a disproportionately high number of AA patients. 
Thus, AA patients may develop a methylation-defined subgroup 
III tumor more frequently than EA patients, in agreement with one 
study that observed DNA methylation differences between these 
patient groups (31).

In our study, metabolome profiles robustly distinguished 
tumors from adjacent nontumor tissue, in agreement with a pre-
vious report (32), and yielded differences between ER-negative 
and -positive tumors and by disease grade. However, we could 
not obtain a good metabolite-based separation into the previ-

Figure 6
Subgroup III/2HG-high tumors are defined by 
a MYC activation signature. (A) Heatmap for 
gene expression (374 MYC signature genes); 
colored bars above denote sample classes. 
Breast tumors were classified as having high 
or low MYC signature expression based on the 
presence or absence of a previously described 
core MYC gene expression signature (24). This 
classification revealed substantial overrep-
resentation of tumors from AA patients, DNA 
methylation subgroup III tumors, and 2HG-high 
tumors among the class of tumors with MYC 
activation. (B) Glutaminase was upregulated 
in 2HG-high versus 2HG-low tumors (3.4-fold; 
FDR, 0%) and in subgroup III versus sub-
group I or II tumors (2.7-fold, subgroup III vs. 
subgroup I; FDR, 0%). Glutaminase protein 
abundance in tissue extracts was determined 
by mass spectrometry. Black lines in box plots 
denote medians. n and statistical analysis are 
indicated.
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ously described subtypes with distinct gene expression profiles 
(1, 19). While the luminal A subtype was distinguished very well, 
the HER2-positive and -negative subtypes were not adequately 
separated. This observation was in agreement with another 
study that observed weak separation between HER2-negative and  
-positive tumors based on analysis of fatty acids (33). Perhaps a 
different compendium of metabolites must be profiled to achieve 
a metabolite-based classification that matches the gene expres-
sion–defined subtypes. Alternatively, the tumor metabolome may 
describe different disease traits, as previously suggested by oth-
ers (34). Importantly, our finding that 2HG was high in a DNA 
methylation–defined subtype with poor outcome characteristics 
suggests that the tumor metabolome describes tumor subtypes 
of clinical relevance.

Because of the expected influence of body composition, life-
style, and sex hormones on tumor metabolism, we investigated 
the relationships among metabolome profiles and patient age, 
body mass, socioeconomic status, and menopausal status. We did 
not find that these characteristics significantly associated with 
the tumor metabolome, raising the possibility that breast tumors 
have a robust intrinsic metabolome signature that predominates 
over the influence of these factors. Yet environmental exposures 
may affect the tumor metabolome and epigenome in more subtle 
ways, as was observed recently. Christensen et al. reported that 
global DNA methylation profiles in breast tumors are associated 
with alcohol and folate intake (35). Mechanistically, these nutri-
ents are thought to influence DNA methylation through regu-

lation of the 1-carbon metabolism and altering the availability 
of the universal methyl donor SAM and the methyltransferase 
inhibitor SAH. Still, the argument that tumor-derived mecha-
nisms may dominate over diet-derived mechanisms in shaping 
the cancer metabolome is further strengthened by our observa-
tion that an intrinsic core MYC signature (24) was closely asso-
ciated with 2HG accumulation in breast cancer and the global 
metabolite pattern in ER-negative tumors. We detected the MYC 
activation signature in 39% of the tumors, in agreement with 
previous reports of c-Myc protein overexpression in 40%–45% of 
human breast tumors (36). MYC is a target of the WNT signaling 
pathway (37, 38). MYC activation in the subgroup III/2HG-high 
may partly develop because of constitutive WNT signaling. This 
hypothesis is supported by our finding that inhibitors of WNT 
signaling had reduced expression in subgroup III tumors because 
of DNA hypermethylation at loci that encode these genes.

MYC strongly influences the metabolism of cancer cells and has 
been shown to regulate a transcriptional program that stimulates 
mitochondrial glutamine consumption (6, 8, 39). This function 
of c-Myc may explain why the metabolic profile of breast tumors 
describes tumors with a MYC activation signature as a distinct 
disease subtype, as shown by our data. We also observed that 
tumors with the core MYC signature tend to accumulate 2HG 
in the presence of reduced glutamine while overexpressing GLS1, 
a key enzyme for glutamine metabolism. Therefore, heightened 
glutamine consumption through MYC activation may fuel aber-
rant 2HG accumulation in breast tumors. Evidence exists that 

Figure 7
Association of tumor glutamine levels with breast cancer survival. (A) Patients with low tumor glutamine levels (Gln-low) exhibited poor outcome 
in the discovery and validation sets (both with stratification at lowest 25% vs. highest 75%). (B) Survival of patients with the gene expression 
signature of glutamine-low tumors (Gln-low signature-high) was significantly decreased compared with patients that did not have this tumor sig-
nature in 3 publicly available datasets (van de Vijver, ref. 2; Kao, ref. 63; Chin, Pawitan, Miller, and Desmedt, refs. 64–67). Breast tumors with low 
and high glutamine levels were compared (lowest vs. highest quartile) to identify 8 and 25 genes that were consistently up- and downregulated, 
respectively, in glutamine-low tumors. This 33-gene expression signature for glutamine-low tumors was then applied. Kaplan-Meier curves with 
Cox regression results are shown.
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basal-like and mesenchymal breast cancer cells exhibit a pheno-
type of glutamine dependence (11). These tumors preferentially 
accumulate 2HG, as shown by our present data. We also observed 
a significant relationship between low tumor glutamine levels 

and poor patient survival, establishing a candidate link between 
increased glutaminolysis and clinical outcome in breast cancer. 
In this context, low tissue glutamine or increased expression of 
GLS1 could serve as a biomarker for breast tumors that respond 

Figure 8
Glutamine metabolism is linked to 
aberrant accumulation of 2HG in 
breast cancer cells. (A) Incorpora-
tion of C13-labeled glutamine into 
2HG in MDA-MB-231 (2HG-high) and 
MCF7 (2HG-low) cells 10 seconds 
and 3 hours after adding C13-glu-
tamine to the culture medium (n = 3 
each). MDA-MB-231 cells, with aber-
rant 2HG accumulation, incorporated 
the C13 label into 2HG. (B) Reduced 
2HG in breast cancer cells treated 
with GLS1 siRNA (n = 4 per group;  
t test). Cell pellets were harvested  
48 hours after transfection. (C) 
Reduced 2HG and glutamate in breast 
cancer cells treated with the mitochon-
drial GLS1 inhibitor compound 968  
(n = 3 per group; *P < 0.05 vs. control, 
t test). Cells were treated with 10 μM 
inhibitor for 48 hours. (D) Increased 
intracellular 2HG after c-Myc induc-
tion (+MYC) in human mammary epi-
thelial cells with an inducible MYC-ER 
fusion transgene. Cell pellets were 
harvested 48 hours after induction of 
c-Myc (3 independent experiments;  
t test). (E) Knockdown of c-Myc with  
2 different doxycycline-inducible 
shRNA expression constructs (right) 
caused a significant reduction of 
aberrantly accumulated 2HG (left) in 
SUM159T cells (4 independent exper-
iments; t test). Cell pellets were har-
vested 3 days after shRNA induction. 
Values are shown normalized to inter-
nal standard. All graphs show mean ± 
SD. See complete unedited blots in the 
supplemental material.
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subset of breast tumors and showed experimentally that aberrant 
2HG synthesis in breast cancer cells was maintained by gluta-
mine consumption. IDH2 participates in the glutamine catabo-
lism pathway and was upregulated in subgroup III tumors. It has 
been shown that wild-type IDH2 produces 2HG as a byproduct in 
a process that can be augmented by hypoxia (45). In those stud-
ies, IDH2 modestly increased intracellular 2HG about 2- to 3-fold 
under normoxic conditions, with a further 3-fold augmentation 
under hypoxia (16, 45). Our present data showed that a subset of 
human breast cancer cells accumulated 2HG at concentrations 
100- to 200-fold above baseline when cultured under normoxic 
conditions, which is rather inconsistent with a key role of IDH2 
and hypoxia in this process. Nevertheless, knockdown of IDH2 
markedly decreased intracellular 2HG in 2 breast cancer cell lines 
with aberrant 2HG accumulation. It is possible that wild-type 
IDH2 contributes to 2HG accumulation in breast cancer direct-
ly through its known participation in 2HG synthesis, as well as 
indirectly via its significant role in the TCA cycle and reductive 
carboxylation of glutamine-derived α-KG to maintain citrate syn-
thesis (45, 46). Others have shown that knockdown of the enzyme 
D2HGDG increases intracellular 2HG in cells with wild-type and 
mutant IDH (47). Yet the increase of 2HG was rather modest (4- to 
6-fold) in these experiments. We confirmed that D2HGDG down-
regulation in MCF7 breast cancer cells only modestly increased 
2HG. Notably, however, D2HGDG tended to be downregulated in 
many of the breast cancer cells with aberrantly high endogenous 
2HG, indicative of some involvement of this enzyme in maintain-
ing 2HG levels in these cells.

Another candidate source of intracellular 2HG is the poorly 
studied mitochondrial enzyme ADHFE1 (28, 48). This enzyme did 
not seem to be elevated in breast tumors based on gene expression 
data. The activity of the enzyme could be altered independent of 
its expression, in agreement with the observation that the cancer 
metabolism is regulated by post-translational mechanisms, rather 
than by tumor-induced gene expression changes (49). We targeted 
this enzyme using knockdown strategies. Knockdown of ADHFE1 
with siRNA reduced endogenous 2HG levels in 2 cell lines with 
aberrant 2HG accumulation to levels in noncancerous mammary 
epithelial cells. From this experiment, ADHFE1 emerged as a can-
didate source for 2HG in breast cancer. ADHFE1 is known both 
as alcohol dehydrogenase iron–containing enzyme 1 and as mitochon-
drial hydroxyacid-oxoacid transhydrogenase and may encode various 
isoforms, including 45- to 50-kDa and 27- to 32-kDa proteins  
(50, 51). Per assigned function, ADHFE1 metabolizes 4-hydroxy-
butyrate to succinic semialdehyde coupled with the reduction 
of α-KG to D-2HG. There is little functional description of the 
enzyme in cancer cells, but it is expressed in fetal tissues and 
has been reported to be hypermethylated and partly silenced in 
colorectal cancer (50–52). Thus, ADHFE1 may have an unrecog-
nized oncogenic function in breast cancer, and future research will 
be needed to understand the role of ADHFE1 in 2HG accumula-
tion in breast tumors and the regulation of this enzyme by post-
translational mechanisms.

Our study describes a close relationship between the biology of 
aberrant MYC activation and 2HG accumulation in breast cancer. 
To discern the possible impact of the 2 biologies in breast cancer, 
we performed additional experiments to examine whether 2HG 
could be causally important in the pathogenesis of breast cancer. 
This approach led to the preliminary findings that accumula-
tion of 2HG can increase cell proliferation and inhibit apoptosis. 

favorably to GLS1 inhibition therapy, potentially providing an 
additional survival advantage to otherwise-refractory subtypes, 
such as basal-like and triple-negative disease. Previously, Seltzer et 
al. set precedence for inhibiting GLS1 as a therapeutic approach 
to slow the growth of cancer cells with mutant IDH1 and aberrant 
2HG accumulation (40). Using bis-2-(5-phenylacetamido-1,2,4-
thiadiazol-2-yl)ethyl sulfide (BPTES) to inhibit GLS1 activity, the 
authors found a preferential antitumor effect in IDH1-mutant 
versus wild-type glioma cells, although BPTES did not signifi-
cantly alter the aberrant 2HG level in the IDH1-mutant cells 
under the experimental conditions. Nevertheless, the same inhibi-
tor may preferentially slow the growth of breast cancer cells with 
a 2HG accumulation phenotype.

High tissue 2HG concentrations have previously been described 
from gliomas and leukemias with acquired IDH mutations  
(14–16). Our DNA sequence analysis of breast tumors did not 
reveal the presence of IDH mutations, consistent with other 
studies (41–44). In IDH-mutant gliomas, 2HG was previously 
shown to reach millimolar concentrations (5–35 mmol/kg tissue;  
ref. 14). We observed similarly high concentrations of 2HG in a 

Figure 9
Reduced 2HG in cells with aberrant 2HG accumulation after knock-
down of ADHFE1 and IDH2 expression. (A) Knockdown of ADHFE1 
protein with siRNA. ADHFE1v, splice variant. (B) Knockdown of IDH2 
protein with siRNA. (C) Reduced 2HG in breast cancer cells treated 
with IDH2 or ADHFE1 siRNA (n = 4 per group; *P < 0.05 vs. control,  
t test). 2HG measurements were performed 48 hours after siRNA trans-
fection. (D) Reduced 2HG in MDA-MB-231 cells expressing a shRNA 
that targets ADHFE1 (3 independent measurements; t test). Western 
blot analyses were of whole cell extracts (A and B) or mitochondrial 
lysates (D). All graphs show mean ± SD. See complete unedited blots 
in the supplemental material.
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reports. See Supplemental Methods for details on patient recruitment, 
specimen collection, and tumor classification. Human breast cancer cell 
lines were obtained from the American Type Culture Collection with the 
exception of the SUM159T cells, which were obtained from S. Lipkowitz 
(NCI, Bethesda, Maryland, USA).

Genetic ancestry estimation. Genomic DNA was isolated from either non-
cancerous tissue or blood samples and was genotyped to determine the 
proportion of European, West African, and Native American genetic ances-
try (see Supplemental Methods). In the discovery cohort, 105 AIMs were 
genotyped to determine the proportion of European, West African, and 
Native American genetic ancestry (56).

Metabolome analysis. Metabolomic profiling of fresh-frozen bulk human 
breast tissues was performed for 2 tissue sets. Untargeted metabolic profil-
ing of known and unknown metabolites in the discovery set was performed 
by Metabolon Inc. (57). Metabolic profiling in the validation set was per-
formed at the Alkek Center for Molecular Discovery of Baylor College of 
Medicine and at the SAIC-NCI Laboratory of Proteomics and Analytical 
Technologies. For quantitation of 2HG in tissue extracts and cell lines, a 
serial dilution of 2HG was mixed with a fixed amount of [D27] myristic 
acid internal standard, and the peak area ratios of 2HG and [D27] myristic 
acid were plotted against the amount of 2HG injected to generate a stan-
dard curve. Tissue and cell extracts were mixed similarly with the [D27] 
myristic acid internal standard, analyzed by gas chromatography–coupled 
mass spectrometry, and estimated for normalized 2HG levels using this 
standard curve. See Supplemental Methods for details.

Proteome analysis. Frozen human tissue samples were homogenized, and 
the extracted proteins were digested with trypsin and analyzed by mass 

Increased cell proliferation after treatment with cell-permeable 
2HG has also been observed in leukemogenesis (53). Future work 
will be needed to further define the oncogenic effects of 2HG 
in breast cancer and how 2HG accumulation could be targeted 
independent of MYC signaling. Other research may focus on 2HG 
as a biomarker. 2HG can be detected noninvasively by analyzing 
plasma samples. This has been observed in tumor-bearing mice 
using an animal model of azoxy-methane–induced colorectal can-
cer (54). Thus, blood-based 2HG is a potential biomarker for prog-
nosis and/or diagnosis.

In summary, we have found aberrant accumulation of 2HG in 
a subset of human breast tumors with poor outcome and linked 
this observation to MYC activation and glutamine dependence. 
Furthermore, 2HG frequently accumulated in tumors and cell 
lines of the basal-like/mesenchymal subtype, reaching concentra-
tions comparable to those in IDH-mutant gliomas and leukemias, 
despite the absence of IDH mutations.

Methods
Tissue collection and cell lines. Unselected breast cancer patients at all dis-
ease stages were recruited between February 15, 1993, and August 27, 
2003, into a biomarker study under a NCI contract (Resource Collection 
and Evaluation of Human Tissues and Cells from Donors with an Epi-
demiology Profile), as described previously (55). Samples of fresh-frozen, 
macrodissected tumor tissue and adjacent noncancerous tissue were 
prepared by a pathologist immediately after surgery. Clinical and patho-
logical information was obtained from medical records and pathology 

Figure 10
Inhibition of apoptosis by 2HG. MCF10A and MCF12A 
mammary epithelial cells were cultured in the presence or 
absence of 1 mM octyl-2HG. For apoptosis induction, cells 
were kept in DMEM/F12 medium without horse serum and 
hydrocortisone (–serum). Induction of apoptosis by serum 
starvation/glucocorticoid withdrawal was measured after 
48 and 72 hours using a caspase 3/7 activity assay 
(values expressed as fluorescence 499/521ex/em; n = 4). 
Graphs show mean ± SD.
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with tamoxifen (27). Cells were cultured in mammary epithelial growth 
medium (MEGM; Lonza), treated with and without 300 nM tamoxifen for 
48 hours, and harvested. SUM159T cells were infected with pINDUCER 
lentiviral constructs containing doxycycline-inducible shRNA targeting 
MYC. Cells were sorted for GFP to generate fully infected populations.  
1 μg/ml doxycycline was added to the culture medium for 3 days to induce 
knockdown of MYC. For 2HG measurements, cells were washed in PBS and 
pelleted, and samples were normalized to cell number.

Quantitative real-time PCR. Total RNA was isolated from cell lines using 
the QIAGEN RNeasy method (QIAGEN). qRT-PCR was performed in 
triplicate using the TaqMan ASPA (aspartoacylase; EC 3.5.1.15), IDH2  
(isocitrate dehydrogenase 2, mitochondrial; EC 1.1.1.42), ADHFE1 (alcohol 
dehydrogenase iron containing 1 or hydroxyacid-oxoacid transhydroge-
nase, mitochondrial; EC 1.1.99.24), GLS1 (glutaminase; EC 3.5.1.2), and 
D2HGDG (2-D-hydroxyglutarate dehydrogenase; EC 1.1.99.2) expression 
assays (Applied Biosystems), which included preoptimized probes and 
primer sets for these genes.

Western blot analysis. Western blot analysis was performed according to 
standard procedures. The following antibodies were used at manufacturer-
recommended concentrations to detect the membrane-bound proteins: rab-
bit polyclonal anti-ADHFE1 (H-240, catalog no. sc-292533; Santa Cruz Bio-
technology), rabbit polyclonal anti-ADHFE1 (catalog no. ab102600; Abcam), 
mouse monoclonal anti-vinculin (catalog no. V9131; Sigma-Aldrich), mouse 
monoclonal anti–c-Myc (catalog no. M4439; Sigma-Aldrich), mouse mono-
clonal anti-IDH2 (catalog no. ab55271; Abcam).

Proliferation assay and cell cycle analysis. Cell proliferation was assessed 
using the CellTiter-Blue Cell Viability Assay kit (G8081; Promega). For cell 
cycle analysis, cells were transfected with siRNA targeting ADHEF1, har-
vested by trypsinization, washed 3 times with PBS, fixed with 70% cold eth-
anol, and then stained with 50 μg/ml 7-amino-actinocycin D (Invitrogen) 
for 30 min. At least 10,000 events were analyzed per sample using a FACS-
Calibur cytometer (BD Biosciences), and cell phase percentages were deter-
mined using FlowJo software (Ashland).

Apoptosis assay. Immortalized nonmalignant MCF10A and MCF12A cells 
were seeded in black-coated standard 96-well culture plates (5,000 cells/well)  
in DMEM/F12 (1:1 ratio) medium (complete medium containing 5% 
heat-inactivated horse serum, 10 μg/ml insulin, 20 ng/ml EGF, 500 ng/ml 
hydrocortisone, and 100 ng/ml cholera toxin). For induction of apoptosis 
in response to serum starvation/glucocorticoid withdrawal, cells were kept 
in complete DMEM/F12 medium, but without horse serum and hydrocor-
tisone, and cultured in the presence or absence of 1 mM octyl-2HG ([2R]-
2-hydroxyglutaric acid octyl ester; SLR Biosciences). Apoptosis was mea-
sured using the ApoOne Homogenous Caspase 3/7 Assay according to the 
manufacturer’s protocol (Promega). Fluorescence for each treatments was 
measured at 499/521ex/em with a FLUOstar Omega reader (BMG Labtech).

Migration and invasion assay. Migration and invasion were examined 
using xCelligence System Technology (Roche Diagnostics) for real-time 
monitoring of cellular processes with electronic cell sensor array tech-
nology, according to the manufacturer’s instructions. See Supplemental 
Methods for details.

Statistics. All statistical tests were 2-sided, and an association was con-
sidered statistically significant with P < 0.05. Statistical analyses were 
performed using R software, developed by R Development Core Team at  
R Foundation for Statistical Computing and packages in Bioconductor 
(60). Unconditional logistic regression was used to calculate ORs and 
95% CIs. The abundance of metabolites and transcripts was analyzed 
globally using significance analysis of microarrays (61). Heatmaps were 
drawn using dChip software (62). Survival analysis was performed using 
the survival package of R. 6 publicly available datasets of gene expression 
microarray were included in the survival analysis. The van de Vijver dataset 

spectrometry (see Supplemental Methods). Mass spectrometry data were 
searched against the UniProt Homo sapiens database (downloaded from 
the European Bioinformatics Institute website; http://www.ebi.ac.uk/
integr8) using SEQUEST (ThermoElectron/Thermo Fisher Scientific). 
Normalized relative abundance of an identified protein in a sample was 
used for class comparison analyses.

RNA isolation and gene expression microarray analysis. Total RNA was iso-
lated from tissue using the TRIzol reagent. RNA integrity for each sample 
was confirmed with the Agilent 2100 Bioanalyzer (Agilent Technologies). 
250 ng RNA was converted into cDNA, fragmented, labeled, and hybrid-
ized onto Gene Chip Human Gene 1.0 ST Arrays according to Affymetrix 
standard protocols. Probe cell intensity data was processed by the RMA 
algorithm (58). See Supplemental Methods for details. Gene expression 
data from this study were deposited in GEO (accession no. GSE37751).

Global DNA methylation analysis. Global methylation profiles for breast 
tumors were obtained using bisulfite-converted genomic DNA that was 
hybridized onto Human Methylation 450 BeadChips (Illumina). See Sup-
plemental Methods for details. DNA methylation profiles from this study 
were deposited in GEO (accession no. GSE37754).

Measurement of the 5hmC/5mC content of genomic DNA using liquid chroma-
tography/mass spectrometry. Experiments were performed as described previ-
ously (59). See Supplemental Methods for details.

Mutational analyses of IDH1 and IDH2. Tumors were screened for IDH1 
and IDH2 mutations following a previously described procedure (15). See 
Supplemental Methods for details.

Incorporation of 13C-labeled glutamine into 2HG. For metabolic flux analy-
sis, 1 × 106 MCF7 and MDA-MB-231 cells were plated overnight in 6-well 
plates with 2 ml DMEM supplemented with 10% FBS. Cells were then cul-
tured for 12 hours in glutamine-depleted DMEM (devoid of glucose, glu-
tamine, phenol red, sodium pyruvate, and sodium bicarbonate; Mediatech 
Inc.) supplemented with 10% FBS, 4.5 g/l glucose, and sodium pyruvate. 
Either 12C or universally labeled 13C glutamine (2 mM final concentra-
tion) was added to culture medium (all in triplicate), and cells were har-
vested immediately after addition of glutamine or after 3 hours. Cells were 
scraped with methanol water and frozen immediately in nitrogen. 500 μl 
ice-cold methanol/water (1:1 ratio) containing 20 μl spiked internal stan-
dards was added to each cell pellet. Cells were homogenized for 1 minute  
(2 30-second pulses), then vortex mixed in a Multi-Tube Vortexer for  
10 minutes. The extract was filtered through 3-kDa molecular filters at 
4°C for 90 minutes to remove proteins. The filtrate was dried at 37°C for 
45 minutes in a speed vacuum prior to mass spectrometry analysis, and 
dried extract was derivatized using methoxamine and MSTFA plus 1% 
TMCS. Aliquots were analyzed using gas chromatography–coupled mass 
spectrometry and a single reaction monitoring strategy with electron-
impact ionization. 2HG abundance was determined by mass spectrometry, 
and percent 13C glutamine incorporation into endogenous 2HG was esti-
mated as follows: total 13C-2HG/(total 13C-2HG + 12C-2HG).

siRNA transfection and constitutive expression of a shRNA that targets ADHFE1. 
Cells were transfected with either negative control siRNA (Silencer Select 
Negative Control) or ADHFE1, IDH2, GLS1, or 2DHGDG Select siRNAs 
(Life Technologies) following the manufacturer’s protocol for lipo-
fectamine RNAiMAX (Life Technologies). MDA-MB-231 cells with consti-
tutive expression of a shRNA that targets ADHFE1 were generated after 
infection of these cells with a lentiviral construct encoding the shRNA 
(CMV51eGFPsh.ADHFE1) and selection with puromycin. Control cells 
were infected and selected using the vector control without the shRNA.

Expression of an inducible MYC transgene in human mammary epithelial cells 
and knockdown of MYC with inducible shRNA expression constructs in SUM159T 
cells. Human mammary epithelial cells with an inducible MYC-ER fusion 
transgene were cultured as described previously, and MYC was induced 
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