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Introduction
The fuel-sensing enzyme AMP-activated protein kinase (AMPK) 
was first described as an enzyme activated by changes in the 
AMP/ATP ratio that could both increase cellular ATP generation 
(e.g., fatty acid oxidation) and diminish ATP use for less criti-
cal processes (e.g., fatty acid, triglyceride, and protein synthesis) 
(1). In addition to glucose transport, lipid and protein synthe-
sis, and fuel metabolism, AMPK regulates a wide array of other 
physiological events, including cellular growth and proliferation, 
mitochondrial function and biogenesis, and factors that have 
been linked to insulin resistance (IR), including inflammation, 
oxidative and ER stress, and autophagy (Figure 1A). Furthermore, 
AMPK does so by phosphorylating both key enzymes and tran-
scriptional activators and coactivators.

Here, we examine 2 hypotheses suggested by more recent stud-
ies: (a) dysregulation of AMPK plays an important role in the 
pathogenesis of IR and metabolic syndrome–associated diseases 
in humans and experimental animals; and (b) strategies that acti-
vate AMPK can be harnessed for the prevention and treatment 
of these abnormalities. These hypotheses emanated from asso-
ciations between the metabolic syndrome and some downstream 
targets of AMPK, such as glucose transport and lipogenesis (2–8). 
In addition, exercise (9) and electrically induced contractions 
(10) were shown to activate AMPK. These observations, coupled 
with epidemiological evidence that diseases associated with the 
metabolic syndrome (e.g., type 2 diabetes, hypertension, athero-
sclerotic cardiovascular disease [ASCVD], and even certain can-
cers) are less prevalent in physically active people (11–13) and the 
demonstration that regular exercise improves whole-body insulin 
action (11, 12), suggest a central role for AMPK in regulating insu-
lin sensitivity. Such studies also raise the possibility that pharma-
cological AMPK activators as well as exercise could be used for 
ameliorating IR in type 2 diabetes (4, 8).

In model systems, sustained decreases in AMPK activity accom-
pany IR, whereas AMPK activation increases insulin sensitivity (5, 

6, 13). In addition, decreases in AMPK activity accompanying IR 
were described in adipose tissue of humans with Cushing’s syn-
drome, an effect attributable to high levels of glucocorticoids (14), 
and in a subgroup of very obese patients undergoing bariatric 
surgery who were insulin resistant (15, 16). The latter comprise 
approximately 75% of bariatric surgery patients and show a greater 
predisposition to metabolic syndrome–associated diseases than do 
the remaining 25% of such patients who are equally obese, but less 
hyperinsulinemic and more insulin sensitive (17–19).

Insulin resistance in physiology and disease
Studies with a perfused rat hindquarter preparation demon-
strated that insulin-stimulated glucose uptake in skeletal muscle 
is reduced in fed versus fasted rats (20) and in sedentary versus 
recently exercised rats (21), suggesting that the fed and sedentary 
rats are essentially more insulin resistant. Such IR is physiologi-
cal, rather than disease associated, and dynamically responds to 
changes in nutritional and physical activity.

In contrast, in patients with the metabolic syndrome, IR and 
hyperinsulinemia are sustained and are associated with impaired 
insulin action and a predisposition to multiple diseases (Figure 1B)  
(22–24). Whether IR plays an active role in the pathogenesis of 
these diseases or defends against a “glucolipotoxic” insult that may 
harm insulin-sensitive tissues (e.g., by increasing oxidative stress) 
is presently under debate (25, 26). A diagnosis of the metabolic 
syndrome is based on measurements of plasma glucose (less than 
100 mg/dl) and other parameters such as triglycerides, HDL cho-
lesterol, blood pressure, and waist circumference; abnormalities 
in 3 of the 5 of risk factors are required for a metabolic syndrome 
diagnosis (24, 27). Interestingly, individuals with the metabolic syn-
drome typically have a decreased capacity for exercise (28) and show 
evidence of low-grade inflammation (29), similar to patients with 
obesity and type 2 diabetes (24, 29). Furthermore, oxidative and ER 
stress, mitochondrial dysfunction, altered lipid metabolism, and 
dysregulation of AMPK and a closely related group of fuel-sensing 
molecules, the sirtuins, have also been described in both humans 
and experimental animals with metabolic syndrome–associated 
diseases and appear to promote their pathogenesis (22, 24).

AMPK, insulin resistance,  
and the metabolic syndrome

Neil B. Ruderman,1,2 David Carling,3 Marc Prentki,4,5 and José M. Cacicedo1,2

1Diabetes and Metabolism Research Unit and 2Department of Medicine and Section of Endocrinology, Boston University School of Medicine, Boston, 
Massachusetts, USA. 3Cellular Stress Group, MRC Clinical Sciences Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom. 
4Montreal Diabetes Research Center and CRCHUM, and 5Departments of Nutrition and Biochemistry, University of Montreal, Montreal, Quebec, Canada.

Insulin resistance (IR) and hyperinsulinemia are hallmarks of the metabolic syndrome, as are 
central adiposity, dyslipidemia, and a predisposition to type 2 diabetes, atherosclerotic cardio-
vascular disease, hypertension, and certain cancers. Regular exercise and calorie restriction have 
long been known to increase insulin sensitivity and decrease the prevalence of these disorders. 
The subsequent identification of AMP-activated protein kinase (AMPK) and its activation by 
exercise and fuel deprivation have led to studies of the effects of AMPK on both IR and metabolic 
syndrome–related diseases. In this review, we evaluate this body of literature, with special empha-

sis on the hypothesis that dysregulation of AMPK is both a pathogenic factor for these disorders in humans and a 
target for their prevention and therapy.

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2013;123(7):2764–2772. doi:10.1172/JCI67227.



science in medicine

 The Journal of Clinical Investigation   http://www.jci.org   Volume 123   Number 7   July 2013 2765

AMPK structure and regulation
AMPK is a heterotrimer consisting of a catalytic subunit (α) and  
2 regulatory subunits (β and γ). Isoforms of each subunit have 
been identified (2 α and β isoforms, and 3 γ isoforms) (Figure 2A). 
The γ subunit contains 4 cystathionine β-synthase (CBS) domains, 
which form 4 potential adenine nucleotide–binding sites. Struc-
tural and in vitro binding studies have revealed that the γ subunit 
in fact binds 3 nucleotides. One molecule of AMP is bound in a 
nonexchangeable manner at site 4, with 2 additional exchangeable 
nucleotide-binding sites (sites 1 and 3) (30). Initial studies sug-
gested that when a cell is energetically stressed, the increased AMP 
concentration causes AMP to displace ATP from the exchangeable 
sites, resulting in a modest (2- to 5-fold) allosteric activation of 
AMPK. Displacement of ATP from the exchangeable sites also pro-
tects the enzyme against dephosphorylation of the phosphothreo-
nine 172 residue on its α subunit, leading to an even greater (100- 
to 1,000-fold) increase in activity. Recent studies (30) suggest that 
displacement of ATP by ADP rather than AMP may be primarily 
responsible for this secondary and larger activation. In addition, 
ADP and AMP have been reported to promote phosphorylation of 
threonine 172 (31), providing another potential tier of regulation.

The β subunit contains a carbohydrate-binding module (also 
referred to as a glycogen-binding domain) that is found in a num-
ber of enzymes involved in carbohydrate metabolism. Glycogen, as 
well as branched-chain sugars, inhibit AMPK presumably by bind-
ing to this domain. Interestingly, this domain is also implicated in 
the mechanism of AMPK activation by small-molecule activators 
(32). At least 2 protein kinases catalyze the activating phosphor-
ylation of the α subunit of AMPK on threonine 172: the tumor 
suppressor liver kinase B1 (LKB1), which does so in response to 
changes in energy state, and calcium calmodulin–dependent pro-
tein kinase kinase β (CAMKKβ), which is activated by increases in 
intracellular Ca2+ (Figure 2B) (33, 34).

AMPK and insulin resistance

Effects of exercise
 As already noted, exercise increases whole-body insulin sensi-
tivity and diminishes plasma insulin levels in humans. In addi-
tion, both epidemiological and randomized, prospective stud-
ies showed that regular exercise diminishes the likelihood that 
humans will develop ASCVD (35, 36) and type 2 diabetes (28,  
37–39). Thus, the benefits of exercise are widely attributed to its 
effect on reducing whole-body IR and hyperinsulinemia. Although 
this explanation, which assumes a systemic effect of exercise on 
insulin action, still has merit, the discovery in rodents that exer-
cise acutely increases AMPK activity in adipose tissue (40) and 
aortic endothelium and media (41, 42), as well as liver (40) and 
muscle, raises the possibility that AMPK activation in specific and 
underappreciated tissues contributes to its beneficial effects. For 
instance, in rodent aorta, treadmill running increases the activity 
or expression of 3 known AMPK regulators, LKB1, CAMKKβ, and 
SIRT1, and it concurrently activates endothelial nitric oxide syn-
thase (eNOS) (41), an enzyme generally thought to protect against 
atherogenesis in experimental animals (43).

AMPK activators — pharmacological and hormonal
Metformin. In 2001, metformin, a widely used antidiabetic drug 
that modestly increases insulin sensitivity, was reported to act as 
an AMPK activator (44). An extended follow-up study (45) showed 
that metformin use was associated with a significant decrease in 
the incidence of myocardial infarction and a 36% decrease in all-
cause mortality. Furthermore, multiple studies have suggested  
that the incidence of many cancers is diminished in diabetic 
patients treated with metformin (46), although this conclusion 
has been questioned (47). Metformin does not act directly on 
LKB1 or AMPK, but rather appears to activate AMPK by modestly 

Figure 1
AMPK actions and putative linkage between decreased AMPK activity and metabolic syndrome–associated diseases. (A) Effects of AMPK acti-
vation. In addition to activating processes that produce ATP and diminish its consumption, AMPK inhibits inflammation, ER and oxidative stress, 
and activates autophagy, all of which appear to be involved in the pathogenesis of IR. Where studied, SIRT1 can produce many of the same 
effects as AMPK (see also text and Figure 3). The above-listed actions of AMPK and others have been extensively reviewed (5, 6, 67). GNG, glu-
coneogenesis; ULK1, UNC-51–like kinase 1; JNK, JUN-activated kinase. (B) Proposed link between AMPK and IR in the setting of the metabolic 
syndrome. It has long been held that the combination of overnutrition (obesity), inactivity, and indeterminate genetic factors predispose humans 
to the metabolic syndrome and associated disorders. Based on studies of the offspring of patients with metabolic syndrome–associated disorders, 
hyperinsulinemia and IR may antedate such diseases as hypertension, type 2 diabetes, and ASCVD by many years (reviewed in ref. 28). Likewise, 
studies in both experimental animals and humans have implicated oxidative and ER stress and low-grade inflammation and decreased adiponec-
tin in the pathogenesis of these disorders. An emerging body of evidence, predominantly but not exclusively from animal models, suggests that 
dysregulation of AMPK, and probably sirtuins, could both contribute to these abnormalities and be a target for their prevention and therapy (13). 
One possibility is that such dysregulation of AMPK and sirtuins causes epigenetic changes (methylation, acetylation, etc.) that could contribute 
to the diseases (151). NAFLD, nonalcoholic fatty liver disease; T2D, type 2 diabetes.
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inhibiting complex I of the mitochondrial electron transport chain 
and thus decreasing the cellular energy state (48). In liver, this 
decreased energy state is sufficient to diminish glucose produc-
tion, even in mice lacking hepatic AMPK, indicating AMPK-inde-
pendent effects of metformin. Moreover, metformin-induced accu-
mulation of AMP, which inhibits adenylate cyclase and reduces  
cAMP levels and PKA activity, may be an AMPK-independent 
mechanism by which metformin antagonizes glucagon signaling 
(49). Metformin has been shown to activate AMPK in many tis-
sues, including adipose, skeletal muscle, and heart, although, to 
date, evidence that genetic downregulation of AMPK prevents its 
biological actions has been obtained only in cultured cells.

Adiponectin. AMPK is also activated by the adipokine adiponectin 
(50, 51). Notably, diminished serum adiponectin levels are associated 
with IR and appear to be a strong predictor of type 2 diabetes and 
cardiovascular disease in obese humans (52–54). Conversely, elevated 
adiponectin levels are associated with increased insulin sensitivity, a 
lower incidence of type 2 diabetes that is independent of obesity, and 
a decreased risk of coronary heart disease (52–54). Adiponectin also 
induces extracellular calcium influx through the adiponectin recep-
tor 1 (55) and may have effects independent of AMPK.

Thiazolidinediones and other AMPK activators. In addition to met-
formin, another group of type 2 diabetes drugs, the thiazolidin-
ediones (TZDs), were found to be AMPK activators (56). Although 
TZDs can activate AMPK in some tissues by lowering their energy 
state (57, 58), studies in adiponectin knockout mice strongly sug-
gested the TZDs’ ability to increase hepatic insulin sensitivity in 
vivo is predominantly adiponectin mediated (59, 60). TZDs are 
also well-established activators of the peroxisome proliferator-
activated receptors (PPARs). As such, the adiponectin-independent 
mechanism of TZD-induced changes could be PPAR mediated 
(61). In type 2 diabetes prevention trials, metformin and TZDs 
independently diminished progression from impaired glucose 
tolerance to type 2 diabetes by 31% (38, 39) and 70% (62), respec-
tively, versus a 70% decrease induced by lifestyle changes (diet and 
exercise) (38, 39). Despite these results in preventing progression 

to diabetes, the use of TZDs has been curtailed recently because of 
potential side effects (63, 64).

As reviewed elsewhere (65–67), many additional pharmacological 
AMPK activators have been identified or are in development, includ-
ing several that directly activate AMPK (32). Likewise, some com-
pounds already in use for improving glycemic control, such as GLP-1 
receptor activators and DPP IV inhibitors (68), or in therapeutic trial, 
such as salicylates (69), have been shown to increase AMPK activity in 
a number of tissues in addition to their other actions.

Studies in genetically obese and fat-fed rodents
Decreased AMPK activity occurs in many genetic rodent mod-
els with a metabolic syndrome phenotype, including ob/ob mice 
(leptin deficient), fa/fa rats (leptin receptor deficient) and the 
male ZDF rat (leptin receptor deficient with a mutation in the 
insulin promoter) (13). In all of these rodents, therapy with the 
AMPK activator AICAR (5-aminoimidazole-4-carboxamide-1-β-
d-ribofuranoside) improved IR and glucose homeostasis (70–73). 
In the ZDF rat, AICAR completely prevented the development 
of diabetes as well as ectopic lipid deposition and degranulation 
of the pancreatic islet β cells (74), effects also observed in rats 
exercised prior to anticipated diabetes onset (75). In addition to 
AICAR and exercise, other AMPK activators, such as TZDs (76), 
metformin (77), and polyphenols, (78) have similar effects in pre-
venting metabolic syndrome phenotypes in rodents, suggesting a 
common mechanism of action. Whether all the benefits of these 
compounds are AMPK mediated remains to be determined, but 
some have been tested and are discussed here.

Studies in rodents genetically deficient in whole-body, 
liver, and skeletal muscle AMPK 
The picture that emerges from studies in rodents deficient in 
AMPK activity and fed a high-fat diet to produce IR is less clear. 
Transgenic overexpression of an inactive α2 subunit (α2i TG) and 
AMPK knockout models have been generated that would reduce 
or eliminate AMPK activity in muscle (α2, β1/β2, γ3), liver (β1), or 

Figure 2
Subunit structure and regulation of AMPK. (A) Structure of AMPK. Schematic representation of AMPK highlighting important regions within each 
of its 3 subunits, as described in the main text (adapted from ref. 64). AID, autoinhibitory domain; CBM, carbohydrate-binding module; CBS, 
cystathionine-β synthase. (B) Regulation of AMPK. LKB1 and CaMKKβ activate AMPK by phosphorylation of threonine 172 (T172) within the 
kinase domain of the α subunit. AMPK is returned to an inactive form by dephosphorylation catalyzed by the action of protein phosphatases 
(PPase). Binding of ADP and AMP to the γ subunit of AMPK protects against dephosphorylation, maintaining the kinase in an active conforma-
tion, although recent studies suggest that ADP is likely to be the important physiological regulator of this process. ADP and AMP have also been 
reported to promote LKB1-mediated phosphorylation of AMPK, whereas calcium directly activates CaMKKβ. In addition, AMP causes a modest 
allosteric activation of AMPK. Finally, glycogen (and branched-chain carbohydrates) bind to the glycogen-binding domain within the β subunit, 
allosterically inhibiting AMPK. P, phosphorylation of T172.
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the whole body (α2 or α1). In general, in rodents challenged with 
a high-fat diet, the effects have been equivocal, with some demon-
strating that elimination of AMPK in muscle or liver plays little role 
in generating or exacerbating IR (reviewed in ref. 79), whereas oth-
ers clearly show an increase in IR compared with control rodents 
(80, 81). Until the reasons for the differing results are resolved, the 
question of whether a decrease in AMPK activity predisposes to IR 
and the metabolic syndrome will remain controversial.

From a treatment perspective, an intriguing set of observations 
has recently been made by 2 groups regarding the necessity of 
AMPK. Um and colleagues (82) demonstrated that resveratrol, a 
polyphenol found in red wine and a known AMPK activator (78), 
prevents IR in wild-type mice placed on a high-fat diet, but not in 
whole-body AMPK α2 knockout mice. Likewise, under very similar 
conditions, Jelenik et al. (83) found that hepatic IR is no longer 
alleviated by dietary n-3 polyunsaturated fatty acid supplementa-
tion when AMPKα2 is not present. Whether other compounds or 
dietary supplements require the presence of AMPK for their anti-
IR properties remains to be determined.

The AMPK-SIRT1 cycle
Sirtuins are a group of histone/protein deacetylases that are regu-
lated by changes in the cellular redox state (NAD+/NADH ratio) and 
increases in nicotinamide phosphoribosyltransferase (NAMPT), the 
rate-limiting enzyme for NAD synthesis. Sirtuins have been evalu-
ated intensively because of their apparent role in combating aging 
(84, 85). SIRT1, the most studied member of this family, responds to 
overfeeding, starvation, changes in energy expenditure and exercise 
(13), as well as to adiponectin (54), much as AMPK does, although 
with somewhat different timing (13). SIRT1 can activate AMPK by 
deacetylating the upstream kinase LKB1, which promotes LKB1 
translocation from the nucleus to the cytosol, where it is activated 
and in turn phosphorylates and activates AMPK (86–88). Likewise, 
AMPK can activate SIRT1 by increasing the NAD/NADH ratio or 
the expression/activity of NAMPT (89). Collectively, these findings 
suggest the existence of an AMPK-SIRT1 cycle that links the cell’s 
energy and redox states (13). In addition, AMPK and SIRT1 (and 
most likely other sirtuins) act on common transcriptional activa-
tors and coactivators, including the mitochondrial master regulator 
PGC1α and members of the FoxO family. Finally, both AMPK and 
SIRT1 activators can decrease atherosclerosis and prevent diabetes 
in experimental animals (13, 90).

Beneficial actions of AMPK
AMPK activation is associated with a wide array of beneficial 
effects on metabolic syndrome–associated diseases. Its potential 
benefits in pancreatic β cells, liver, and muscle have been reviewed 
elsewhere (6, 7, 13, 91). Here, we will focus on adipose tissue and 
2 cell types that until recently have received less attention in the 
context of IR, macrovascular endothelium, and leukocytes.

Vascular endothelium. Early studies demonstrated that AMPK and IR 
are linked in the vascular endothelium (92). Human umbilical vein 
endothelial cells (HUVECs) incubated for 24 hours in high-glucose 
medium become insulin resistant and show decreased mitochondrial 
membrane potential, abnormalities that were prevented when AMPK 
was activated by various means (92–94). Subsequent studies showed 
that pharmacological AMPK activators and genetic AMPK overex-
pression could prevent inflammation (i.e., NF-κB pathway transac-
tivation), oxidative stress, and apoptosis induced by incubation with 
the fatty acid palmitate or the inflammatory cytokine TNF-α (95, 96).

Another action of AMPK in endothelial cells in an elevated glu-
cose setting is the phosphorylation of eNOS on serine 1177 (97). 
This modification enhances its ability to synthesize NO, a molecule 
that diminishes oxidative stress and possibly atherogenesis in the 
aorta (43). Likewise, statins have been shown to activate AMPK and 
increase NO synthesis in HUVECs and in whole aorta in mice (98), 
effects that may contribute to their antiatherosclerotic action not 
accounted for by cholesterol lowering (98, 99). Direct effects of AMPK 
on atherosclerosis have also been demonstrated in AMPK knockout 
models. For instance, loss of AMPKα2 in apoE-deficient mice exac-
erbates atherosclerosis when these mice are fed an atherogenic diet 
(100). Additionally, various AMPK activators (AICAR and polyphe-
nols) have been shown to prevent atherosclerosis, with the natural 
polyphenol, berberine, working specifically through AMPK (101).

Macrophage activation and adipose tissue inflammation
Macrophage recruitment and activation (i.e., conversion or partial 
conversion of antiinflammatory M2 to proinflammatory M1 mac-
rophages) are central features of chronic low-grade inflammatory 
diseases, including many associated with the metabolic syndrome. 
Adipose tissue of obese, insulin-resistant humans and experimen-
tal animals contain markedly increased numbers of proinflam-
matory macrophages, which are thought to be responsible both 
for removing dead adipocytes and for the inflammation that pre-
cedes IR (102–104). In addition, macrophage invasion and inflam-
mation have been observed in the islets of humans and various 
rodents with both type 1 and type 2 diabetes (105).

AMPK was first implicated in macrophage regulation in studies 
showing that AMPK activators diminish inducible NOS (iNOS, 
also known as NOS3) synthesis in macrophages and adipocytes 
(106). Subsequently, Sag et al. (107) reported that treatment of 
macrophages with antiinflammatory cytokines, such as IL-10 and 
TGF-β, rapidly activated AMPK in these cells, whereas the proin-
flammatory stimulus LPS diminished AMPK activity. Likewise, 
inhibition of AMPK activity by RNAi or transfection of an inac-
tive AMPK mutant enhanced LPS-induced increases in the inflam-
matory cytokines TNF-α and IL-6 and diminished IL-10 in these 
cells. More recently, Yang and coworkers (108) demonstrated that 
increased AMPK activity, caused by the expression of a constitu-
tively active AMPKα1, inhibits both LPS and palmitate-induced 
NF-κB signaling in macrophages. They also observed that inacti-
vating AMPK in macrophages in a macrophage/adipocyte cocul-
ture system inhibited both insulin signaling and glucose uptake in 
the adipocytes (i.e., it produced IR). Finally, the same investigators 
found that AMPK activation increased SIRT1 expression in macro-
phages and that this led to the deacetylation and downregulation 
of NF-κB (i.e., decreased inflammation).

The critical nature of AMPK in macrophages was recently under-
scored in a study examining wild-type mice that received transplant-
ed bone marrow from AMPK β1–deficient mice and were then fed a 
high-fat diet (109). As a consequence of having virtually no AMPK 
activity in their macrophages, these mice had higher serum levels of 
inflammatory cytokines, more bone marrow–derived macrophage 
infiltration into fat pads with gene expression patterns consistent 
with M1-polarized cells, and increased systemic and hepatic IR.

Additional evidence of AMPK and SIRT1 links 
to inflammation
Why changes in AMPK and SIRT1 exert effects on inflammation 
and other events that alter insulin sensitivity is incompletely under-
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stood. As recently reviewed (110), one factor may be their actions on 
fuel metabolism in immune cells. Increases in glucose uptake, gly-
colysis, and the activity of the pentose phosphate pathway (which 
generates NADPH), as well as decreases in AMPK and presum-
ably sirtuin activity, have been observed in M1 macrophages and  
T helper cells (110), both of which are more numerous in inflamed 
adipose tissue (111). Conversely, noninflammatory cells, such as 
M2 macrophages, regulatory T cells, and quiescent memory T cells, 
have lower glycolytic rates and higher rates of oxidative metabo-
lism, presumably related to their higher AMPK and SIRT1 activi-
ties. The infiltration of adipose tissue with various T cells is an 
early event that is critical in regulating macrophage recruitment 
and causing systemic IR (112). Perhaps related to these effects on 
inflammation, AMPK activation increases autophagy and, sec-
ondarily, mitochondrial function and prevents the inflammatory 
activation of adipose tissue macrophages. AMPK presumably has a 
similar effect on lymphocytes (112). As reviewed elsewhere, AMPK 
appears to act, at least in part, by phosphorylating and inhibit-
ing ULK1, an enzyme implicated in regulating autophagy and the 
formation of NLR family pyrin domain–containing 3 (NLRP3) 
inflammasomes (5, 19, 113, 114). Upregulation of NLRP3 inflam-
masomes has recently been described in macrophages differenti-
ated from monocytes obtained from the blood of obese individuals 
with recent-onset type 2 diabetes. Furthermore, when the patients 
were treated with metformin for 2 months, AMPK was activated 
and IL-1β maturation was decreased in the differentiated macro-
phages, suggesting inflammasome deactivation (115).

Inflammation and oxidative and ER stress: interactions  
with AMPK and sirtuins
An increasing body of work has linked inflammation to oxidative 
and ER stress in the pathogenesis of IR and cellular dysfunction 
in adipose tissue, liver, muscle, and pancreatic β cells (Figure 3). 
Notably, these cellular stress factors are reduced by genetic or 
pharmacological activation of AMPK or some sirtuins (13, 116, 
117). Conversely, oxidative and ER stress and inflammation can 
diminish AMPK and SIRT1 activity (5, 118, 119). Whether an 
abnormality in one of these stressors or AMPK, SIRT1 or SIRT3, 

or yet other factors initiates IR and cellular damage in vivo is 
unclear and will require longitudinal time-course studies to sort 
out. What has been more clearly established is that regular exercise 
can chronically diminish oxidative and ER stress as well as inflam-
mation in liver, muscle, and adipose tissue, suggesting that AMPK 
activation is a therapeutic target (120–122).

As reviewed elsewhere, AMPK exerts actions on metabolism, 
inflammation, and other parameters in liver, muscle, and pancre-
atic β cells, similar to its effects on adipose tissue and endothelium 
(3, 5, 13, 123, 124). In addition, AMPK exerts effects in specific 
regions of the CNS that regulate food intake, sympathetic ner-
vous system activity, and circadian rhythms (2, 67). Whether and 
how dysregulation of AMPK in the CNS contributes to IR in the 
periphery have not been systematically studied; however, feeding 
rats and mice a high-fat diet for as little as 1 to 3 days has been 
shown to cause hypothalamic inflammatory signaling and sub-
sequent gliosis (125). Furthermore, evidence of gliosis was found 
by MRI in the mediobasal hypothalamus of obese humans (125).

Insulin resistance and decreased AMPK in humans
The association of decreased AMPK activity and IR has been 
conclusively demonstrated in the adipose tissue of both very 
obese individuals undergoing bariatric surgery and patients 
with Cushing’s syndrome.

Cushing’s syndrome. Korbonits and coworkers observed decreased 
AMPK activity in the visceral adipose tissue of patients with Cush-
ing’s syndrome, most of whom had elevated plasma cortisol levels 
due to a functioning adrenal adenoma (14). The same investigators 
found that infusion of glucocorticoids into rodents also dimin-
ished AMPK activity (126). Individuals with Cushing’s syndrome 
are characterized by IR, increases in visceral fat, and a predisposi-
tion to both type 2 diabetes and ASCVD. Similar abnormalities are 
observed in patients treated with high doses of glucocorticoids for 
extended periods, although their effect on ASCVD is somewhat 
controversial (127). Interestingly, incubation of adipocytes with 
cortisol causes IR that is associated with increases in oxidative 
stress, but, as expected, not with inflammation (128).

Patients undergoing bariatric surgery. Gauthier (15) and Xu (16) 
and their coworkers observed that AMPK activity is significantly 
diminished (30%–50%) in the adipose tissue of 75% of the severely 
obese individuals undergoing bariatric surgery who are insulin 
resistant, compared with the remaining 25% who are insulin sen-
sitive. Such decreases in AMPK activity were observed in omental, 
subcutaneous abdominal, and epiploic fat and were accompanied 
by increased oxidative stress both in these depots and in plasma 
(129), as had been reported previously (130). In contrast, differ-
ences in gene expression were more depot specific. In general, 
increases in inflammatory genes such as IFNG, angiotensinogen 
(16), IL1B (131), IL8, and chemokines (132), accompanied by mac-
rophage and lymphocyte infiltration (16, 131, 133) and decreases 
in the expression of genes for PGC1A (16) and SIRT1 (133) and 
enzymes related to β oxidation of fatty acids and the citric acid 
cycle (134), were observed in visceral adipose tissue of insulin-
resistant compared with insulin-sensitive subjects. The strongest 
predictors of IR in these patients was macrophage infiltration of 
adipose tissue, together with decreased plasma adiponectin (133).

Implications of the findings in bariatric surgery patients. An increas-
ing body of evidence indicates that various bariatric surgery pro-
cedures reverse type 2 diabetes and other disorders associated with 
the metabolic syndrome, including dyslipidemia, hypertension, 

Figure 3
Proposed interrelations of AMPK and sirtuins 1 and 3 (SIRTs) with 
oxidative and ER stress and inflammation. AMPK and SIRT1 both 
activate each other and diminish oxidative and ER stress and low-
grade inflammation in various settings. Conversely, oxidative and ER 
stress and inflammation, which activate each other, appear to diminish 
AMPK and SIRT1. In principle, any of these factors could be targeted 
to combat IR and the development of metabolic syndrome–associated 
disorders; however, to date, the most success has been observed with 
therapies that target AMPK.
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and polycystic ovary disease (19, 135). In addition, bariatric sur-
gery diminishes long-term mortality (up to 20 years after surgery) 
from coronary heart disease by 30% (18) and the prevalence of 
solid tumors by 70% (5 years after surgery) (19). Interestingly, the 
effect on cardiovascular disease mortality was observed primarily 
in patients in the 2 highest quintiles of plasma insulin preopera-
tively (18) (i.e., the most insulin-resistant subjects). These patients 
also have low AMPK activity, increased oxidative and (presumably) 
ER stress, and inflammation in their adipose tissue (16).

Whether the decreases in AMPK and SIRT1 or the increases in 
oxidative and ER stress and inflammation disappear more rap-
idly following bariatric surgery remains to be determined. Also 
requiring study is why some obese people remain insulin sensitive, 
whereas the majority of them are insulin resistant. In addition to 
the possibilities already discussed, such factors as alterations in 
capillary density and permeability (136, 137), differences in col-
lagen VI deposition (53, 138, 139), the release of LPS from bacte-
ria by the gut microbiome (140–142), alterations of lipid droplet 
proteins such as FSP27 (CIDEC) that regulate the rates of lipid 
deposition and lipolysis in adipose tissue (19, 143), and events 
that cause an imbalance between nutrient load and mitochondrial 
function (144), need to be considered. With respect to the micro-
biome, AMPK activity is significantly increased in tissues of germ-
free mice (145) and in mice treated with antibiotics (146), suggest-
ing that AMPK suppression by factors released by bacteria of the 
gastrointestinal tract or other sites may be a normal occurrence. 
Finally, ER stress has not yet been compared in the adipose tis-
sue of insulin-sensitive and -resistant obese patients. On the other 
hand, like oxidative stress and inflammation, ER stress diminishes 
over time after bariatric surgery (147).

Other tissues. Efforts to determine whether decreased AMPK 
activity occurs in other tissues, most notably the skeletal muscle 
of humans with metabolic syndrome–associated disorders, have 
yielded mixed results. One group reported decreased AMPK activ-
ity in the muscle of obese, insulin-resistant patients, including 
some with type 2 diabetes (148), and another reported decreased 
AMPK activation by exercise in obese and diabetic patients (149). 
Others have not observed such effects, however (6, 22, 150).

Concluding remarks
The findings presented in this review strongly suggest a close 
link between dysregulation of AMPK and IR in both rodents 
and humans. AMPK activity is diminished in adipose tissue of 
very obese insulin-resistant people, in whom it is associated with 
increases in oxidative stress and more variable changes in gene 
expression. These changes are also associated with alterations in 
the release of numerous humoral factors that could contribute to 

IR and dysfunction in other tissues that lead to metabolic syn-
drome–associated diseases (Figure 1B).

What is not yet clear is whether the decreases in AMPK and 
SIRT1 and possibly other sirtuins are primary events that promote 
IR and metabolic syndrome–associated disorders or if decreased 
AMPK and SIRT1 are components of adaptive responses to IR, 
oxidative and ER stresses, and inflammation. AMPK can decrease 
all of these factors, and these stressors in turn can diminish AMPK 
activity (Figure 3). Determining causality in humans may prove 
difficult; however, time-course studies in tissue and plasma from 
severely obese individuals after bariatric surgery and similar mea-
surements in normal-weight offspring of people with metabolic 
syndrome–associated diseases, who often show early evidence of 
IR (28), might prove useful.

Another question is: why focus on AMPK when, hypothetically, 
oxidative and ER stress and inflammation could be therapeutic 
targets? A simplistic answer is that the safety and efficacy of thera-
pies that activate AMPK are more established. Thus, AMPK can 
be activated by exercise and calorie restriction, whose safety and 
efficacy for preventing and, to some extent, treating metabolic 
syndrome–associated disorders such as type 2 diabetes, hyperten-
sion, and ASCVD, are reasonably established. In addition, perhaps 
fortuitously, pharmacological agents developed for the treatment 
of type 2 diabetes, such as metformin, TZDs, GLP1 agonists, and 
dipeptidyl peptidase IV (DPP IV) inhibitors, have all been shown 
to activate AMPK, and in several instances, have demonstrated 
utility in preventing the progression of impaired glucose toler-
ance to type 2 diabetes. Finally, the identification of potent and 
specific AMPK activators appears to be imminent. If so, we may 
soon be able to determine more directly the therapeutic utility of 
AMPK activation for the prevention and treatment of metabolic 
syndrome–associated disorders.
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