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miR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepa-
titis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with
metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo
have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis,
hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated
with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-
tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model
of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA.
These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have impor-
tant therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC
and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.

Introduction
miR-122 is a conserved liver-specific microRNA (miRNA) that
constitutes 70% of the cloned hepatic miRNA in the adult mouse
(1). Several key observations underscore the importance of miR-
122 in liver biology and disease. First, antisense-mediated inhibi-
tion of miR-122 (also known as miR-122a) in mice leads to the
induction of genes that are normally repressed in adult liver (2),
suggesting that this miRNA is important for the maintenance of
the terminally differentiated hepatocyte gene expression program.
Furthermore, miR-122 inhibition reduces serum cholesterol by
indirectly causing the downregulation of genes involved in choles-
terol biosynthesis, including the rate-limiting enzyme HMG-CoA
reductase (Hmgcr), thereby protecting animals from diet-induced
hypercholesterolemia (3). Additionally, miR-122 plays a non-
canonical role in the life cycle of HCV. Through interaction with
two seed sequence binding sites located at the 5'-end of the HCV
genomic RNA, miR-122 performs an incompletely understood
function that is essential for replication of the virus (4). Accord-
ingly, intravenous administration of locked nucleic acid (LNA)
antisense miR-122 oligonucleotides reduces viral load in HCV-
infected chimpanzees (5), a therapeutic approach that is currently
under clinical investigation for HCV in humans.

Hepatocellular carcinoma (HCC) is the fifth most prevalent
cancer worldwide and the third leading cause of cancer-related
death (6, 7). HCC often occurs in the setting of underlying liver
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dysfunction, especially chronic inflammation and cirrhosis.
miR-122 expression is reduced during the initiation and progres-
sion of hepatocarcinogenesis in a rat model of nonalcoholic ste-
atohepatitis (NASH) (8), and downregulation of miR-122 is preva-
lent in human NASH patients (9). Moreover, reduced expression
of miR-122 correlates with poor prognosis and metastasis in HCC
patients, and expression of miR-122 is anti-tumorigenic in HCC
cell lines (reviewed in ref. 10).

Despite these indications of a critical role for miR-122 in liver
physiology and disease, and the potential for this miRNA as a
therapeutic target for HCV and perhaps other disease states, the
consequences of genetic loss of function of this miRNA in vivo
have yet to be documented. Here we describe the generation and
characterization of mice with germline knockout (KO) or liver-
specific knockout (LKO) of the Mir122 locus. Both KO and LKO
mice develop normally and are viable and, consistent with studies
performed using antisense-mediated miR-122 inhibition, exhibit
reduced serum cholesterol (2, 3, 11). In contrast to transient inhi-
bition studies, however, Mir122-KO and -LKO animals develop
microsteatosis and liver inflammation in early adulc life that
progresses to steatohepatitis, fibrosis, and spontaneous tumors
resembling HCC. Hepatocarcinogenesis is likely initiated in these
animals through the upregulation of several oncogenic pathways
coupled with liver injury associated with the infiltration of inflam-
matory cells that produce the pro-tumorigenic cytokines IL-6 and
TNF-o.. Moreover, miR-122 exhibited tumor suppressor activity
when delivered to livers of a non-inflammatory MYC-driven HCC
mouse model. These findings provide important insight into the
natural functions of this miRNA, establish its role as a tumor sup-
pressor in vivo, and reveal potential consequences of miR-122 inhi-
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Figure 1

Abnormal liver structure and TG metabolism in Mir122-LKO mice in
early adult life. (A and B) Northern blot analysis of miRNA levels in liver.
(C) Representative liver sections of 8-week-old control (floxed) and
LKO mice after overnight fasting (n = 8—10 mice per genotype). Scale
bars: top row, 200 um; bottom row, 25 um. (D) Oil red O— and PAS-
stained liver sections from 8-week-old LKO mice after overnight fasting
(n =5 per genotype). Scale bars: top row, 100 um; bottom row, 100 um;
insets, 25 um. (E) Transmission electron micrographs of liver sections
from 12-week-old LKO mice. Lipid droplets (L), ER, mitochondria (M),
and nucleus (N) are labeled. Scale bars: top row, 2 um; bottom row, 450
nm. (F) CK19 and A6 staining of bile duct and oval cells, respectively,
in LKO livers (n = 3 mice per genotype). Scale bars: top row, 100 um;
inset, 5 um; bottom row, 25 um. (G) Hepatic TG and cholesterol levels
in 10-week-old LKO mice. (H) De novo TG synthesis in liver as mea-
sured by 3Hs-glycerol incorporation. (I) TG secretion as measured by
monitoring serum TG levels after administration of Triton WR-1339. The
results presented in G-l are mean + SD. Statistical significance was
calculated using a 2-tailed t test.

bition that may be relevant to the clinical implementation of this
strategy for HCV therapy.

Results

Liver-specific (LKO) and germline (KO) Mir122 loss of function results
in an altered serum lipid profile. The mmu-Mirl22 gene is located on
chromosome 18 and is transcribed independently of any known
gene. To determine its biological function, we generated a miR-122
conditional knockout allele (Mir122"**) in mice using homologous
recombination. Mirl22"* mice were crossed to albumin-Cre (Alb-
Cre) mice to produce LKO mice (Supplemental Figure 1A; supple-
mental material available online with this article; doi:10.1172/
JCI63539DS1). For generation of KO mice, Mir122"F mice were
initially crossed to E2a-Cre mice and then backcrossed to remove
the Cre transgene. Both KO and LKO mice were born alive and
fertile and were not notably different from control (floxed or wild-
type) mice in terms of their body weight and growth.

Northern and Southern blotting and real-time RT-PCR were
used to confirm deletion of the Mir122 gene and loss of miR-122
expression in LKO livers of 10-week-old mice. Except in rare cases,
this time point was sufficient for complete Cre-mediated deletion
of the floxed allele in Alb-Cre hepatocytes (ref. 12, Figure 1A, Sup-
plemental Figure 1B, and Supplemental Figure 2A). A significant
increase in the expression of known targets such as Aldoa, Slc7a1,
Cs, and Cengl (3, 13) confirmed functional depletion of miR-122
in LKO livers (Supplemental Figure 2B). In KO mice, expression of
miR-122 was abolished without influencing the levels of several
other abundant liver-enriched miRNAs such as miR-148, miR-192,
and miR-194 (Figure 1B). Real-time RT-PCR and Western blot

Table 1
Serum profiles of 8- to 10-week-old control and Mir122-LKO mice

research article

analysis demonstrated increased expression of known miR-122
targets including Adam-10 (14), Pparf3/d, Smarcd1/Baf60a (15),
and Iqgap1 (ref. 2 and Supplemental Figure 2, C and D).

We next examined liver function in 8- to 10-week-old LKO
mice by measuring the serum profile of liver enzymes and
metabolites after overnight fasting (Table 1). Among the lipids,
total cholesterol was reduced in the serum of LKO mice by 30%
(P = 1.8 x 10-%) without significantly altering triglyceride (TG)
levels, corroborating previous observations in mice (2, 3) and
primates (5, 16) depleted of miR-122 by administration of anti-
sense oligonucleotides. These mice also exhibited a pronounced
decrease in LDL cholesterol (~56.5%, P = 1.56 x 10-°) and a moder-
ate decrease in HDL cholesterol (~25.1%, P = 0.01). Finally, serum
alkaline phosphatase (ALP) increased 2-fold (P = 4.67 x 10-1) in
LKO mice. The serum profile of 5-week-old KO mice was very simi-
lar to that of the LKO mice (Supplemental Table 1).

LKO mice develop hepatic microsteatosis due to TG accumulation in early
adult life. Histopathological analysis revealed distinctive features in
livers of 8- to 10-week-old LKO mice. Sinusoids in LKO mice were
compressed by swollen hepatocytes containing multiple small
clear vacuoles, likely representing lipid droplets (Figure 1C). Mic-
rosteatosis in LKO mice was confirmed by Oil Red O staining (Fig-
ure 1D) and transmission electron microscopy (TEM) (Figure 1E).
Storage of liver glycogen was reduced in LKO mice after overnight
fasting, as demonstrated by PAS staining (Figure 1D). LKO livers
also exhibited proliferation of bile duct and oval cells as shown by
increased CK-19- and A6-positive cells, respectively (Figure 1F).
Liver histology and serology were similar in male and female LKO
mice (data not shown).

Quantification of hepatic lipids revealed a 2.5-fold increase in
TG levels without a change in cholesterol levels in LKO mice (Fig-
ure 1G). The accumulation of TG could be the result of altered
synthesis, secretion, and/or uptake. Measurement of 3H;-glycerol
incorporation into hepatic TGs showed a small (25%) but signifi-
cant (P = 0.022) increase in de novo TG synthesis in LKO mice
(Figure 1H). Hepatic TG secretion in LKO mice was measured by
monitoring serum TG levels after injection of Triton WR-1339, an
inhibitor of lipoprotein lipase. TG secretion was reduced to 43%
and 46% of control levels after 1 and 3 hours, respectively (Figure
1I). Thus, increased synthesis and reduced secretion contribute to
TG accumulation in the livers of LKO mice.

Genes involved in lipid metabolism, cellular proliferation, and sur-
vival are abnormally expressed in livers of LKO mice. To investigate
the mechanisms underlying the abnormalities observed in miR-
122-deficient mice, we examined hepatic gene expression in 8- to
10-week-old control and LKO mice (# = 5 of each genotype) by
microarray analysis. An examination of the potential enrichment
of all possible hexamers, heptamers, and octamers in the 3’ UTRs

ALP (U/1) ALT (U/1) Chi (mg/d1) HDL-Chl (mg/dl)  LDL-Chl (mg/dI) TG (mg/d1)
Control (1= 16), median+ SE 102.6 + 33.2 713+197  116.6+28.3 63.3+19.2 32.6+9.8 103.9.+28.8
LKO (n = 14), median + SE 2256+ 31.7 91.7+96.5 79.7+15.9 474+115 14243 95.3+13.1
P 4.67 x 10-1" 0.41 1.8 x 104 0.01 1.56 x 10-6 0.33

Serum was collected from mice by cardiac puncture after overnight fasting. Biochemical analysis of serum enzymes, and lipids was performed using VetAce
(Alfa Wassermann system). The control sample included 7 males and 9 females. The LKO sample included 6 males and 8 females. Bilirubin levels (total and
direct) were not altered (data not shown). Chl, cholesterol. Statistical significance was determined by Student’s 2-tailed t test.
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Figure 2

Altered expression of genes involved in TG metabolism and hepatocar-
cinogenesis in Mir122-LKO livers. (A) Sylamer plots (17) showing the
enriched hexamers (top), heptamers (middle), and octamers (bottom)
in transcripts that are upregulated in LKO livers. All motifs that are sta-
tistically significantly enriched are highlighted in color on the plots and
correspond to binding sites for the miR-122 seed sequence as shown
on the left. (B) Expression of genes involved in TG synthesis and stor-
age in LKO livers. For this and subsequent panels, real-time RT-PCR
values represent means from triplicate measurements with multiple
samples (n = 4-5). Statistical significance was calculated using a
2-tailed t test. (C) Western blot analysis of microsomal or whole liver
extracts. (D) Renilla luciferase activity (LUC2) produced from wild-type
or mutant (mut) Agpat1, Cidec, and Mapre1 3' UTR reporter plasmids
or empty vector (pSICHECK2) normalized to firefly luciferase activity
(LUCH) produced from the same plasmid after transfection into Hepa
cells together with negative control RNA (NC) or miR-122 mimic. Error
bars represent SDs derived from 3 independent experiments. (E and
F) Expression of transcripts (E) and proteins (F) related to hepatocar-
cinogenesis in LKO/KO livers.

of the transcripts upregulated in miR-122-deficient livers using
the Sylamer algorithm (17) revealed that the only statistically sig-
nificantly enriched motifs of these lengths corresponded to sites
that match the miR-122 seed sequence (Figure 2A). These results
indicate that the altered expression of a significant fraction of dys-
regulated transcripts in LKO livers is attributable to direct, canoni-
cal targeting by miR-122.

Ingenuity pathway analysis (IPA) of molecular and cellular func-
tions of a stringent set (threshold P < 0.0001) of 194 upregulated
and 121 downregulated genes in LKO livers identified 7 major net-
works of dysregulated genes (Supplemental Table 2). Genes involved
in lipid metabolism were highly represented within these networks.
Notably, among the upregulated genes were two key enzymes, Agpat1
and Mogat1, that catalyze TG biosynthesis (18). Microarray analysis
also showed increased expression of several additional genes in this
pathway, including Agpat3, Agpat9, Ppap2a, Ppap2c, and Dgat1, albeit
at a lower significance threshold (P < 0.05) (Supplemental Table 3).
Real-time RT-PCR confirmed the significant upregulation of these
transcripts (Figure 2B). Additionally, Cidec (Fsp27), a lipid droplet-
binding protein that promotes TG accumulation in hepatocytes in
vivo (19), was elevated (Figure 2B). Western blot analysis confirmed
increased protein levels of Agpatl and Ppap2a in microsomal
extracts, without significant alteration of Cyp2el, a microsomal
marker. Agpat3, Agpat9, Cidec, Dgatl, and Mogat1 were elevated in
whole liver extracts (Figure 2C). Collectively, the altered expression
of these genes would be expected to increase TG biosynthesis and
storage in the liver, as observed in LKO/KO mice.

To assess whether miR-122 can indeed regulate the expression
of the aforementioned factors involved in TG metabolism, we
measured their mRNA levels in a mouse hepatoma cell line (Hepa)
after transient overexpression (~40-fold increase) or depletion
(~40% decrease) of miR-122 (Supplemental Figure 3A). Ectopic
miR-122 reduced Agpatl, Agpat3, Agpat9, Dgatl, Cidec, Ppap2a, and
Ppap2c expression, whereas depletion of miR-122 upregulated
these transcripts (Supplemental Figure 3B). Mogatl was not
detectable in these cells (data not shown). Furthermore, reporter
plasmids were constructed with a Renilla luciferase open reading
frame followed by the 3" UTRs of AgpatI or Cidec (harboring 3 and
1 miR-122 binding sites, respectively, as predicted by TargetScan;
ref. 20). miR-122 strongly repressed luciferase expression from the
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Agpat] reporter and, to a lesser extent, from the Cidec reporter (Fig-
ure 2D). Mutations in the putative miR-122 binding sites abro-
gated reporter repression, consistent with the direct targeting of
these transcripts by this miRNA. Finally, knockdown of Agpartl
in hepatocytes isolated from LKO/KO mice reduced TG synthe-
sis, suggesting that Agpatl plays a key role in TG accumulation in
LKO/KO livers (Supplemental Figure 3, C and D).

In addition to genes that regulate lipid metabolism, IPA high-
lighted the abnormal expression of many genes involved in devel-
opment, cellular proliferation and death, and cancer (Supple-
mental Table 2). Many of these dysregulated genes are known to
exhibit altered expression in HCC and, in some cases, function-
ally contribute to hepatocarcinogenesis. Such genes include com-
ponents of insulin-like growth factor 2 (Igf2), Ras, and p-catenin
(Ctnnb1) signaling pathways (Supplemental Figure 4A), as well as
other genes known to play a role in HCC such as Epcam (21), c-Myc
(22), Maprel (23), and Rhoa (24). Real-time RT-PCR validated the
upregulation of several of these transcripts in LKO livers (Figure
2E and Supplemental Table 4), and Western blotting documented
the increased expression of the majority of these proteins in KO
livers (Figure 2F). In addition, miR-122 overexpression or inhi-
bition in Hepa cells resulted in concordant changes in expres-
sion of selected key genes, including H19, Igf2, Ctnnbl, Epcam,
Maprel, Mapkapk2, and c-Myc (Supplemental Figure 4B). Among
these, Maprel was validated as a target of miR-122 using reporter
assays (Figure 2D). In contrast, Igf2 and H19 do not appear to be
directly regulated by miR-122, since comparable upregulation of
both unspliced heterogeneous nuclear RNA (hnRNA) and fully
spliced mRINA was observed for these transcripts (Supplemental
Figure 5A). Although Igf2 and H19 appear to be transcriptionally
upregulated in LKO/KO livers, bisulfite sequencing did not reveal
significant changes in the methylation status of the differentially
methylated region (DMR) located between these two genes (Sup-
plemental Figure 5B). The observed upregulation of these genes in
early adulr life suggested that these mice might be predisposed to
liver cancer as they age.

Recruitment of monocytes and neutrophils to livers of KO mice leads to
inflammation and production of pro-tumorigenic cytokines. Since many
genes involved in cell proliferation and survival were significantly
upregulated in LKO/KO livers, we aged these animals to deter-
mine whether they are tumor prone or exhibit any other adult-
onset pathology. Importantly, aged LKO mice did not exhibit
significant repopulation of the liver with hepatocytes that escape
Cre-mediated deletion, as has been observed in mice with liver-
specific deletion of Dicer (ref. 25 and Supplemental Figure 6). At
6 months of age, LKO/KO mice developed steatohepatitis (Figure
3, A-D), with visible foci of altered hepatocytes (inset, Figure 3A).
Trichrome staining revealed bridging fibrosis. Like younger LKO
mice, 6-month-old KO mice exhibited increased hepatic TG lev-
els without a significant change in hepatic cholesterol after over-
night fasting (Figure 3E). A significant increase in serum ALP and
y-glutamyl transpeptidase (GGT) levels, consistent with hepatobi-
liary disease, was observed (Supplemental Table 5).

Inflammation is a major factor contributing to malignant
transformation in HCC and other tumor types (26). In particular,
the inflammatory cytokines IL-6 and TNF-a have been shown to
promote HCC development (27). We therefore characterized the
immune cells that infiltrate hepatic parenchyma in Mir122-KO
mice and the cytokines they produce. Consistent with the histolog-
ic appearance of LKO/KO livers (Figure 3), direct quantification of
Volume 122 Number 8
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Mir122-LKO and -KO mice develop hepatitis and fibrosis with age. (A and C) Portal inflammation, steatosis, and fibrosis in 6-month-old LKO (A)
and KO (C) mice. The inset in A depicts foci of altered hepatocytes as observed in some livers. Eight to 10 mice of each genotype were analyzed
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200 um; middle row, 25 um; bottom row, 100 um. (B and D) Inflammation, steatosis, and fibrosis scores generated through blinded evaluation of
histopathology. (E) Hepatic TG and cholesterol levels in 6-month-old mice. The results shown in B-D are mean + SD. Statistical significance was

calculated using a 2-tailed t test.

infiltrating inflammatory cells revealed a 2-fold increase in the liv-
ers of KO mice (Figure 4A). Flow cytometry documented that the
hepatic population of CD11bMGr1* cells, previously classified as
monocytes and neutrophils (28), was greater than 3-fold higher
in 10-month-old KO mice than in controls (Figure 4, B and C).
Intracellular flow cytometry demonstrated that CD11b"Gr1*
cells from KO livers produced a high level of IL-6 (Figure 4D) and
TNF-a (Supplemental Figure 7A).

In settings of chronic liver injury, the myeloid chemoattractant
Cel2 is induced in hepatocytes and other liver-resident cells (29)
and is an important driver of hepatic inflammation (30). In LKO/
KO mice, the fraction of intrahepatic CD11bMGr1* cells express-
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ing Ccr2, the Ccl2 receptor, was much greater than the fraction
of CD11bMGr1* cells expressing Ccr2 in peripheral blood (Sup-
plemental Figure 7B). We therefore hypothesized that activation
of the Ccl2/Ccr2 axis in LKO/KO mice leads to recruitment of
CD11bMGr1* cells, causing hepatic inflammation and injury.
Indeed, microarray analysis of mRNA from 5-week-old KO liv-
ers showed a greater than 3-fold (P = 0.0003) increase in expres-
sion of Ccl2 (data not shown), which was confirmed by real-time
RT-PCR in LKO/KO livers (Figure 4E) and cultured hepatocytes
(Supplemental Figure 7C). Ectopic miR-122 expression down-
regulated Cc/2 in LKO/KO hepatocytes (Figure 4, F and G) and
in Hepa cells (Figure 4, H and I), whereas depletion of miR-122
Volume 122
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old non-tumor-bearing LKO/KO mice. Flow cytometric data for 1 representative pair of
mice (B) and summary data for 3 mice (C) are shown. (D) Intracellular flow cytometric
analysis indicates that CD11b"Gr1+ cells but not lymphocytes from the liver express
IL-6. (E) Real-time RT-PCR analysis of Ccl2 expression in LKO (10-week-old) and KO
(5-week-old) livers compared with age-matched controls. (F and G) Cc/2 expression
(F) is reduced in LKO/KO hepatocytes (isolated from 2 LKO mice and 1 KO mouse)
upon overexpression of miR-122 (G). NC-S, scrambled negative control. (H and I)
Ccl2 (H) or Mir122 (l) expression in Hepa cells transfected with miR-122 mimic versus
control (NC-S) or anti-miR-122 (miR-122-AS) versus control (NC-AS). (J) Induction
of spliced Cc/l2 mRNA and unspliced Cc/2 hnRNA in KO livers (paired t test). (K)
Predicted miR-122 binding site in the 3’ UTR of Cc/2 and corresponding mutant site.
(L) Luciferase reporter assays as described in Figure 2D. Results are mean + SD.
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Mir122-LKO/KO mice develop spontaneous HCC with age. (A) Representative photographs of liver and lung tumors that developed in LKO/KO
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ing the lung tumor as metastatic HCC. Scale bars: lower left panel, 25 um; left inset, 35 um; right inset, 25 um. (B) Analysis of serum markers of
liver function in control and tumor-bearing LKO/KO mice represented as mean + SEM. P values were calculated using the Welch's test after log
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P values were calculated using 2-tailed ¢ test. (D) Heat map and dendrogram showing that the expression levels of genes that are dysregulated
in tumors from LKO/KO mice are sufficient to classify human HCCs into high— and low—miR-122—expressing subsets. Significance of this clas-
sification was assessed by using a bootstrap method.
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Table 2
Summary of the incidence and characteristics of the tumors that
developed in 12- to 17-month-old LKO mice

Control Mir122-LKO
Mice examined 27 (15M,12F) 46 (26 M, 20 F)
Mice with HCC 0 15 (13 M, 2 F)
HCC grade 1 0 2(2M,0F)
HCC grade 2 0 7(7TM,0F)
HCC grade 3 0 6(4M,2F)
Tumor size (mm?) 0 219.9+197.4
Tumor number 0 2.69 +3.11
Total tumor weight (g) 0 2.98 +3.43
Largest tumor weight (g) 0 1.48+£1.23

Mice between 12 and 17 months of age were randomly selected for
examination. HCC grading was based on Edmondson and Steiner’s
grading system (52). All measurements of tumors are presented as

mean + SD. M, male; F, female.

increased Ccl2 levels (Figure 4, H and I). Moreover, in KO livers,
Ccl2 mRNA levels increased more than unspliced hnRNA levels
(Figure 4]), consistent with both transcriptional and post-tran-
scriptional mechanisms contributing to Ccl2 upregulation. The
RNA22 algorithm (31) identified a potential miR-122 binding
site in the 3" UTR of Ccl2 (Figure 4K). Upon inhibition of miR-
122 in Hepa cells, a Ccl2 3" UTR reporter construct produced a
moderate but significant increase in luciferase activity, whereas
a reporter with a mutation in the miR-122 binding site was not
affected by miR-122 inhibition (Figure 4L). These data supporta
model whereby Ccl2 is induced in miR-122-deficient livers both
directly through the targeting of this transcript by miR-122 and
indirectly as a response to the underlying hepatocyte injury pres-
ent in these animals. The resulting recruitment of CD11bMGr1*
cells leads to the production of proinflammatory and tumor-
promoting cytokines including IL-6 and TNF-q, initiating a
well-described pathogenic sequence that would be expected to
predispose to HCC (27).

LKO and KO mice develop HCC with age. Consistent with the
upregulation of oncogenic pathways (Figure 2) and the infiltra-
tion of liver with inflammatory cells that produce proinflamma-
tory cytokines (Figure 4), both LKO and KO mice developed mod-
erately to poorly differentiated Afp-positive HCCs with age (Figure
SA). Thirteen of 26 male LKO mice developed spontaneous liver
tumors (1-12 macroscopic tumors observed per animal), whereas 2
of 20 female LKO mice developed HCC in 12-17 months (Table 2).
In contrast, both male (10 of 20) and female (9 of 19) KO mice
developed HCCs with approximately equal penetrance after 11-15
months (Table 3). However, the average tumor weight and grade
were significantly higher in male compared with female KO mice
(Table 4). Two of 6 heterozygous LKO and 1 of 20 heterozygous
KO mice also developed HCC at 20 and 5 months of age, respec-
tively (data not shown). Among the tumor-bearing mice, 3 were
also found to have lung metastases (Figure SA). Tumorigenesis in
these animals was associated with liver damage, as demonstrated
by a dramatic increase in serum ALT, ALP, bile acid, and GGT lev-
els (Figure 5B). Serum IL-6 was significantly increased in tumor-
bearing male but not female LKO/KO mice (Figure 5C), which cor-
related with greater tumor incidence in male LKO mice and higher
tumor burden and tumor grade in the male KO mice.
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We next analyzed gene expression in the tumors that arose in
Mir122-LKO/KO mice. As we observed in normal liver, motifs
complementary to the miR-122 seed sequence were significantly
enriched in the 3’ UTRs of upregulated transcripts (Supplemen-
tal Figure 8). Additionally, we compared gene expression in LKO/
KO tumors with a previously reported analysis of gene expression
in human HCCs with high and low miR-122 expression (32). A
moderated ¢ test was used to obtain a list of 29 upregulated genes
and 51 downregulated genes in LKO/KO tumors, which was suf-
ficient to stratify the human tumor samples into high- and low-
miR-122-expressing clusters (P = 0.046) (Figure SD). Thus, loss of
miR-122 results in similar effects on the expression of these genes
in human and mouse tumors.

AAV-mediated delivery of miR-122 suppresses tumorigenesis in tet-o-
MYC;LAP-tTA mice. In order to determine whether miR-122 per-
forms a tumor suppressor function that is independent of its role
in preventing liver injury and inflammation, we directly tested the
anti-tumorigenic activity of miR-122 in a non-inflammatory mouse
model of HCC. Bi-transgenic mice harboring a tetracycline-repres-
sible (tet-repressible) MYC transgene (tet-o-MYC) and a transgene
that produces the tet transactivator protein (tTA) driven by the liver
activator promoter (LAP) develop tumors resembling HCC with
complete penetrance without preceding liver damage or inflam-
mation (33). Notably, miR-122 levels were dramatically reduced in
tumors from tet-0-MYC;LAP-tTA mice compared with normal liver
from tet-o-MYC littermates (which lack the LAP-tTA transgene and
therefore exogenous MYC expression) (Figure 6A). miR-122 levels
were not reduced in normal liver tissue in tet-o-MYC;LAP-tTA mice,
where Myc expression is only minimally increased (34).

In order to assess whether miR-122 downregulation is necessary
for tumor progression in tet-o-MYC;LAP-tTA mice, we utilized a
previously described self-complementary adeno-associated virus
(scAAV) vector system (35) to deliver this miRNA to livers of these
animals (scAAV.miR122.eGFP; Supplemental Figure 9A). Transfec-
tion studies established that the vector produces robust miR-122
expression (Supplemental Figure 9B). For in vivo delivery, vectors
were packaged with the AAVS serotype, and 1 x 10'2 vector genomes
were administered per animal, a dose that we have shown previously
to transduce greater than 90% of hepatocytes (35). At this dose,
scAAV8.miR122.eGFP produces a level of miR-122 that is very simi-
lar to endogenous levels, as revealed by administration of the virus
to Mir122-KO mice (Supplemental Figure 9C). As negative control,
a vector lacking a miRNA (scAAV.eGFP) or a vector expressing a
synthetic miRNA targeting firefly luciferase expressed from a miR-
30 backbone as previously described (36) (scAAV.shLuc.eGFP) was

Table 3
Summary of the incidence and characteristics of the tumors that
developed in 10- to 15-month-old KO mice

Control Mir122-KO
Mice examined 24 (12 M, 12 F) 39 (20 M, 19F)
Mice with tumor 0 19 (10 M, 9F)
Tumor size (mm?2) 0 146.2 + 971
Tumor number 0 2.55 +2.11
Total tumor weight (g) 0 1.63+1.12
Largest tumor weight (g) 0 1.15£0.78

Mice between 10 and 15 months of age were randomly selected for
examination. All measurements of tumors are presented as mean + SD.
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Table 4
Summary of the tumor grades and characteristics of HCC that
developed in 10- to 15-month-old male and female KO mice

Mir122-K0 male  Mir122-KO0 female

HCC incidence 10/20 9/19
HCC grade 1 3 6
HCC grade 2 6 2

HCC grade 3 1 1
Tumor size >50 mm? 8/10 5/9
Tumor number 2.50£1.38 2.89 £2.52
Total tumor weight (g) 2.02+1.03 1.20 +0.88
Largest tumor weight (g) 1.37 £ 0.64 0.91+0.78

Mice between 10 and 15 months of age were randomly selected for
examination. HCC grading was based on Edmondson and Steiner’s
grading system (52). HCC incidence is presented as the number of
HCC-bearing mice divided by the total number of examined mice. All
measurements of tumors are presented as mean + SD.

utilized. For experiments in tet-o-MYC;LAP-tTA mice, MYC expres-
sion was induced at 4 weeks of age, and virus was administered
at 11 weeks of age, a time point at which multiple macroscopic
tumors are typically present in each animal (35). At 14 weeks of age,
animals were sacrificed, and tumor burden was assessed (Figure 6,
B-D). As expected, mice that received the control scAAV8.eGFP or
scAAV8.shLuc.eGFP vectors were characterized by extensive tumor
progression (scAAV8.eGFP median tumor burden, 40.0%; scAAVS.
shLuc.eGFP median tumor burden, 53.5%). In contrast, tumor
burden was strongly reduced in mice that received scAAV.miR122.
eGFP (median tumor burden, 7.7%). These results support a tumor
suppressor function for miR-122 that is independent of its role in
preventing hepatic injury and inflammation.

To investigate the cellular mechanisms of miR-122-mediated
tumor suppression, we examined tumors S days after virus admin-
istration. Tumor cell proliferation was reduced, as indicated by
Ki-67 staining in scAAV8.miR122.eGFP-treated animals com-
pared with scAAV8.eGFP-treated animals, whereas no difference in
tumor cell apoptosis was observed (Supplemental Figure 9, D-F).
Since large tumors in this model are relatively resistant to AAV-
mediated transduction, it is likely that the phenotypic effects of
AAV-delivered miR-122 are even more pronounced in microscopic
tumor foci, which are not assayable at this time point, yet ulti-
mately contribute to terminal tumor burden.

Discussion

In this study, we investigated the biologic function of miR-122
through the generation and characterization of mice with liver-
specific (LKO) and germline (KO) deletion of this miRNA locus.
Analysis of these mice revealed that loss of miR-122 does not lead
to overt defects in liver development. This finding suggests thata
previously described positive feedback loop involving hepatocyte
nuclear factor 6 (HNF6) and miR-122 that has been proposed to
regulate hepatocyte differentiation (37) is not required for grossly
normal liver development. Furthermore, HNF6 expression was
unaltered at the RNA or protein level in adult LKO and KO mice
(data not shown). While this suggests that endogenous miR-122
does not regulate HNF6 expression in adults, it remains possible
that HNFG is controlled by this miRNA during embryogenesis
and HNF6-miR-122 reciprocal regulation influences the kinet-
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ics of hepatocyte differentiation in a manner that is no longer
evident at birth.

Transient inhibition of miR-122 using antisense oligonucle-
otides is well tolerated in adult mice and results in reduced serum
cholesterol (2). While genetic deletion of miR-122 also lowers
serum cholesterol, our study revealed that prolonged loss of
function of this miRNA leads to accumulation of hepatic TGs in
young mice. This abnormality is associated with the upregulation
of several gene products that catalyze TG biosynthesis and stor-
age, including the newly identified direct miR-122 targets Agpat1
and Cidec. As Mir122-LKO/KO mice aged, hepatic inflammation
ensued, preceding the progressive onset of fibrosis and, eventually,
tumors resembling HCC. Although a tumor suppressor role for
miR-122 has previously been proposed based on in vitro studies
and expression analyses of human HCC samples, these findings
provide the first in vivo evidence to our knowledge that loss of
this miRNA is sufficient to initiate highly penetrant HCC devel-
opment. It is well established that liver damage and inflammation
potently promote the development of HCC, and, in humans, this
tumor type nearly always arises in the setting of underlying liver
injury (26). Thus, chronic steatohepatitis in Mir122-LKO/KO mice
is an important component of the pathology that leads to HCC
in these animals (38). In addition, upregulation of the chemokine
Ccl2, both directly through loss of targeting by miR-122 and indi-
rectly as a consequence of liver injury, resulted in the intrahepatic
recruitment of CD11b"Gr1* inflammatory cells that locally pro-
duce pro-tumorigenic cytokines including IL-6 and TNF-o.

The importance of underlying inflammation in HCC develop-
ment in these mice is further highlighted by the greater tumor
incidence and higher tumor burden and grade in male LKO and
KO mice, respectively. In humans, HCC exhibits a similar sex bias,
with 2- to 4-fold greater incidence in males (7). This bias is believed
to be partially attributable to the greater susceptibility of males
to injury-induced hepatic inflammation and hepatocyte prolifera-
tion mediated by IL-6, whose production is suppressed by estro-
gens in females (39). Indeed, circulating IL-6 is increased in tumor-
bearing male, but not female, LKO/KO mice, likely contributing
to the increased severity of hepatocarcinogenesis in male mice in
these animals. Nevertheless, it will be important for future studies
to examine the contribution of additional factors that are known
to play a role in sexual dimorphism of HCC, such as Foxal/a2 (40),
in the phenotype of miR-122-deficient animals.

The ability of miR-122 to suppress tumorigenesis when delivered
to a non-inflammatory MYC-driven HCC model establishes that
this miRNA performs a tumor suppressor function that is inde-
pendent of its role in reducing inflammation and maintaining
hepatocyte integrity. This activity is likely mediated by the ability of
miR-122 to directly and indirectly control a broad program of gene
expression, which includes key factors that influence HCC patho-
genesis such as Igf2, Ctnnb1, Cendl, c-Myc, Epcam, Maprel, Iggap1, and
Rboa. miR-122 also appears to be essential for maintenance of the
mature hepatocyte gene expression program as manifested by the
reactivation of fetal genes including Afp, H19, and Igf2 in LKO/KO
mice. In the setting of tonically increased signaling through canon-
ical oncogenic pathways, the expansion of immature hepatocytes
in an inflammatory microenvironment likely results in a state
of highly increased susceptibility to cellular transformation and
tumorigenesis. It is also noteworthy that the cancer phenotype is
more severe in germline Mir122-KO mice compared with those with
liver-specific deletion of the miRNA. While this may simply reflect
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Number8  August 2012



research article

A tet-o-MYC  tet-o-MYC,LAP-tTA B AAV delivery  Assess tumor
N N T T N N Dox off (1 x 10" vg) burden
miR-122 ‘ . . ! l 1
. [ —— e S —
' 0 4 1 14
RNA-Lys 4k # & & & & Age (wk)
1.03 097 010 004 090 0.86
C P<0.01 D scAAV8.eGFP scAAV8.shLuc SCAAVB.miR-122
' P<0.01
801
70
60+
g
= 501
@
B
S 404
=]
g 301
=
'—
20+
10+
SCAAVB.eGFP  SCAAVB.shLuc  SCAAVS.miR-122
(n=10) (n=6) (n=10)
Figure 6

AAV-mediated delivery of miR-122 impedes liver tumor growth in tet-o-MYC;LAP-tTA mice. (A) Northern blot showing miR-122 expression in
normal liver (N) or tumor (T) from mice of the indicated genotypes. The normalized miR-122 level is presented below each lane. (B) Time line of
miR-122 delivery experiment. Dox, doxycycline; vg, vector genomes. (C) Gross tumor burden of livers from control-treated and miR-122-treated
animals, as determined by quantification of tumor area using the ImageJ software package (http://rsbweb.nih.gov/ij/). Each box represents the
range of tumor burden observed. The ends of the boxes represent the 25th and 75th percentiles, the bars indicate the 10th and 90th percentiles,
and horizontal lines within the boxes represent the median. (D) Representative images of livers from control-treated or miR-122—treated animals.

the earlier and more uniform Mir122 deletion in KO mice, another
intriguing possibility is that a non-hepatocyte function of miR-122
might contribute to the more severe phenotype. Indeed, low-level
expression of miR-122 in fibroblasts has been demonstrated (41).

Beyond contributing to our understanding of the physiologic
functions of miR-122, the findings reported herein have important
therapeutic implications. First, our results demonstrate that deliv-
ery of miR-122 using AAV is sufficient to suppress tumor progres-
sion in a highly aggressive HCC model. We have previously reported
similar results using miR-26a, another miRNA that is frequently
downregulated in human HCC (35). Both of these miRNAs, there-
fore, represent promising candidates for miRNA replacement
therapy in patients with this tumor type. Additionally, since miR-
122 is downregulated in NASH (9), the efficacy of miR-122 delivery
for reducing progression to cirrhosis and HCC in relevant animal
models of this disease is worthy of investigation. However, given the
essential role of miR-122 in HCV replication (4) the treatment of
HCC or other liver diseases arising in the context of HCV infection
would not be an appropriate setting for miR-122 delivery.

Finally, miR-122 inhibition therapy using an LNA-modified
antisense oligonucleotide, SPC3639, is currently in phase II clini-
cal trials for the treatment of HCV infection (5). Treatment of HCV-
infected chimpanzees with SPC3639 reduced viremia and hepatitis
without causing any adverse effects during the 12-week period of
the study (5). However, our examination of Mir122-LKO and -KO
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mice has demonstrated that the chronic loss of miR-122 causes
steatohepatitis and altered liver function that ultimately leads to
liver cancer. Multiple explanations may account for the apparent
discrepancy between the phenotypes observed after transient inhi-
bition versus genetic deletion of miR-122. First, the more severe
phenotype in LKO and KO mice might arise due to a developmen-
tal defect resulting from the absence of miR-122 throughout gesta-
tion, or it may result from the effects of complete deletion of the
miRNA as opposed to the partial loss of function achieved with
chemical inhibitors. Alternatively, the development of liver dam-
age and the resulting sequelae might simply require a longer period
of miR-122 depletion beyond that which has been examined using
injected inhibitors. Distinguishing between these possibilities will
be a priority for future research. Nevertheless, the insights gained
through the study of mice lacking miR-122 should aid the design
of safe therapeutic strategies based on miR-122 inhibition.

Methods
Generation of liver-specific (LKO) and germline (KO) Mirl22 knockout mice.
Mir122 conditional knockout (Mir122x/xF or floxed) mice were generated
as depicted in Supplemental Figure 1A. Mir122+/%*? littermates served as
controls in all studies. Animals were housed in a Helicobacter-free facility
and were handled and euthanized following institutional guidelines.
Serological, histological, and immunobistochemical analyses. Serum was iso-
lated from mice by cardiac puncture after CO; asphyxiation and cervical
Volume 122 Number 8
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dislocation following overnight fasting. Biochemical analysis of enzymes
and lipids in the sera was performed at the Ohio State University Com-
parative Pathology and Mouse Phenotyping Shared Resource using VetAce
(Alfa Wassermann system).

For histology, tissues were fixed in 4% paraformadehyde and frozen in
O.C.T. or embedded in paraffin. H&E, Oil Red O, PAS, and Masson’s tri-
chrome staining of liver sections were performed as described previously
(25, 42). For immunohistochemical analysis, the slides were dewaxed and
subjected to antigen retrieval at 95°C for 30 minutes, followed by incu-
bation with the antibodies and color development by the DAB method.
CK-19 (43) and A6 (44) antibodies were provided by Joshua Friedman
(University of Pennsylvania School of Medicine, Children’s Hospital of
Philadelphia Research Institute, Philadelphia, Pennsylvania, USA) and
Valentina Factor (Center for Cancer Research, National Cancer Institute,
NIH, Bethesda, Maryland, USA), respectively.

H&E-stained sections (x100 magnification) were analyzed for inflam-
mation and steatosis according to the following scoring system: (a) for
inflammation: 0, no inflammation; 1, mild lymphocytic infiltration in the
portal triad; 2, severe lymphocytic infiltration in portal triad; 3, extended
infiltration of lymphocytes throughout liver; (b) for steatosis: 0, no steato-
sis; 1, microsteatosis; 2, microsteatosis and mild macrosteatosis; 3, severe
macrosteatosis. All scoring was performed by two pathologists blinded to
the experimental protocol.

TEM. For TEM, animals were perfused through the portal vein with 2.5%
glutaraldehyde. The liver was postfixed in 2% OsO,, embedded in resin,
and sectioned. After locating the periportal area in thick (1 um) toluidine
blue (EMS), thin (<90 nm) sections were cut on an ultramicrotome (Leica
UC6) and were post-stained with uranyl acetate. Electron micrographs
were taken using an FEI Philips Tecnai T-12.

Liver lipid analysis. Total hepatic lipid was purified and analyzed as
described previously (45).

Measurement of bepatic TG synthesis. The in vivo TG synthesis rate was
determined by measuring 3H;-glycerol incorporation into hepatic TGs fol-
lowing a published protocol (46, 47).

Hepatic TG secretion. After overnight fasting, mice were injected via the
tail vein with Triton WR-1339 (Sigma-Aldrich) (48), a lipoprotein lipase
inhibitor. Blood was collected from the tail vein, and the serum TG levels
were measured at 0, 1, and 3 hours after injection.

Microarray analysis of liver RNA. Total RNA from the livers of male mice was
isolated using TRIzol (Invitrogen) and purified using RNeasy Mini columns
(QIAGEN), and the integrity and quantity of the RNA were assessed using
an Agilent Bioanalyzer and Nanodrop RNA 6000, respectively. Total RNA
was labeled using the Affymetrix Whole Transcript Sense Target Labeling
kit and hybridized to the Affymetrix Mouse Exon 1.0 ST array following the
manufacturer’s protocol at the Microarray Shared Resource Facility, Ohio
State University Comprehensive Cancer Center. The microarray data were
deposited in the GEO database (GSE20610). Microarray data analysis meth-
odology is described in Supplemental Methods.

Real-time RT-PCR analysis. Real-time RT-PCR analysis of mRNAs was
performed using SYBR Green chemistry. Relative expression was calcu-
lated using the AACt method (49). The primer sequences are provided
in Supplemental Methods.

Western blot analysis. Mouse liver microsomes were purified according
to a published protocol (50). Whole tissue or microsomal extracts were
prepared as described previously (49) and subjected to Western blot analy-
sis with specific antibodies using the suppliet’s protocol. The signal was
detected using an ECL Western blotting reagent (Pierce). Details regarding
the antibodies used are provided in Supplemental Materials.

Microarray analysis of the tumor RNA. Agilent 4X44 platform was used to
assess gene expression in liver tumors from 4 LKO and 4 KO mice and in
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normal liver from age-matched control mice according to the manufactur-
er’s protocol. Further details are provided in Supplemental Methods. The
microarray data have been deposited in the GEO database (GSE31731).

Flow cytometric analysis. Flow cytometric analysis of liver immune cells was
performed as described previously (51). The following antibodies reactive
with murine cells were obtained from BD: Gr-1 (RB6-8¢5), CD11b (M1/70),
CD3 (145-2C11), CD19 (1D3), NK1.1 (PK136), IL-6 (MP5-20F3), and TNF-a.
(MP6-XT22). CCR2 mAD (clone 475301) was purchased from R&D Systems.

Plasmid construction and AAV packaging. The scAAV.miR122.eGFP vector
was constructed by amplifying Mir122 and approximately 200 bp of flank-
ing sequence from human genomic DNA (primers provided in Supple-
mental Methods) and ligating this fragment into the Fsel site of the pre-
viously described scAAV.EF1a.eGFP backbone (35). An shRNA targeting
firefly luciferase in a miR-30 backbone (sequence provided in Supplemen-
tal Methods) was synthesized by GenScript and cloned into the Fsel site
of scAAV.EF10.eGFP to produce scAAV.shLuc.eGFP. Packaging with the
AAVS serotype was performed as described previously (35).

Statistics. The significances of all results were determined using Student’s
unpaired, 2-tailed ¢ test except the analysis of serum marker of liver func-
tions in tumor-bearing mice (Figure SB), for which Welch’s test after log
transformation of the data was used. All results are presented as mean
(horizontal lines or rectangular bars) and SD, except the measurements of
serum marker of liver functions (Figure 5B) and IL-6 (Figure 5C) in tumor-
bearing mice. P values less than 0.05 were considered significant.

Study approval. All animal studies were reviewed and approved by the Ohio

State University Institutional Laboratory Animal Care and Use Committee.
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