
commentaries

2768 The Journal of Clinical Investigation   http://www.jci.org   Volume 122   Number 8   August 2012

Kai McKinstry, systematically transferred 
memory CD4+ T cells into mice deficient 
in specific lymphocyte populations and ele-
gantly dissected the mechanisms by which 
memory CD4+ T cells protect against IAV 
infection in mice (6). They report three new 
findings (Figure 1). First, the innate anti-
viral functions of memory CD4+ T cells 
are IFN-γ dependent and independent of 
the pathogen recognition receptor (PRR) 
pathway (Figure 1A). Second, memory 
CD4+ T cells enhance B cell responses inde-
pendently of TFH cells and germinal cen-
ter formation (Figure 1B). Third, in addi-
tion to mediating effector functions via a 
perforin-dependent pathway (Figure 1C), 
memory CD4+ T cells use the same path-
way to drive selection of escape mutants for 
a process that was known to occur in CD8+ 
T cells (Figure 1D). These new findings are 
discussed below.

Efficient control and clearance of viral 
infections requires coordinated interac-
tions of several components of the immune 
system. Over the past 10 years, Susan Swain 
and colleagues have elucidated several 
functions of memory CD4+ T cells during 
influenza A virus (IAV) infection. They 
demonstrated the role of memory CD4+ 
T cells in innate immune responses (1, 2), 
in the enhancement of B cell responses by 
follicular helper T (TFH) cells via Signaling 
Lymphocyte Activation Molecule (SLAM)-
associated protein (SAP) expression (3), 
and in direct antiviral effects via a perfo-
rin–mediated cytotoxic mechanism (4, 5). 
In this issue of JCI, the Swain group, led by 
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Toward a better understanding of 
memory CD4+ T cell immunity to 
influenza virus
During primary inf luenza infection, 
CD4+ T cells provide help in promoting 
antibody production by B cells and are 
required for the generation of cytotoxic 
and memory CD8+ T cells (7). After the 
infection is resolved, the majority of effec-
tor CD4+ T cells undergo apoptosis, leav-
ing behind a small population of memory 
CD4+ T cells, which respond more rapidly 
and effectively during reinfection. Several 
studies have suggested additional roles of 
memory CD4+ T cells during influenza 
reinfection, including enhancement of 
innate immune responses (1) as well as 
non-helper antiviral functions (8).

In the current study, McKinstry et al. 
demonstrate the role of memory CD4+ 
T cells in immune protection from IAV 
infection. Memory CD4+ T cells protect 
mice that lack T or B cells, though CD8+ 
T cells are needed between days 6 and 
10 after infection for viral clearance in  
B cell–deficient mice (6, 9). McKinstry et 
al. demonstrated that the protection con-
ferred by memory CD4+ T cells in mice 
that lack both T and B cells is incomplete; 
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the production of multiple innate inflam-
matory cytokines and chemokines in the 
lungs of infected mice and lead to early 
control of influenza virus infection. Inter-
estingly, McKinstry et al. show, in agree-
ment with previous publications, that 
innate immune responses mediated by 
memory CD4+ T cells are PRR indepen-
dent (1, 6). This is important because 
influenza viruses can evade immune pro-
tection by antagonizing key components 
of the PRR pathway (15).

Memory CD4+ T cells synergize with 
other lymphocytes
The CD4+ T cells that enter B cell follicles 
and provide help to B cells are referred 

ferences in mortality in IAV infection in 
mice (10). In agreement with this study, 
preexisting memory CD4+ T cells have 
also been shown to correlate with disease 
protection against influenza challenge in 
humans (11–13).

Direct role of memory CD4+ T cells in 
virus infection
Although the most well-characterized 
function of memory CD4+ T cells during 
viral infection is the maintenance of B cell 
and CD8+ T cell responses, several other 
roles of memory CD4+ T cells have been 
elucidated in IAV infection (14). Recent 
studies have shown that memory CD4+  
T cells, but not naive CD4+ T cells, enhance 

mice can be protected against low-dose 
viral challenge but not against high-dose 
challenge. Memory CD4+ T cells mediat-
ed protection against low-dose influenza 
infection via IFN-γ production indepen-
dently of other lymphocytes. The authors 
also found that to clear infection follow-
ing a high dose of challenge virus, mem-
ory CD4+ T cells interacted with naive  
B cells and CD8+ T cells. The reduction in 
morbidity and mortality in the recipient 
mice was convincing, but the reduction in 
viral titers (expressed as polymerase [PA] 
gene copies) was very modest, though 
statistically significant (6). A relatively 
small change in pulmonary virus titer 
can be associated with remarkable dif-

Figure 1
Memory T cell functions demonstrated during 
IAV infection. (A) Memory CD4+ T cells can 
clear low-dose influenza virus challenge inde-
pendently of other lymphocytes by production 
of IFN-γ via a PRR-independent pathway. 
(B–D) Memory CD4+ T cells act through mul-
tiple pathways to mediate protection against 
high-dose influenza virus challenge. Memory 
CD4+ T cells enhance antibody production 
by B cells independently of TFH cells and 
germinal center formation (B), can select for 
influenza virus escape mutants through per-
forin-dependent cytotoxicity (C), and enhance 
CD8+ T cell responses (D).
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viral challenge. Further study of the role 
of memory CD4+ T cells in heterosubtypic 
immunity is needed. The authors close 
with the suggestion that vaccines that 
elicit memory CD4+ T cell responses in 
addition to antibodies may offer univer-
sal protection against seasonal and pan-
demic influenza viruses. An exploration of 
approaches to achieve this result, e.g., by 
administration of influenza vaccines with 
oil-in-water adjuvants (25), would be of 
interest. Last but not least, while it is clear 
that such reductionist approaches are of 
great value in dissecting the pathways, it 
is not clear how translatable the findings 
will be from mice to humans.
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to as TFH cells. Following viral infection, 
TFH cells express SAP to direct the for-
mation of germinal centers (16), where 
they promote the formation of memory 
B cells and long-lived antibody-produc-
ing plasma cells. Memory CD4+ T cells 
are superior to naive T cells in providing 
help to B cells: they promote earlier B cell 
proliferation, higher antibody levels, and 
earlier antibody class switching (17–19). 
Interestingly, McKinstry et al. show that, 
unlike naive CD4+ T cells, enhancement 
of B cell responses by memory CD4+  
T cells is not dependent on a TFH-associ-
ated pathway.

Priming of CD8+ T cells by memory 
CD4+ T cells during IAV infection has 
been studied extensively (20–22), but 
the role of memory CD4+ T cells as 
cytotoxic effectors is less certain. This 
group has shown previously that mem-
ory CD4+ T cells mediate cytotoxicity 
by a perforin-dependent mechanism 
(4). Here, Mc Kinstry et al. extended 
these findings by showing that mem-
ory CD4+ T cells select for inf luenza 
escape mutants and that this selec-
tion requires perforin. This mecha-
nism is similar to that by which CD8+  
T cells select for escape variants (23).

Questions and future challenges
While the work by McKinstry et al. pro-
vides novel insights into cellular mecha-
nisms by which memory CD4+ T cells 
contribute to immune protection against 
influenza, several questions remain. Areas 
that warrant further study include the 
PRR-independent protection elicited by 
memory CD4+ T cells via production of 
IFN-γ in the absence of other lympho-
cytes and the synergy of memory CD4+  
T cells with B cells independent of TFH 
cells. Interestingly, Th17 cells also provid-
ed protection in this study, but their func-
tion was not well characterized. The pre-
cise role of Th17 in this complex network 
should be explored further. Although the 
authors discuss the role of memory CD4+ 
T cells in heterosubtypic immunity (24), 
the experiments in the current study only 
evaluated protection from homologous 


