Abstract

Adaptation of tumor cells to the host is a major cause of cancer progression, failure of therapy, and ultimately death. Immune selection drives this adaptation in human cancer by enriching tumor cells with a cancer stem cell–like (CSC-like) phenotype that makes them resistant to CTL-mediated apoptosis; however, the mechanisms that mediate CSC maintenance and proliferation are largely unknown. Here, we report that CTL-mediated immune selection drives the evolution of tumor cells toward a CSC-like phenotype and that the CSC-like phenotype arises through the Akt signaling pathway via transcriptional induction of Tcl1a by Nanog. Furthermore, we found that hyperactivation of the Nanog/Tcl1a/Akt signaling axis was conserved across multiple types of human cancer. Inhibition of Nanog in a murine model of colon cancer rendered tumor cells susceptible to immune-mediated clearance and led to successful, long-term control of the disease. Our findings establish a firm link among immune selection, disease progression, and the development of a stem-like tumor phenotype in human cancer and implicate the Nanog/Tcl1a/Akt pathway as a central molecular target in this process.

Authors

Kyung Hee Noh, Bo Wook Kim, Kwon-Ho Song, Hanbyoul Cho, Young-Ho Lee, Jin Hee Kim, Joon-Yong Chung, Jae-Hoon Kim, Stephen M. Hewitt, Seung-Yong Seong, Chih-Ping Mao, T.-C. Wu, Tae Woo Kim

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement