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The hallmark t(14;18)(q32;q21) in follicular lymphoma (FL) results in constitutive overexpression of the BCL2 pro-
tein, allowing B cells to abrogate the default germinal center apoptotic program. Most tumors are characterized by 
recurrent secondary genetic alterations including genomic gains, losses, and mutations, some providing a growth 
advantage, including alterations in MLL2, EPHA7, TNFRSF14, and EZH2. The sequence in which these events occur 
and how they contribute to progression and ultimately to transformation is unclear. Lastly, crosstalk between neo-
plastic B cells and non-neoplastic immune and stromal cells in the microenvironment plays an important role in 
sustaining tumor cell growth, cultivating immune privilege, and promoting transformation.

Introduction
Follicular lymphoma (FL) is the second most common nodal lym-
phoma and occurs at a median age of 60 years (1, 2). Despite the 
fact that most patients present with disseminated disease at diag-
nosis and FL is generally considered incurable, it is the prototype of 
indolent lymphomas and, as such, is characterized by slow progres-
sion and high response rates to therapy. As a result, median over-
all survival times reach 10 years or more with current therapies (3). 
Nonetheless, most patients eventually develop increasingly resistant 
disease over time, and in up to 45% of cases, with a risk of 3% per 
year, the original indolent lymphoma transforms into an aggressive 
subtype, an event that is associated with poor outcome (4–6).

Current treatment strategies include radiation for limited-stage 
patients and monoclonal anti-CD20 antibodies (e.g., rituximab), 
alone or in combination with chemotherapy, for patients that 
present with advanced-stage disease (7). Asymptomatic and/or 
low-tumor-burden patients may be observed under a “watch and 
wait” approach (7). The introduction of rituximab has markedly 
improved outcomes and was the first drug to show an improvement 
in overall survival in FL in many years (8–10). Rituximab mainte-
nance or consolidation with radio-immunotherapy after first-line 
therapy has further shown clear benefit for progression-free survival 
and potentially for overall survival (11–14). More aggressive treat-
ment approaches with high-dose chemotherapy and autologous or 
allogeneic stem cell transplantation are reserved for more resistant 
disease in patients with good performance status (7).

Here we focus on the pathogenesis of FL and highlight recent 
advances in our understanding of the origin of FL, the frequent 
highly recurrent genetic alterations as well as the perturbations of 
the FL-associated microenvironment.

Pathology
Morphologically, FL is defined as a proliferation of malignant 
germinal center B cells (GCBs) that are admixed with nonmalig-
nant cells such as T cells, follicular dendritic cells (FDCs), and 
macrophages and whose normal counterparts, i.e., centrocytes 
and centroblasts, represent the predominant cell types of the 
germinal center reaction (15). The relative proportion of centro-
cytes to centroblasts underlies the current grading scheme with, 
at its extremes, grade 1 FL comprising low numbers of centro-
blasts (0–5 per high-power field) and grade 3B FL marked by 

solid sheets of these same cells. Unlike many other malignan-
cies, however, grading of FL does not provide a clear prognostic 
impact, nor is there a consensus on the nature of grade 3B FL, as 
these cases often resemble de novo diffuse large B cell lymphoma 
(DLBCL) and harbor somewhat different molecular character-
istics than grades 1–3A FL (e.g., grade 3B FL is often negative 
for t(14;18) and variably expresses CD10) (16). The classical fol-
licular growth pattern of FL can be revealed by staining for FDC 
markers such as CD21 or CD23. The t(14;18)(q32;q21) transloca-
tion can be detected by fluorescence in situ hybridization in 85% 
of all cases, results in overexpression of anti-apoptotic BCL2, and 
is considered a molecular hallmark of the disease. Nonetheless, 
this translocation is neither necessary nor sufficient for diagno-
sis, as it is absent in 15% of FLs and present in about 20%–30% of 
GCB-type DLBCLs (15, 17).

Cell of origin
The observations that the neoplastic cells are organized in follicles, 
express germinal center surface markers such as BCL6 and CD10, 
and have a characteristic gene expression profile of centrocytes 
and/or centroblasts (15, 18) all suggest that FL B cells are able to 
achieve a stage of differentiation reminiscent of GCB cells (19). 
The first hit of the oncogenic cascade leading to FL is generally 
attributed to the t(14;18), based on the frequency of this genetic 
aberration and its supposed mechanism of action. The translo-
cation occurs following a double-strand break at the IGH locus 
on chromosome 14 attributed to defective RAG-mediated VDJ 
recombination and a break at the BCL2 locus on chromosome 
18 thought to be linked to an inherent fragility at CpG sites (20, 
21). As VDJ recombination occurs at an early B cell developmen-
tal stage in the bone marrow, the t(14;18) as a first genetic hit is 
similarly believed to occur in the bone marrow but not to prevent 
further differentiation. Naive B cells carrying the t(14;18) exit the 
bone marrow and colonize secondary lymphoid tissue, where they 
undergo the germinal center reaction but have a survival advan-
tage due to their constitutive expression of BCL2, which is not nor-
mally expressed in the germinal center (22). BCL2 may also rescue 
these cells from apoptosis due to weak B cell receptor (BCR) affin-
ity (22). Nonetheless, the expression of a structurally and likely 
functionally preserved BCR seems crucial as, despite ongoing 
somatic hypermutation, a selective bias against deleterious muta-
tions in BCR is observed (23, 24). BCR signaling may be further 
stimulated by the interaction of mannosylated immunoglobulin 
variable regions with lectins expressed on the surface of non-neo-
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plastic immune cells (25). The early FL progenitors then acquire 
secondary genetic alterations under the influence of activation-
induced cytidine deaminase (AID), the importance of which has 
been suggested in a mouse model in which genetic deletion of AID 
prevented BCL6-driven germinal center–derived lymphomas (26).

This current hypothesis of FL pathogenesis recognizes naive 
t(14;18)-positive circulating B cells as potentially tumor-initiating 
cells but is challenged by the observation that similar cells can be 
detected in the blood of 50%–70% of healthy individuals who are 
not prone to developing FL (27–29). Interestingly, both the inci-
dence of FL and the frequency of t(14;18)-positive cells in healthy 
individuals increases with age (29). Importantly, recent stud-
ies have shown that most of these cells are not naive B cells, but 
instead are germinal center–educated IgD+CD27+ (or IgM+CD27+) 
memory cells (30, 31). Similar to true FL tumor cells, these so-
called FL-like cells in healthy individuals frequently show evi-
dence of class-switch recombination of the translocated IGH allele, 
whereas the functional allele encodes a surface IgD (or IgM). The 
role of these FL-like cells in the pathogenesis of FL remains elusive. 
Nonetheless, precursor lymphoma-initiating cells must exist, as 
illustrated by two reports of FL arising in both the donor and the 
recipient after allogeneic hematopoietic stem cell transplantation 
(32, 33). In the most recent of these studies, the t(14;18) was ret-
rospectively detected in the donor lymphocyte infusion, together 
with a low abundance of mutated alleles matching 14 of the 15 
gene mutations that were shared between the tumors from the 
donor and the recipient (33). This case report provides evidence 
that the obligate lymphoma progenitor has far more complex 
genetic alterations than previously assumed.

Our understanding of the origin of FL is further complicated by 
the recognition of a loosely defined entity called FL in situ, which 
has been proposed as a true precursor lesion on the basis of rela-
tively uncommon progression to overt FL (34, 35). However, this 
hypothesis will require the collection of a larger series of patients 
to gain insight into the natural history of FL in situ and to clearly 
delineate it from very early stage, incidentally detected FL and 
lymph nodes with partial involvement.

Genetic landscape of FL
The observations that BCL2 has anti-proliferative functions in 
addition to its anti-apoptotic properties (36), and that the t(14;18) 
is found in healthy individuals (27–29), suggest that overexpression 
of BCL2 is insufficient to induce lymphomagenesis. In addition, 
transgenic mouse models of BCL2 overexpression do not faith-
fully recapitulate FL pathogenesis. In the original Eμ-BCL2 model, 
mice developed follicular hyperplasia and, after prolonged laten-
cies, high-grade lymphomas that were clearly not reminiscent of FL 
(37). Subsequently, Egle et al. developed the VavP-BCL2 model, in 
which BCL2 was overexpressed under the control of the pan-hema-
topoietic VavP promoter (38). These mice developed lymphomas 
that shared morphological features with FL but, on the molecu-
lar level, the high expression of the BCL2 transgene in the T cell 
compartment represents an artificial situation that is not found 
in FL (38). Furthermore, the consideration that clonal cytogenetic 
aberrations, copy number alterations, and uniparental disomy are 
almost universally found in FL provides additional support to the 
notion that other genetic events contribute to FL pathogenesis.

Apart from the t(14;18), the most common chromosomal 
aberrations include non-random losses of 1p36 and 6q as well as 
gains of 7, 18, and X (39–42). Recently, careful analysis of candi-
date genes within these regions has yielded insight into potential 
key players. For example, within the 1p36 region that is frequent-
ly targeted by heterozygous deletions and copy-neutral loss of 
heterozygosity, the TNFRSF14 gene was shown to be recurrently 
mutated (43, 44). In two studies, mutations were found in 46 of 
251 cases (18.3%) (43) and in 37 of 81 samples (46%) (44). In both 
reports, 57% of TNFRSF14 mutations were predicted to result 
in a truncated protein devoid of its transmembrane domain, 
resulting in decreased surface expression. TNFRSF14 mutations 
provide the first insight into the link between the genetics of FL 
and the associated microenvironment. However, a multiplicity 
of ligands bind TNFRSF14, and the receptor can transmit both 
inhibitory and stimulatory signals to T cells depending on ligand 
interaction, so further functional studies are clearly warranted to 
elucidate the role of these mutations in FL pathogenesis.

Table 1
Known targets of genetic alterations in FL at diagnosis

Gene Frequency (%) Effect Reference

BCL2 85 BCL2 overexpression by IGH/BCL2 translocation 107
 96 Bystander mutation (SHM)? 108
MLL2 89 Histone modification 47
IGHV, IGLV 79–100 N-glycosylation motifs 25, 77
EPHA7 70 Loss of tumor suppressor (ERK and SRC kinase signaling) 45
BCL6 47 Bystander mutation (SHM)? 109
 6–14 BCL6 overexpression by BCL6 translocation (various partners) 110–112
TNFRSF14 18–46 Unknown 43, 44
CREBBP 33 Histone modification 47, 50
MEF2B 15 Histone modification 47
EP300 9 Histone modification 47, 50
EZH2 7 Oncogenic H3K27me3 51
TNFAIP3/A20 2–26 Loss of tumor suppressor 45, 113, 114
FAS 6 Decreased apoptosis 115
TP53 <5 Loss of tumor suppressor 99, 102, 104

SHM, somatic hypermutation.
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More recently, Oricchio et al. performed a systematic screen of 
genes within commonly deleted regions on the long arm of chro-
mosome 6 (45), motivated by the high frequency of 6q deletions 
in FL as well as their association with adverse outcome (41). This 
screen revealed TNFAIP3/A20, a negative regulator of NF-κB sig-
naling, as well as the receptor tyrosine kinase EPHA7 as potential 
tumor suppressors in FL (45). The authors demonstrated that 
silencing of EPHA7 decreased lymphomagenesis latency in VavP-
BCL2 transgenic mice, and that restoration of its tumor suppres-
sor function through administration of exogenous EPHA7 delayed 

tumor formation in xenograft models. The authors proposed a 
model in which soluble EPHA7 binds EPHA2 on lymphoma cell 
surfaces and prevents activation of signaling through ERK as well 
as other SRC kinases. They further showed that EPHA7 expression 
was absent by immunohistochemistry in 72% of FL cases on a tis-
sue microarray and suggested that absence of protein expression 
occurred through genomic deletions as well as promoter methyla-
tion, corroborating earlier findings from Dawson et al. (46).

High-throughput sequencing technology has increased the 
pace of discoveries in cancer to an unprecedented level. Among 

Figure 1
A model of the microenvironment in FL. Tumor cells are nurtured by a variety of cells (orange) such as FTH cells, FDCs, and follicular reticular 
cells (FRCs). Beneficial signals for growth and survival include cytokines such as IL-4 and IL-21, which bind to interleukin receptors on lymphoma 
cells (IL-4R/IL-21R) or CXCL12 and CXCL13 secreted by stromal cell subsets. BCR signaling occurs through stimulation of the BCR by the 
innate immune system through N-glycans or by specific antigen presentation through professional APCs such as FDCs. Tumor cells subvert the 
antitumor immune response from T helper cells, CTLs, and macrophages (purple). For example, FL cells prevent lysis through CTLs by inducing 
a T cell immunologic synapse dysfunction, or by secretion of IL-12 they induce T cell exhaustion. Immune cell subsets that suppress an efficient 
immunological response against the tumor include Tregs and M2 polarized macrophages (TAMs) (blue). The former are enriched in the FL micro-
environment and dampen the T cell response. FL contributes to the preferential conversion of T helper cells into Tregs by proteins such as TGF-β 
or CCL22. Whereas classically activated TAMs (M1 polarized) control malignant growth through induction of a Th1 response, M2-polarized TAMs 
exert a tumor-promoting function through angiogenesis and induction of an immunosuppressive Th2 response.
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the nodal lymphomas, the mutational landscape has thus far 
been most accurately defined in DLBCL and, to a lesser extent, 
in FL (47–50). Unexpectedly, it was shown that germinal center–
derived lymphomas are characterized by frequent mutations of 
histone-modifying genes. In FL in particular, recurrent mutations 
have been reported in the histone methyltransferases MLL2 (89%) 
and EZH2 (7.2%), the histone acetylases CREBBP (32.6%), EP300 
(8.7%), and MEF2B (15.3%) (refs. 47, 48, 50, 51, and Table 1). The 
high recurrence of these mutations illustrates that FL is likely a 
disease of the epigenome as well as the genome (52). EZH2, the 
best-characterized histone-modifying gene in lymphoma, is the 
catalytic unit of the polycomb repressive complex 2. Mutations of 
Tyr641 within the SET domain of EZH2 have been identified in 7% 
of FLs and 22% of GCB-like DLBCLs, leading to increased histone 
H3 Lys27 trimethylation (H3K27me3) (47, 53, 54). The finding 
that EZH2 is upregulated in B cells during the germinal center 
reaction (55) suggests that activating EZH2 mutations lock in a 
transcriptional profile that favors proliferation. EZH2-mediated 
silencing of anti-proliferative genes was subsequently documented 
in normal centroblasts (56), lending further support to the notion 
that FL subverts the physiological gene expression program of 
GCB cells. Although our knowledge of genetic aberrations in FL 
has dramatically increased over the last few years, further stud-
ies are necessary in order to provide a comprehensive mutational 
landscape of all genetic changes that contribute to tumorigenesis.

Microenvironment
FL histology is marked by a varying proportion of nonmalignant 
immune-related cells. The importance of the microenvironment 
in FL is further highlighted by the fact that researchers have been 
unable to propagate FL cell lines, and even short-term growth in 
vitro requires survival signals derived from either feeder cells or 
cytokines. Several gene expression profiling studies highlighted 
that gene expression signatures derived from non-neoplastic 
immune cells were related to disease behavior (57–61). In the land-

mark study from the Lymphoma/Leukemia Molecular Profiling 
Project (LLMPP), the expression of T cell and macrophage-related 
genes was associated with favorable survival, whereas other mac-
rophage or dendritic cell–derived transcripts were predictive of 
poor outcome (57). Distinct cellular subsets, however, cannot be 
easily attributed to one of these immune-response signatures, as 
illustrated by numerous immunohistochemistry studies that have 
tried to parse out the intricate relationship between non-neoplas-
tic immune cells in FL (58, 62–74). This approach has led to highly 
contradictory results, in part explained by treatment heteroge-
neity within small studies as well as by spurious associations of 
biomarkers with outcome, resulting from a failure to control for 
multiple hypothesis testing.

We conceptualize the role of the microenvironment in FL as 
2-fold, supporting tumor growth and survival, as well as suppress-
ing the antitumoral immune response (Figure 1). FL cells express 
high levels of CXCR4 and CXCR5 and are attracted into follicles by 
cytokines such as CXCL13 that are released by follicular T helper 
(FTH) cells or FDCs (75, 76). As a result of their localization and 
the expression of Fc and complement receptors, FDCs are ideal 
antigen presenting cells, thus contributing to BCR signaling, 
which may also occur through the interaction of N-glycosylation 
motifs and lectins from the innate immune system (25, 77). FTH 
cells engage in cellular interaction with FL through their T cell 
receptor via MHC class II as well as CD40L/CD40. FTH cells are 
enriched in FL biopsies and secrete cytokines such as IL-4, which 
binds to the IL-4 receptor on lymphoma cells and triggers sig-
naling by phosphorylation of ERK and STAT6 (78). The role of 
stromal cells in FL pathogenesis has emerged, as in vitro studies 
have shown that they increase neoplastic B cell survival, contribute 
to monocyte recruitment via the secretion of CCL2, and contrib-
ute to macrophage polarization (79, 80).

In most studies using specimens pre-dating the rituximab 
era, elevated numbers of CD68+ tumor-associated macrophages 
(TAMs) were associated with poor prognosis (57, 62, 67, 72). 

Figure 2
A model of the complex pathways leading to progression and trans-
formation in FL. Evolution occurs through emergence of traits that 
provide a growth advantage under selective pressures such as 
therapy and tumor control by the microenvironment. The circles 
denote hits that drive somatic cells to malignancy. The progenitor 
cell may precede overt FL by many years and in roughly 85% of 
cases harbors a BCL2/IGH rearrangement in addition to putative 
secondary hits. The progenitor disseminates early during the course 
of the disease. Clinical FL develops with the acquisition of further 
genetic alterations and establishment of immune privilege. Relapse 
occurs either by direct clonal evolution from de novo FL or by indirect 
evolution from a common ancestral cell. Transformation is thought to 
develop along similar pathways, but may be dominated by one of a 
number of key genetic alterations.
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These findings are usually interpreted in the light of alternative 
or M2 polarization of macrophages, a phenotype that is associ-
ated with tumor dissemination, immunosuppression, and angio-
genesis (81, 82). Two studies showed that increased microvessel 
density and angiogenic sprouting correlated both with increased 
numbers of macrophages and with poor outcome in FL (83, 84). 
FL B-cells divert the classical activation of the innate immune sys-
tem and subvert the function of the adaptive immune response. 
For example, immune synapses between malignant B cells and T 
cells are defective, although CD8+ CTLs have been shown to local-
ize at the follicle border and enter into contact with tumor cells 
(85, 86). It was also recently shown that IL-12 secretion by malig-
nant B cells induces T cell exhaustion via expression of TIM3 
(87). Moreover, FL cells induce the conversion of effector T cells 
into FOXP3-expressing Tregs, which suppress the proliferation 
and activity of both CD4+CD25– and CD8+ T cells (88–90). Taken 
together, these observations illustrate how the malignant B cells 
dampen the function of various T cell subsets in the FL microen-
vironment in order to escape immunosurveillance.

Complex pathways of progression and transformation
The observation that two-thirds of FL patients present with 
stage III or IV disease at diagnosis may reflect the ability of 
malignant lymphocytes to home to nodal and extranodal sites 
at an early stage during disease initiation (15). In FL, ongoing 
somatic hypermutation enables the tracking of multiple coexist-
ing clones that differ by their mutational load on the variable 
regions of the immunoglobulin locus. The findings from stud-
ies using this approach suggest extensive trafficking of clones 
between adjacent follicles (91, 92) and also that progression 
occurs either by direct clonal evolution or by divergent evolution 
from a supposed common progenitor cell (refs. 32, 93, and Fig-
ure 2). Disease evolution in FL is best understood from a Darwin-
ian perspective, wherein the dominant clone is in constant flux 
and under the selective pressure of survival signals from the lym-
phoma cells themselves as well as their associated microenviron-
ment. This theory helps explain the observed pattern of clinical 
progression and the spontaneous waxing and waning of disease 
in patients in the absence of treatment.

An elegant study using single-cell phospho-flow cytometry 
recently showed that FL samples contain a variable proportion 
of cells with impaired BCR signaling (94). Increased numbers not 
only had a negative prognostic impact but were also associated 
with disease progression. Suppression of BCR signaling was not 
due to loss of BCR expression but rather explained by specific 
suppression of downstream activation. These data support the 
hypothesis that late stages of FL are autonomous and may not rely 
on external signals, including antigen-induced BCR activation.

Over the course of their illness, as many as 45% of FL patients 
develop aggressive disease (4–6). The incidence of transforma-
tion, however, may be underestimated, as up to 63% of patients 
had higher-grade transformation in autopsy series (95). Clinically, 
transformation is usually accompanied by a sudden onset of B 
symptoms (fever, night sweats, and weight loss) and the develop-
ment of extranodal disease and/or rapid tumor growth. In popu-
lation-based studies, the median survival post-transformation has 
been reported to range from 1.2 to 1.7 years (4, 5). The patients 
in these series were not treated initially with rituximab, however, 
and it is currently unclear whether rituximab may decrease the 
incidence of transformation and/or change its prognosis. The 

pathology of transformed FL (TFL) most often resembles DLBCL, 
but other histologies may be observed that overlap Burkitt lym-
phoma and DLBCL (so-called gray-zone lymphomas) (96). TFL 
shares a distinct gene expression profile and immunophenotype 
with the original FL (97). Similar to progression of FL, the process 
of transformation may occur by either direct clonal evolution or 
emergence from an ancestral clone that arises from a supposed 
common progenitor (32).

It is presently unresolved whether TFL occurs through an out-
growth of an existing subclone in the antecedent FL or results 
from random genetic, epigenetic, or microenvironmental hits 
during the clinical course of FL. Multiple studies have examined 
FL and TFL biopsies and provide associations of genetic aberra-
tions with the process of transformation. One of the most com-
monly described findings is upregulation of MYC or its target 
genes, which was reported in 6 of 12 cases in a first series (97) 
and in 14 of 20 cases in a subsequent series (98). Increased activ-
ity of the MYC proto-oncogene by translocations or mutations 
is otherwise rare in FL but can define so-called double-hit lym-
phomas, which harbor both MYC and BCL2 rearrangements and 
are clearly associated with very poor outcome (99). Deregulation 
of MYC is also a key determinant of the pluripotency signature 
that was predictive of transformation when applied to de novo 
FL (100). Other genetic aberrations that have been associated 
with transformation include TP53 mutations (98, 101, 102), 
deletions or silencing of the CDKN2A locus (103), and BCL6 
translocations (104). On the other hand, transformation has 
also been attributed to changes in the tumor microenvironment 
that include the disruption of FDC meshworks (58), increased 
intrafollicular CD4+ T cells (58), a follicular rather than a diffuse 
localization of FOXP3+ Tregs (63), and an increased microvessel 
density (83). However, all the preceding findings are correlative, 
and the key genetic alteration(s) that drive the process of trans-
formation remain elusive.

Conclusions and future directions
FL is a disease of both the tumor genome/epigenome and tumor-
infiltrating cells. While our understanding of the crosstalk 
between tumor and non-tumor cells steadily increases, the most 
significant recent advances undoubtedly stem from the applica-
tion of genomic screens and next-generation sequencing tech-
nology that have revealed that FL is characterized, in addition to 
the t(14;18), by at least two highly recurrent genetic alterations 
present in 70% or more of FL cases (mutational disruption of 
MLL2 and EPHA7 deletion or silencing). The sequence of acqui-
sition of these aberrations is currently unknown and will likely 
be elucidated in the near future by sequencing serial specimens. 
This will also improve our understanding of the events that lead 
to transformation.

Our increasing understanding of the biology of FL is already lead-
ing to novel treatments based on clearly identified molecular tar-
gets. Examples include small-molecule inhibitors that prevent sig-
naling through the BCR by blocking downstream kinases (such as 
spleen tyrosine kinase or Bruton’s tyrosine kinase) or compounds 
that induce apoptosis, thus counteracting the overexpression of 
BCL2 (e.g., ABT-263) (105). It will be of great interest to follow 
the development of EPHA7 as a novel targeted approach in clini-
cal trials. A further potential “druggable” target is EZH2, although 
mutations in its gene occur at a comparatively lower frequency 
than EPHA7 deletions or silencing. The introduction of agents that 
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target the tumor microenvironment will also likely contribute to 
our therapeutic arsenal in the future. Our increasing understand-
ing of the intricate relationship between tumor and immune cell 
subsets is already leading to novel treatment approaches such as in 
situ vaccination or blockade of tumor-promoting signaling such as 
CTLA4-mediated inhibition of T cells by Tregs (106).

Although FL is considered an indolent disease, the ultimate goal 
will be to achieve durable remissions and even cures with minimal 
toxicity, and to reduce the incidence of TFL, a clinically dominant 
event associated with markedly inferior survival.
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