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Liver cancer is an aggressive disease with a poor outcome. Several hepatic stem/progenitor markers are useful for 
isolating a subset of liver cells with stem cell features, known as cancer stem cells (CSCs). These cells are responsible 
for tumor relapse, metastasis, and chemoresistance. Liver CSCs dictate a hierarchical organization that is shared in 
both organogenesis and tumorigenesis. An increased understanding of the molecular signaling events that regulate 
cellular hierarchy and stemness, and success in defining key CSC-specific genes, have opened up new avenues to 
accelerate the development of novel diagnostic and treatment strategies. This Review highlights recent advances in 
understanding the pathogenesis of liver CSCs and discusses unanswered questions about the concept of liver CSCs.

The cancer stem cell concept
Although considered monoclonal in origin, tumor cells show het-
erogeneous morphology and behavior (1, 2). This heterogeneity 
has traditionally been explained by the clonal evolution of tumor 
cells resulting from the progressive accumulation of multiple 
genetic (3) or epigenetic changes (4). Alterations in tumor stroma 
microenvironments may also facilitate the development of tumor 
cell heterogeneity through the extrinsic activation of certain 
tumor cell signaling pathways (5). Moreover, recent studies have 
suggested that heterogeneity is a result of the hierarchical organi-
zation of tumor cells by a subset of cells with stem/progenitor cell 
features known as cancer stem cells (CSCs) (6).

The concept of cancer as an abnormal stem cell disease was pro-
posed based on the similar capabilities of cancer cells and normal 
stem cells to self-renew, produce heterogeneous progeny, and 
divide in an unlimited fashion (7, 8). However, the CSC hypothesis 
has only recently been experimentally validated by the identifica-
tion of a subset of certain self-renewing stem cell marker–posi-
tive cells with a hierarchical organization (9–11). The self-renewal 
capacity is confirmed by serial in vitro clonogenic growth and in 
vivo tumorigenicity; thus, CSCs are also known as tumor-initiat-
ing cells or tumor-propagating cells. CSCs are highly tumorigenic, 
metastatic, chemotherapy and radiation resistant, responsible 
for tumor relapse after therapy, and able to divide symmetrically 
and asymmetrically to orchestrate the tumor mass (11). There-
fore, CSCs are a pivotal target for the eradication of many cancers 
including liver cancer.

Liver cancer is the fifth most commonly diagnosed cancer and 
the second most frequent cause of cancer death in men world-
wide (12). Among primary liver cancers, hepatocellular carcinoma 
(HCC) represents the major histological subtype, accounting for 
70%–85% of cases of primary liver cancer (12). Intrahepatic chol-
angiocarcinoma (ICC) is the second most frequent type of liver 
cancer, and its incidence has been increasing (12, 13). Both HCC 
and ICC are heterogeneous diseases in terms of cellular morphol-
ogy and clinical outcome. Combined HCC–cholangiocellular car-
cinoma (HCC-CCA), a form of primary liver cancer showing fea-
tures of both hepatocellular and biliary epithelial differentiation, 

has also been reported, supporting the existence of bipotent liver 
CSCs (14). Indeed, recent immunohistochemical studies of stem 
cell markers suggest that HCC, ICC, and HCC-CCA are histologi-
cally heterogeneous and contain a subset of cells expressing a vari-
ety of stem cell markers (15–18).

CSC self-renewal and hierarchical organization features have 
been experimentally validated by xenotransplantation of freshly 
resected HCC specimens. In HCC, CSC markers include epithelial 
cell adhesion molecule (EpCAM), CD133, CD90, CD44, CD24, 
CD13, and oval cell marker OV6, as well as Hoechst dye efflux or 
aldehyde dehydrogenase activities, some of which may function-
ally support liver CSC phenotypes including highly invasive fea-
tures and chemoresistance (18–24). This Review summarizes the 
current knowledge of liver CSCs and discusses several unanswered 
questions about the concept of liver CSCs.

Liver microenvironment and the CSC niche
Liver cancer nearly always develops in the setting of chronic liver 
disease (CLD), in which continuous inflammation and hepatocyte 
regeneration occur (25). Pathophysiological changes take place 
during long-term inflammation/regeneration processes that work 
coordinately to initiate and/or promote liver cancer. These pro-
cesses include the expansion of stem/progenitor cells, accumula-
tion of genetic and/or epigenetic changes, and alteration of the 
microenvironment (Figure 1).

Hepatic stem/progenitor cells are markedly elevated in CLDs 
(26). Under selected circumstances, the hepatocyte proliferative 
capacity is considered virtually infinite (27). However, in human 
CLDs, this capacity is impaired, possibly due to hepatitis virus 
infection (28) or replicative senescence induced by long-term con-
tinuous hepatocyte regeneration (29). This impairment in hepa-
tocyte proliferation may cause the expansion of stem/progenitor 
cells called “ductular reactions” (30). Hepatic stem/progenitor 
cells derive from the canals of Hering, bile canaliculi lined with 
hepatocytes and cholangiocytes (31). Stem cell homing, motility, 
and proliferation are tightly regulated by the immediate microen-
vironment termed the stem cell niche (32). In the liver, the niche 
cells that control self-renewal and division of hepatic stem/pro-
genitors have not yet been clarified. The magnitude of progenitor 
cell activation seems to correspond to the severity of liver fibrosis 
and inflammation (30) and correlate with HCC risk (33).
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Genetic and epigenetic changes accumulate in all liver lineages over 
decades and are responsible for initiating and promoting liver can-
cer. HBV infection results in HBV genome integration into the host 
genome and may initiate and promote HCC by inducing insertional 
mutagenesis and genomic instability (34). The HBV X gene (HBx) 
also modulates signaling pathways, including p53 and NF-κB, to pro-
mote HCC (35). HCV infection may enhance the induction of ROS 
by modulating mitochondrial functions, resulting in DNA damage 
(36). Telomere shortening as a consequence of accelerated hepatocyte 
turnover also contributes to genomic instability and HCC (37). TP53 
mutations, especially codon 249Ser mutations following aflatoxin 
B1 exposure, result in defective DNA damage responses (38). These 
oncogenic events may occur simultaneously in various populations 
of hepatic stem/progenitor cells and hepatocytes in CLDs.

The hepatic microenvironment is drastically altered in CLDs, 
with increased lymphocyte infiltration, stellate cell activation, 

and the expansion of hepatic progenitor cells and endothelial pro-
genitor cells. Infiltrating lymphocytes cause inflammation with 
the release of free radicals, cytokines, and chemokines, result-
ing in DNA damage, cell proliferation, and migration (38, 39).  
Activation of stellate cells by TGF-β, possibly secreted from infil-
trating lymphocytes, Kupffer cells, or damaged hepatocytes, 
results in fibrosis with excess deposition of extracellular matrix 
(40). Activated myofibroblasts in turn produce growth factors 
such as Wnt, FGF, and PDGF to regulate cell proliferation (41, 
42). Endothelial progenitor cells and sinusoidal endothelial cells 
may migrate, proliferate, and subsequently mediate vasculature 
reconstruction during liver regeneration in part through interac-
tion of VEGF and its receptor VEGFR (43, 44).

Taken together, stromal cell activation appears to induce signal-
ing pathways in a range of liver lineages that emerge in CLDs with 
accumulating genetic and/or epigenetic changes. These patho-

Figure 1
Liver inflammation and regeneration in liver CSC development. Stem/progenitor cells expand in CLD as a result of impaired hepatocyte replica-
tion, and genetic and epigenetic changes potentially accumulate in all liver lineages. Activation of stromal cells may induce various signaling 
pathways, including cytokines such as Wnt, FGF, PDGF, VEGF, and TGF-β, and promote the development of liver CSCs.



review series

 The Journal of Clinical Investigation   http://www.jci.org   Volume 123   Number 5   May 2013 1913

physiological conditions may cooperatively affect the process of 
liver regeneration and may support liver CSC development.

Shared features of liver development and liver cancer 
development
Embryogenesis and tumorigenesis share similar features, includ-
ing autonomous cell proliferation, motility, homing, dynamic 
morphologic changes, cellular heterogeneity, and interactions 
with the microenvironment. Indeed, carcinogenesis could be 
described as deregulated malignant organogenesis mediated by 
abnormally proliferating and/or metastatic cancer cells and acti-
vated stromal cells that trigger angiogenesis, fibrosis, and inflam-
mation. Liver cancer development recapitulates, in part, fetal liver 
development in terms of the emergence of cells expressing certain 
stem cell markers and the activation of signaling pathways during 
liver development and inflammation/regeneration (Table 1).

Normal liver development program. Hepatic genes are first induced 
in a segment of ventral endoderm, requiring FGF signaling from 
the adjacent cardiogenic mesoderm and BMP signaling from the 
septum transversum (45, 46). Recent analysis of zebrafish indi-
cates the involvement of Wnt2b from the lateral plate mesoderm 
in liver specification (47). Another recent study using condition-
al adenomatosis polyposis coli (Apc) knockout mice under the 
α-fetoprotein (Afp) promoter further indicated that activation of 
Wnt signaling allows the induction of hepatic specification and 
inhibition of hepatic maturation (48). Once the hepatic endoderm 
is specified and the liver bud begins to grow, the cells become hep-
atoblasts with the ability to differentiate into hepatic and biliary 
lineages. These cells have the self-renewal and asymmetric division 
features of stems cells and can repopulate normal and injured 
liver. Various growth factors influence hepatoblast differentia-
tion into hepatocytes and cholangiocytes, including Wnt signal-
ing, HGF signaling, oncostatin M (OSM) signaling, and jagged 1/
Notch (JAG1/Notch) signaling (49–51).

Signaling pathways activated in liver cancer. Signaling pathways 
activated in normal liver development are also activated in CLDs 
and may mediate the development and maintenance of liver CSCs 
(Table 2) (see also a recent review article highlighting the role of 
signaling pathways on self-renewal and differentiation of liver 

CSCs; ref. 52). For example, signaling of FGF and Wnt is impli-
cated in HCC development (53–55), and Wnt signaling regulates 
hepatoblasts and liver CSC self-renewal (18, 56–60). Recent appli-
cation of massive parallel sequencing technologies have consis-
tently confirmed previous findings that somatic mutations of 
genes in the Wnt/β-catenin signaling pathways, such as axin and 
β-catenin, are common HCC events (61–63). Wnt and TGF-β sig-
naling pathways may collaborate in the development of HCC or 
HCC-CCA with poor prognosis (64, 65). Signaling of OSM and 
BMP4 appears to induce hepatocytic differentiation of liver CSCs 
(66, 67), while TGF-β signaling is implicated in the biliary differ-
entiation of hepatoblasts; loss of TGF-β signaling by β2-spectrin 
knockout resulted in the expansion of progenitor cells in mice (68, 
69). TGF-β signaling may also regulate the development and main-
tenance of HCC and liver CSCs, but its role seems paradoxical and 
is often referred to as a double-edged sword (70–73). In addition, 
TGF-β signaling may promote HCC progression by recruiting 
regulatory T cells to establish a favorable microenvironment for 
tumor metastasis (74, 75).

IL-6/STAT3 signaling is involved in liver inflammation/regen-
eration and may regulate the population of liver CSCs in col-
laboration with TGF-β signaling (70, 76, 77). JAG1/Notch sig-
naling induces biliary differentiation of hepatoblasts, but its role 
in HCC remains controversial (78, 79). Signaling through HGF 
and its receptor c-Met has a pleiotropic role in regulating hepatic 
progenitors to hepatocytic/biliary differentiation (80, 81) and is 
implicated in the maintenance of liver CSCs through epithelial-
mesenchymal transition (82).

Stem cell markers detected in hepatic stem/progenitor cells and liver 
CSCs. Hepatoblasts express biliary markers such as cytokera-
tin 19 (CK19) and EpCAM as well as hepatocyte markers such 
as albumin and AFP (27, 83). Hepatoblasts also express a variety 
of markers putatively detected in ectodermal or mesodermal lin-
eages (84–92). Similar to the signaling pathways activated in both 
normal liver and cancer development, hepatoblasts/hepatic pro-
genitor cells, and liver CSCs share a number of oncofetal mark-
ers (Tables 1 and 2 and refs. 17, 18, 20, 21, 27, 58, 83, 93–98). 
Interestingly, recent studies showed that some of these liver CSC 
markers are also functionally involved in the maintenance of 

Table 1
Signaling pathways activated in hepatic stem/progenitor cells

Signaling pathway Role in normal liver development (species) Role in liver cancer development (source) Reference

BMP Liver specification from endoderm (mouse) Differentiation of CD133+ CSC  46, 66 
  (PLC/PRL/5, Huh7, MHCC-97L)
FGF Liver specification from endoderm (mouse) Cell proliferation and angiogenesis  45, 53, 54 
  (HCC-1.2, HepG2, Hep3B)
Wnt Liver specification from endoderm (zebrafish, mouse),  Liver CSC self-renewal (Huh1, Huh7,  18, 47, 48, 51,  
 inhibition of hepatic maturation (mouse),  SMMC7721), cell proliferation (Hep3B) 54, 58, 59 
 biliary differentiation of hepatoblast (mouse)
OSM Hepatocytic differentiation of hepatoblast (mouse) Differentiation of EpCAM+ CSC  49, 67 
  (Huh1, Huh7, primary HCC)
TGF-β Biliary differentiation of hepatoblast (mouse) Controversial (mouse, rat, Huh7, primary HCC) 64, 65, 68–73
JAG1/Notch Biliary differentiation of hepatoblast (mouse) Controversial (mouse, primary HCC) 50, 78, 79
IL-6/STAT3 Liver regeneration (mouse) Liver CSC maintenance (mouse) 70, 76, 77
HGF/c-Met Liver regeneration (mouse), hepatocyte  Epithelial-mesenchymal transition (mouse) 49, 50, 80–82 
 transdifferentiation into biliary epithelium (rat)
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CSC features. For example, EpCAM enhances Wnt signaling in 
ES cells and cancer (99, 100), and CD133 expression is required 
for the maintenance of CD133+ liver CSCs through neurotensin/
IL-8/CXCL1 signaling activation (101). In addition, a CD44 vari-
ant regulates the redox status by stabilizing xCT and protecting 
CSCs from oxidative stress (102), while CD13 reduces cell damage 
induced by oxidative stress after exposure to genotoxic reagents 
(19). Thus, the functional involvement of most liver CSC markers 
in the maintenance of liver CSC features potentially makes them 
a good target for the eradication of liver CSCs.

Reprogramming factors and liver cancer development. As Yamanaka 
and colleagues elegantly demonstrated, differentiated cells can be 
reprogrammed to acquire pluripotency by defined factors such 
as Oct3/4, Sox2, Klf4, and c-Myc (the Yamanaka factors) known 
to be activated in ES cells (103, 104). These transcription regula-
tors may also play a role in HCC and liver CSC development and 
maintenance. Recently, liver CSCs were observed in Myc-driven but 
not Akt/Ras-driven tumors, suggesting a role for Myc in liver CSC 
development and maintenance (105). Nanog, a transcription regu-
lator activated in ES cells, plays a role in the self-renewal of liver 
CSCs expressing CD24 or CD133 (21, 106), while Sox2, Oct4, and 
Nanog expression may predict the prognosis of HCC patients after 
surgery, suggesting roles in HCC malignant phenotypes (107, 108). 
TP53 mutations are the most common genetic alteration associated 
with stem cell–like gene expression signatures in HCC (109), and 
loss of p53 function enhances the efficiency of Yamanaka factor–
induced reprogramming (110–112). These data together suggest 
that factors affecting cellular reprogramming and inducing dedif-
ferentiation may also work as oncogenes to generate liver CSCs.

Heterogeneity of normal hepatic stem/progenitor cells and liver CSCs. 
Hepatoblasts are considered a heterogeneous population with 
potential hierarchical organization and various degrees of differ-
entiation (113). Therefore, many controversial issues including 
differentiation status and the repopulation capability of marker-
positive hepatoblasts have been raised, even using robust stem cell 
markers (95, 114, 115). Similarly, liver CSCs are considered highly 
heterogeneous and may show distinct phenotypes in terms of 
tumorigenic/metastatic features and chemosensitivity when puri-
fied using different CSC markers (116). Therefore, the expression 

patterns and levels of these CSC markers in primary liver cancers 
need to be comprehensively clarified to aid the development of 
molecularly targeted therapies against liver CSCs.

Clinical application of the concept of liver CSCs
According to the CSC concept, heterogeneous populations of liver 
cancer cells are dictated and maintained at least partially by liver 
CSCs. Therefore, identification of signaling pathways as well as stem 
cell markers activated in liver CSCs will profoundly affect the devel-
opment of novel liver cancer diagnosis and treatment strategies.

Diagnosis and prognostic stratification. Survival of liver cancer 
patients after radical resection varies on an individual basis, even 
with early diagnosis. Conventional histologic diagnosis of tumor 
samples cannot predict the prognosis of liver cancer patients who 
receive radical treatment. To overcome these limitations, gene 
expression profiling technologies have been applied (117, 118). 
Currently, the finding of a stem cell–like gene expression signa-
ture is of great interest because it reflects the malignant nature of 
a tumor with poor survival outcome (Figure 2 and refs. 18, 109, 
119, 120). Gene expression profiles generally reflect the charac-
teristics of the dominant cell population, so a poor prognosis of 
HCC in patients with stemness-associated gene expression traits is 
assumed to reflect the abundance of liver CSCs with highly tumor-
igenic and/or metastatic features.

Accordingly, recent evidence has suggested that the presence of 
liver CSCs in resected specimens could be associated with poor 
prognosis of HCC patients after radical resection (121, 122). How-
ever, predictive values of single liver CSC markers remain contro-
versial and need validation in independent cohorts (52). Rather, a 
combination of several CSC markers may provide greater specific-
ity and reliability in predicting HCC prognosis (57, 123). Stem-
ness has also recently been identified as a predictive marker of 
ICC prognosis (124). CSCs have a highly invasive and metastatic 
capacity and can be isolated from peripheral blood mononuclear 
cells as circulating tumor cells, and thus may provide diagnostic or 
prognostic information (125–127).

Treatment resistance and CSC-targeted therapy. The discovery of liver 
CSCs has also elucidated detailed mechanisms of treatment failure 
in liver cancer. Poor prognosis after radical resection of EpCAM+AFP+ 

Table 2
Cell surface markers activated in liver CSCs

Cell surface marker Function in CSCs Phenotypes of marker-positive CSCs (source) Reference

CD13 ROS-induced DNA damage reduction Tumorigenic, cell cycle arrest, chemoresistant  19 
  (PLC/PRL/5, Huh7, Hep3B)
CD133 Neurotensin/IL-8/CXCL1 signaling Tumorigenic, chemoresistant  17, 88, 101,  
  (PLC8024, Huh7, Hep3B, primary HCC) 128, 130, 131
CD24 STAT3-mediated NANOG regulation Tumorigenic, chemoresistant, metastatic  21, 96 
  (PLC/PRL/5, HLE, Huh7, primary HCC)
CD44 Regulation of redox status through xCT Tumorigenic, invasive (PLC, PLC/PRL/5, HLF) 102, 122
CD90 Not reported Tumorigenic, metastatic, circulating (HepG2, Hep3B,  20, 116, 125 
  PLC, Huh7, MHCC97L, MHCC97H, primary HCC)
DLK1 Not reported Tumorigenic, chemoresistant (Hep3B, Huh7) 98
EpCAM Activation of Wnt signaling Tumorigenic, invasive, chemoresistant, circulating  18, 56, 57, 60,  
  (Huh1, Huh7, primary HCC) 99, 100, 127

OV6 Not reported Tumorigenic, chemoresistant, invasive, metastatic  23, 58 
  (Huh7, SMMC7721, primary HCC)
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HCCs can be explained by the high frequency of portal vein invasion, 
which may result in the early recurrence of HCC due to microdis-
semination in the residual liver (18, 57). Although EpCAM+ CSCs 
showed chemoresistance against genotoxic reagent 5-fluorouracil 
(5-FU), these cells exhibited Wnt signaling activation and sensitiv-
ity to Wnt signaling inhibitor (56). CD90+ liver CSCs co-expressing 
CD44 were detected in all HCC tissues from 13 HCC patients who 
underwent surgery (20). These cells lost their highly tumorigenic 
capacity in a xenotransplantation model when anti-CD44–neutral-
izing antibodies were systematically administrated (20).

Transcatheter arterial chemoembolization (TACE) is used to 
treat HCC patients at intermediate stages, and CD13+ liver CSCs 
survived together with the fibrous capsule after TACE, which may 
result in local recurrence (19). Such CD13+ CSCs were eradicated 
by application of a CD13 inhibitor in combination with 5-FU in 
a mouse xenograft model (19). Among HBV-related HCC patients 
who received surgery, CD133+ liver CSCs appeared in advanced stag-
es and correlated with early recurrence and poor prognosis (128). 
In advanced stages, genotoxic agents such as 5-FU or doxorubicin 
showed limited antitumor activities against HCC, and sorafenib 
tosylate only modestly prolonged overall survival (129). These 
CD133+ liver CSCs showed activation of the Akt/PKB survival path-
way and chemoresistance to doxorubicin or 5-FU, while an AKT1 
inhibitor suppressed survival signaling of CD133+ liver CSCs (130). 
Lupeol, a phytochemical in fruit and vegetables, also inhibits the 
self-renewal of CD133+ liver CSCs through inhibition of the PTEN/
Akt/ABCG2 signaling pathway (131).

The discovery and exploration of liver 
CSCs has expanded our knowledge of the 
mechanisms by which liver cancers obtain 
tumorigenic, metastatic, and chemothera-
py- and radiation-resistant capacities. The 
development of new diagnostic and treat-
ment strategies targeting liver CSCs to 
improve the survival of liver cancer patients 
is currently underway.

Future challenges
The liver CSC concept has been acknowl-
edged to explain the molecular diversity of 
malignant phenotypes in liver cancer. How-
ever, many questions remain, including the 
role of hepatitis viruses, the origin of liver 
CSCs, the existence and role of the stem cell 
niche, similarities and differences between 
normal hepatic stem/progenitor cells and 
liver CSCs, the timing of CSC emergence, 
CSC concept universality in liver cancers, 
and the relationship between CSC plastic-
ity and clonal evolution accompanied by 
genetic and epigenetic changes (11).

Although chronic HBV and HCV infec-
tions are two major risk factors for the 
development of liver cancer, their roles in 
liver CSCs are largely unknown. It is also 
unclear whether HBV and HCV infect and 
replicate in hepatic stem/progenitor cells, 
but a recent study suggested that HCV 
could replicate in human fetal hepatocytes 
(132). Clinicopathological analysis of sur-

gically resected HCC specimens suggested that EpCAM+ CSCs 
were more frequently detected in HBV– HCCs than in HCV-relat-
ed HCCs, although a validation study using a large independent 
cohort is required (18). A recent study supported the role of HBx in 
the activation of HepG2 cell EpCAM expression accompanied by 
enhanced cell migration and sphere formation (133). Continued 
expression of HCV using a subgenomic replicon system was shown 
to induce stem cell–like properties, including the activation of 
CD133, AFP, CK19, and c-Myc (134). Moreover, TLR4 was induced 
in HCV NS5A transgenic mice following alcohol exposure, and the 
resulting HCC showed activation of stem cell signatures including 
CD133 and Nanog (106). As liver CSCs are considered resistant to 
cellular stresses, it should be clarified whether HBV or HCV infec-
tion directly induces stemness through interaction with signaling 
pathways, or whether the results reflect enrichment of stress-resis-
tant CSCs in certain conditions.

The target cell population of malignant transformation is gen-
erally controversial in human cancer, but accumulating evidence 
suggests that cancer heterogeneity may derive from different 
cells of origin as well as diverse genetic mutations (135). Recent 
studies have indicated the spontaneous conversion of non-stem 
cells to stem-like cells in normal breast epithelial cells and sug-
gested that the biological state of normal cells of origin before 
transformation may be a determinant of the behavior of their 
descendants following transformation (136). Similarly, a recent 
study suggested the unexpected plasticity of normal mature 
hepatocytes to dedifferentiate into progenitor cells in rodent 

Figure 2
Potential origin and evolution of liver CSCs. CSCs may originate from non-CSCs by the acti-
vation of dedifferentiation programs. Liver CSC development may be regulated by hepatobili-
ary lineage commitment programs and oncogenic programs that are induced by acquired by 
genetic/epigenetic changes and activated signaling pathways. The emergence and domination 
of liver CSCs may reflect the molecular subtypes of liver cancers linked to the clinical outcome. 
CCA, cholangiocellular carcinoma.
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(137), but the relation between the biological state of cells of ori-
gin in liver lineages and the descendant liver cancer phenotypes 
remain to be clarified (138–141). Interestingly, a recent study 
demonstrated that ICC originates from hepatocytes when sig-
naling of Notch and Akt is activated in mice, suggesting a role 
for hepatobiliary lineage commitment program deregulation in 
hepatocarcinogenesis (Figure 2 and ref. 142). In rodents, signifi-
cant studies have demonstrated that HCC may originate from 
oval cells as well as hepatocytes (see also a recent review article 
summarizing important earlier works of experimental chemical 
hepatocarcinogenesis models; ref. 141). However, the cellular ori-
gin of human HCC, ICC, and HCC-CCA remains elusive.

Stem cell niches have been identified and characterized in many 
tissues, including the germline, bone marrow, intestine, muscle, 
skin, hair follicle, mammary gland, and nervous system (143). 
However, the niche cells that control the proliferation and self-
renewal of liver CSCs as well as normal hepatic stem/progenitors 
have not yet been clarified.

Current knowledge of CSCs is influenced largely by the biology 
of normal stem cells, in terms of activated markers and signaling 
pathways. Therefore, elimination of liver CSCs using these mark-
ers and signaling pathways may reduce normal hepatic stem/
progenitor cells in CLDs, which may inhibit hepatic regeneration 
leading to hepatic failure. Thus far, it is unclear whether liver CSCs 
can be effectively eliminated without affecting normal hepatic 
stem/progenitor cells. In leukemia, PI3K and downstream mTOR 
kinase composed of key complexes mTORC1 and mTORC2 are 
frequently activated in CSCs. Recent studies demonstrated a non-
redundant requirement of mTORC1 for both hematopoiesis and 
PTEN loss–induced leukemogenesis in mice (144, 145). Interest-
ingly, mTORC2 signaling was also required for leukemogenesis 
but had little effect on normal hematopoietic stem cell function 
in PTEN-null adult mice, suggesting that mTORC2 is a potential 
target for the eradication of leukemia CSCs without affecting nor-
mal adult hematopoiesis (145).

According to the conventional CSC model, only CSCs are highly 
tumorigenic and metastatic and can divide asymmetrically to gen-
erate non-CSCs, and the frequency of CSCs is maintained at a low 
level. Therefore, eradication of CSCs alone is considered sufficient 

for tumor regression. However, recent evidence suggests that non-
CSCs de-differentiate to generate CSCs in breast cancer (136, 146, 
147). Hepatocytes may have similar features to stem cells in terms 
of self-renewal, biliary differentiation, and unlimited cell prolif-
eration under certain conditions (27, 81, 148, 149). It is plausible 
that transformed marker-negative cancer cells de-differentiate to 
acquire features of liver CSCs (Figure 2).

In leukemia, the frequency of CSCs is not always maintained at 
low levels, and clonal evolution by genetic changes may determine 
the nature and frequency of CSCs (11, 150). Similarly, the fre-
quency of CD133+ or EpCAM+ HCCs increases as tumors advance 
(18, 128), and the clonal evolution model in collaboration with the 
CSC model could explain the emergence of certain liver CSCs at 
later stages. Should this be the case, it is unclear whether liver CSCs 
exist in all liver cancers at every stage. Moreover, given the diversity 
of HCC genetic traits revealed by whole genome sequencing, it is 
reasonable to speculate that no common liver CSCs expressing cer-
tain stem cell markers exist in all liver cancers. Rather, liver CSCs 
are likely to be distinct and different for each cancer according to 
genetic traits and activated signaling pathways. This warrants fur-
ther studies to provide better diagnostic and treatment strategies 
for liver cancer patients.
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