Viruses are leading causes of severe acute lower respiratory infections (LRIs). These infections evoke incomplete immunity, as individuals can be repeatedly reinfected throughout life. We report that acute viral LRI causes rapid pulmonary CD8+ cytotoxic T lymphocyte (TCD8) functional impairment via programmed death–1/programmed death ligand–1 (PD-1/PD-L1) signaling, a pathway previously associated with prolonged antigenic stimulation during chronic infections and cancer. PD-1–mediated TCD8 impairment occurred acutely in mice following infection with human metapneumovirus or influenza virus. Viral antigen was sufficient for PD-1 upregulation, but induction of PD-L1 was required for impairment. During secondary viral infection or epitope-only challenge, memory TCD8 rapidly reexpressed PD-1 and exhibited severe functional impairment. Inhibition of PD-1 signaling using monoclonal antibody blockade prevented TCD8 impairment, reduced viral titers during primary infection, and enhanced protection of immunized mice against challenge infection. Additionally, PD-1 and PD-L1 were upregulated in the lungs of patients with 2009 H1N1 influenza virus, respiratory syncytial virus, or parainfluenza virus infection. These results indicate that PD-1 mediates TCD8 functional impairment during acute viral infection and may contribute to recurrent viral LRIs. Therefore, the PD-1/PD-L1 pathway may represent a therapeutic target in the treatment of respiratory viruses.

Introduction

Human metapneumovirus (HMPV), respiratory syncytial virus (RSV), and influenza A virus (IAV) are leading causes of acute lower respiratory infection (LRI) worldwide, especially in infants, the elderly, and the immunocompromised (1–4). No effective vaccines or therapeutics exist for either HMPV or RSV, and influenza vaccine must be re-administered annually. Despite the frequency of infection with these viruses and minimal antigenic drift of HMPV and RSV, protective immunity is poorly established, as individuals can be repeatedly reinfected throughout life (5–7). An ineffective adaptive immune response might account for this susceptibility, as recent studies have demonstrated that infection of mice with RSV (8–11), IAV (9), or parainfluenza virus 5 (PIV-5) (12) results in impairment of pulmonary CD8+ cytotoxic T lymphocytes (TCD8), cells that normally mediate recovery from LRI by elaboration of cytokines and direct lysis of infected cells (13). Specific mechanisms governing pulmonary TCD8 functional impairment during acute viral LRI remain incompletely defined and represent a potential avenue for therapeutic intervention and design of more effective vaccines.

TCD8 functions are tightly regulated by a variety of stimulatory and inhibitory receptors (14–16). During chronic infections (17–21) and cancer (22–24), programmed death–1 (PD-1) has a well-defined role in mediating TCD8 exhaustion, during which prolonged TCR stimulation by persistent viral or tumor antigens maintains PD-1 expression. PD-L1, a ligand for PD-1, is constitutively expressed by many hematopoietic cells and inducible on most other cell types by proinflammatory cytokines (25–27), including respiratory epithelial cells (27). PD-L1 ligation of PD-1 antagonizes TCR signaling by blocking PI3K/Akt activation, leading to reduced cytokine production, proliferation, and survival (28). Blocking PD-1 ligation restores function to exhausted TCD8 during HIV infection (19, 29), and recent clinical trials indicate that anti–PD-1 monoclonal antibody therapy is safe and at least partially effective against both refractory hematological malignancies (30) and solid tumors (31). Direct modulation of the PD-1/PD-L1 pathway therefore holds significant therapeutic potential.

A role for PD-1 in mediating TCD8 impairment during acute infections is unclear. Mice acutely infected with lymphocytic choriomeningitis virus (LCMV) have functional TCD8 that rapidly downregulate PD-1 in the infected spleen (17, 19), while mice acutely infected with Friend retrovirus have TCD8 that express high levels of PD-1 yet remain cytotoxic (32). In humans during acute hepatitis B virus infection, high TCD8 PD-1 levels correlate with a positive clinical outcome, presumably due to reduced TCD8-mediated liver damage (33). However, during acute hepatitis C virus infection, high PD-1 expression is associated with TCD8 impairment and progression to chronic infection (34). More recent studies have suggested that PD-1 plays an inhibitory role during some acute infections, such as viral central nervous system infection (35, 36), pulmonary fungal infection (37), and bacterial sepsis (38, 39). However, mechanisms governing PD-1 regulation in these settings and the specific impact of PD-1 signaling on TCD8 functional impairment during acute viral infections are unknown.

We hypothesized that viruses causing acute LRI induce PD-1–mediated TCD8 functional impairment in the infected lung, where both viral antigen driving PD-1 upregulation and PD-L1 ligation PD-1 are present. We report that PD-1 signaling rapidly induced pulmonary TCD8 impairment during HMPV and IAV infections. Using in vivo delivery of peptide-loaded DCs to elicit a TCD8 response in the absence of viral replication, we demonstrate that cognate viral antigen is necessary and sufficient to induce PD-1 upregulation, but that infection-induced PD-L1 is also required for TCD8 impairment. Importantly, therapeutic inhibition of PD-1

Conflict of interest: John V. Williams serves on the Scientific Advisory Board of Quidel.

Citation for this article: / Clin Invest. 2012;122(8):2967–2982. doi:10.1172/JCI62860.
ligation using monoclonal antibody blockade prevented impairment and reduced viral titers without exacerbating lung histopathology, though mild airway dysfunction was observed. T cell impairment was more pronounced during secondary infection, as memory TCD8 were severely impaired and expressed more PD-1 than TCD8 during primary infection. PD-1 signaling blockade during challenge infection of immunized mice restored function to pulmonary TCD8 and significantly augmented their protective capacity, resulting in reduced viral titers. Finally, PD-1 and PD-L1 were expressed in the lungs of patients with severe acute viral LRI, suggesting that modulation of the PD-1/PD-L1 pathway could enhance antiviral TCD8 functions in these patients, a population for which limited treatment options currently exist.

Results

HMPV TCD8 epitope mapping in C57BL/6 and HLA-B*0702 transgenic mice. Since previous studies of HMPV disease in small animals utilized BALB/c mice (40, 41) or cotton rats (42), we first characterized HMPV infection of C57BL/6 (B6) mice. Viral titers peaked in the lungs at day 5 after infection, declined at day 7, and were undetectable by day 10 (Figure 1A), consistent with an acute infection (2). Viral genome was still detectable in the lungs up to 6 weeks after infection (Figure 1B). Lower airway histopathology was consistent with peribronchiolitis and perivasculitis (Figure 1C).

To more specifically study the anti-HMPV TCD8 response, we mapped epitopes in B6 mice as well as B6-Kb°Db°B7.2 transgenic (B7tg) mice, which can only recognize TCD8 epitopes restricted by human HLA-B*0702 (43). In B6 mice, 11 epitopes were identified with similar frequencies of IFN-γ–secreting HMPV-immune splenocytes at day 10 after infection (data not shown and Supplemental Figure 1A; supplemental material available online with this article; doi:10.1172/JCI62860DS1). To determine which epitope-specific TCD8 targeted the primary site of HMPV infection, we further screened B6 epitopes in lung lymphocytes and determined that H2-Db/F528–536 (F528) and H2-Kb/N11–19 (N11) resulted in the highest responses (Supplemental Figure 1A). In B7tg mice, 6 TCD8 epitopes were identified (Supplemental Figure 1B and data not shown). HMPV replication kinetics and lung pathology in B7tg mice were similar to those in B6 mice (data not shown).

Pulmonary TCD8 are impaired and upregulate PD-1 during HMPV infection. HMPV-specific TCD8 were quantified using two separate assays performed in parallel: MHC class I tetramer staining enumerates total epitope-specific TCD8 directly ex vivo, while epitope restimulation followed by intracellular cytokine staining (ICS) for IFN-γ, a direct correlate of cytolytic activity (44), and surface staining for CD107a, an indicator of cytotoxic granule release (45), quantifies effector functions (Supplemental Figure 2 shows flow cytometry gating strategies). In the spleen, we observed a high concordance between tetramer staining and CD107a mobi-
lization or IFN-γ production in T\textsubscript{CD8} at all time points (Figure 2, A and B). However, by day 7 after infection, 11.8% of lung-infiltrating T\textsubscript{CD8} were detected with M195 tetramer, while only 3.5% produced IFN-γ or degranulated when restimulated with M195 peptide (Figure 2, C and D). Pulmonary T\textsubscript{CD8} function continued to decline over time, with less than 10% functional by week 6 (Figure 2, D and E). Thus, a large fraction of pulmonary HMPV-specific T\textsubscript{CD8} failed to respond to antigen, and this impairment persisted for several weeks beyond viral clearance.

During chronic infections or cancer, T\textsubscript{CD8} become exhausted with progressive loss of effector functions; these cells lose expression of IL-2, TNF-α, IFN-γ, and CD107a, in that order, followed by clonal deletion (17). To define the extent of impairment during HMPV infection, we quantified other effector functions at the peak of the T\textsubscript{CD8} response. Thirty-six percent of lung-infiltrating T\textsubscript{CD8} expressed granzyme B (GzmB), which were predominantly M195 tetramer+ (Supplemental Figure 3A). While about two-thirds of M195-specific T\textsubscript{CD8} were GzmB+, far fewer produced IFN-γ, and even fewer produced TNF-α or IL-2 (Supplemental Figure 3, B and C). Strikingly, lung M195-specific T\textsubscript{CD8} were more severely impaired during secondary infection, when neutralizing antibody completely blocks viral replication in the lungs (Figure 2E and data not shown). Since M195 epitope-specific cells account for such a high percentage of virus-activated lung T\textsubscript{CD8} during primary and secondary infection, we questioned whether T\textsubscript{CD8} impairment was restricted to the immunodominant response. This was not the case, as subdominant N198-specific T\textsubscript{CD8} were functionally impaired to a similar degree (Figure 2F), as were other epitopes tested (data not shown). Thus, pulmonary HMPV-specific T\textsubscript{CD8} were impaired in multiple key effector functions.

Given the progressive degree of functional impairment observed in pulmonary HMPV-specific T\textsubscript{CD8}, we wondered whether these cells expressed the inhibitory receptor PD-1, a marker of impaired T cells. In naive mice, less than 5% of lung or spleen T\textsubscript{CD8} expressed PD-1, in that order, followed by clonal deletion (17). To define the extent of impairment during HMPV infection, we quantified other effector functions at the peak of the T\textsubscript{CD8} response. Thirty-six percent of lung-infiltrating T\textsubscript{CD8} expressed granzyme B (GzmB), which were predominantly M195 tetramer+ (Supplemental Figure 3A). While about two-thirds of M195-specific T\textsubscript{CD8} were GzmB+, far fewer produced IFN-γ, and even fewer produced TNF-α or IL-2 (Supplemental Figure 3, B and C). Strikingly, lung M195-specific T\textsubscript{CD8} were more severely impaired during secondary infection, when neutralizing antibody completely blocks viral replication in the lungs (Figure 2E and data not shown). Since M195 epitope-specific cells account for such a high percentage of virus-activated lung T\textsubscript{CD8} during primary and secondary infection, we questioned whether T\textsubscript{CD8} impairment was restricted to the immunodominant response. This was not the case, as subdominant N198-specific T\textsubscript{CD8} were functionally impaired to a similar degree (Figure 2F), as were other epitopes tested (data not shown). Thus, pulmonary HMPV-specific T\textsubscript{CD8} were impaired in multiple key effector functions.

During chronic infections or cancer, T\textsubscript{CD8} become exhausted with progressive loss of effector functions; these cells lose expression of IL-2, TNF-α, IFN-γ, and CD107a, in that order, followed by clonal deletion (17). To define the extent of impairment during HMPV infection, we quantified other effector functions at the peak of the T\textsubscript{CD8} response. Thirty-six percent of lung-infiltrating T\textsubscript{CD8} expressed granzyme B (GzmB), which were predominantly M195 tetramer+ (Supplemental Figure 3A). While about two-thirds of M195-specific T\textsubscript{CD8} were GzmB+, far fewer produced IFN-γ, and even fewer produced TNF-α or IL-2 (Supplemental Figure 3, B and C). Strikingly, lung M195-specific T\textsubscript{CD8} were more severely impaired during secondary infection, when neutralizing antibody completely blocks viral replication in the lungs (Figure 2E and data not shown). Since M195 epitope-specific cells account for such a high percentage of virus-activated lung T\textsubscript{CD8} during primary and secondary infection, we questioned whether T\textsubscript{CD8} impairment was restricted to the immunodominant response. This was not the case, as subdominant N198-specific T\textsubscript{CD8} were functionally impaired to a similar degree (Figure 2F), as were other epitopes tested (data not shown). Thus, pulmonary HMPV-specific T\textsubscript{CD8} were impaired in multiple key effector functions.

During chronic infections or cancer, T\textsubscript{CD8} become exhausted with progressive loss of effector functions; these cells lose expression of IL-2, TNF-α, IFN-γ, and CD107a, in that order, followed by clonal deletion (17). To define the extent of impairment during HMPV infection, we quantified other effector functions at the peak of the T\textsubscript{CD8} response. Thirty-six percent of lung-infiltrating T\textsubscript{CD8} expressed granzyme B (GzmB), which were predominantly M195 tetramer+ (Supplemental Figure 3A). While about two-thirds of M195-specific T\textsubscript{CD8} were GzmB+, far fewer produced IFN-γ, and even fewer produced TNF-α or IL-2 (Supplemental Figure 3, B and C). Strikingly, lung M195-specific T\textsubscript{CD8} were more severely impaired during secondary infection, when neutralizing antibody completely blocks viral replication in the lungs (Figure 2E and data not shown). Since M195 epitope-specific cells account for such a high percentage of virus-activated lung T\textsubscript{CD8} during primary and secondary infection, we questioned whether T\textsubscript{CD8} impairment was restricted to the immunodominant response. This was not the case, as subdominant N198-specific T\textsubscript{CD8} were functionally impaired to a similar degree (Figure 2F), as were other epitopes tested (data not shown). Thus, pulmonary HMPV-specific T\textsubscript{CD8} were impaired in multiple key effector functions.

During chronic infections or cancer, T\textsubscript{CD8} become exhausted with progressive loss of effector functions; these cells lose expression of IL-2, TNF-α, IFN-γ, and CD107a, in that order, followed by clonal deletion (17). To define the extent of impairment during HMPV infection, we quantified other effector functions at the peak of the T\textsubscript{CD8} response. Thirty-six percent of lung-infiltrating T\textsubscript{CD8} expressed granzyme B (GzmB), which were predominantly M195 tetramer+ (Supplemental Figure 3A). While about two-thirds of M195-specific T\textsubscript{CD8} were GzmB+, far fewer produced IFN-γ, and even fewer produced TNF-α or IL-2 (Supplemental Figure 3, B and C). Strikingly, lung M195-specific T\textsubscript{CD8} were more severely impaired during secondary infection, when neutralizing antibody completely blocks viral replication in the lungs (Figure 2E and data not shown). Since M195 epitope-specific cells account for such a high percentage of virus-activated lung T\textsubscript{CD8} during primary and secondary infection, we questioned whether T\textsubscript{CD8} impairment was restricted to the immunodominant response. This was not the case, as subdominant N198-specific T\textsubscript{CD8} were functionally impaired to a similar degree (Figure 2F), as were other epitopes tested (data not shown). Thus, pulmonary HMPV-specific T\textsubscript{CD8} were impaired in multiple key effector functions.

During chronic infections or cancer, T\textsubscript{CD8} become exhausted with progressive loss of effector functions; these cells lose expression of IL-2, TNF-α, IFN-γ, and CD107a, in that order, followed by clonal deletion (17). To define the extent of impairment during HMPV infection, we quantified other effector functions at the peak of the T\textsubscript{CD8} response. Thirty-six percent of lung-infiltrating T\textsubscript{CD8} expressed granzyme B (GzmB), which were predominantly M195 tetramer+ (Supplemental Figure 3A). While about two-thirds of M195-specific T\textsubscript{CD8} were GzmB+, far fewer produced IFN-γ, and even fewer produced TNF-α or IL-2 (Supplemental Figure 3, B and C). Strikingly, lung M195-specific T\textsubscript{CD8} were more severely impaired during secondary infection, when neutralizing antibody completely blocks viral replication in the lungs (Figure 2E and data not shown). Since M195 epitope-specific cells account for such a high percentage of virus-activated lung T\textsubscript{CD8} during primary and secondary infection, we questioned whether T\textsubscript{CD8} impairment was restricted to the immunodominant response. This was not the case, as subdominant N198-specific T\textsubscript{CD8} were functionally impaired to a similar degree (Figure 2F), as were other epitopes tested (data not shown). Thus, pulmonary HMPV-specific T\textsubscript{CD8} were impaired in multiple key effector functions.

Given the progressive degree of functional impairment observed in pulmonary HMPV-specific T\textsubscript{CD8}, we wondered whether these cells expressed the inhibitory receptor PD-1, a marker of impaired T cells. In naive mice, less than 5% of lung or spleen T\textsubscript{CD8} expressed PD-1 (data not shown). In contrast, during HMPV infection PD-1 was rapidly upregulated on M195-specific T\textsubscript{CD8} by day 5 and reached maximum expression in the lungs between days 7 and 14 (Figure 2G and H). Over half of pulmonary T\textsubscript{CD8} remained PD-1+.
several weeks after viral clearance. Upon reinfection, PD-1 levels returned to those observed during primary infection (Figure 2H), despite undetectable lung virus replication (data not shown). In contrast, M195-specific TCD8 in the uninfected spleen upregulated PD-1 early during infection but steadily decreased expression over time, which did not increase upon challenge infection. PD-1 expression was not restricted to a limited TCR repertoire, as the M195-specific population was polyclonal, primarily representing the Vβ2 and Vβ9 families (Supplemental Figure 4A). PD-1 expression was indistinguishable between different TCR Vβ families (Supplemental Figure 4B) and different epitopes (Supplemental Figure 4C). Thus, prolonged PD-1 expression by a polyclonal lung TCD8 population was associated with impairment.

Viral infection is required for pulmonary TCD8 impairment and PD-1 upregulation. To determine whether TCD8 upregulate PD-1 in response to other acute viral LRI s, we infected B6 mice with influenza virus (strain A/34/PR/8) and measured lung TCD8 responses to the immunodominant H2-Db/NP366 epitope (ref. 46 and Figure 3A). PD-1 expression was indistinguishable between different TCR Vβ families (Supplemental Figure 4B) and different epitopes (Supplemental Figure 4C). Thus, prolonged PD-1 expression by a polyclonal lung TCD8 population was associated with impairment.

Since several human viruses are capable of eliciting pulmonary TCD8 impairment, we wondered whether this was a consequence of TCD8 trafficking to the unique lung microenvironment. To address this, we employed peptide-loaded, LPS-matured bone marrow–derived DCs, which are potent antigen-presenting cells that, once administered, traffic to draining LNs to prime naive TCD8 (47, 48). Matured DCs were CD11b+ and upregulated MHC molecules, costimulatory CD86, and the LN homing receptor CCR7 (Supplemental Figure 5A). DCs were loaded with M195 peptide and administered i.n. to recapitulate the route of infection utilized by respiratory viruses and to elicit epitope-specific TCD8 in the absence of viral replication. M195-specific TCD8 were detectable in the lung by day 5 after immunization (Supplemental Figure 5B), the same time HMPV-specific TCD8 arrived in the lung following HMPV infection (Figure 2B). Interestingly, lung-infiltrating M195-specific TCD8 elicited by DCs were not impaired at either day 7 or 14 after immunization (Figure 3B) and expressed low levels of PD-1 (~25%, Figure 2H). Furthermore, DC-elicited M195-specific TCD8 were polyfunctional, with most containing GzmB and producing TNF-α and IL-2 in addition to IFN-γ (Supplemental Figure 5C). Next, mice were DC immunized either s.c. or i.n. to determine whether DC-elicited TCD8 provide protection against subsequent
Cognate viral antigen in the presence of active LRI is required for PD-1 induction and T_{CD8} impairment. (A) Experimental strategy for B and C: B7tg mice were immunized i.n. with VACV A34R-loaded or HMPV M195-loaded DCs, and lung lymphocytes were harvested at either day 14 after immunization (A34R immunization) or day 7 after HMPV challenge (both A34R and M195 immunizations). (B) The A34R- and M195-specific T_{CD8} responses were quantified in each group of mice as indicated. (C) PD-1 expression is shown as either representative histograms, percentage positive, or MFI. (D and E) Mice were immunized i.n. with M195-loaded DCs, and then 50 μg of either an irrelevant peptide (Mock) or M195 peptide (M195) was administered daily i.n. for 7 days. The M195-specific T_{CD8} response (D) and PD-1 expression (E) following repeated peptide administration were quantified. Data in B are combined from 3 independent experiments, while data in C–E are representative of at least 2 independent experiments with 4–6 individual mice per group per experiment. *P < 0.05, **P < 0.005 (2-tailed paired t test). *P < 0.05, **P < 0.005, ***P < 0.0005 (1-way ANOVA with Bonferroni post-test [C] or 2-tailed Student’s t test [E]).
pended of antigen exposure (50, 51). To determine whether viral antigen present at the site of infection is the primary cause of both pulmonary TCD8 impairment and PD-1 upregulation, we took advantage of the fact that i.n. DC immunization elicits unimpaired, PD-1lo TCD8 directly in the lung environment (Figure 3, C and D). Therefore, we DC-immunized mice i.n. with either the VACV epitope A34R or the HMPV epitope M195. There is no cross-reactivity between A34R and any HMPV epitopes, as A34R tetramer failed to stain HMPV-immune splenocytes or lung lymphocytes (Supplemental Figure 2). A34R-immunized mice were either unchallenged or HMPV challenged, while M195-immunized mice were HMPV challenged (Figure 4A). A34R-specific TCD8 in unchallenged mice were not impaired (Figure 4B), as was the case with M195-specific TCD8 following M195-DC immunization (Figure 3C). Importantly, during HMPV challenge, A34R-specific TCD8 were not substantially impaired for either degranulation (Figure 4B and Supplemental Figure 6A) or IFN-γ production (Figure 4B and Supplemental Figure 6B), while M195-specific TCD8 in the same infected lungs were severely impaired as during primary infection. Thus, HMPV infection does not impair the functionality of heterologous VACV-specific TCD8. M195-immunized HMPV-challenged mice mounted a robust secondary response to the M195 epitope, but their TCD8 were the most severely impaired (Figure 4B and Supplemental Figure 6, A and B), suggesting that antigen-experienced TCD8 are more susceptible to functional exhaustion than TCD8 responding to primary infection. The degree of impairment in each group correlated with PD-1 levels: PD-1hi TCD8 was similarly low in unchallenged and challenged mice (Figure 4C). In M195-immunized HMPV-challenged mice, almost 100% of M195-specific TCD8 were PD-1hi (Figure 4C), and there was a 60% increase in MFI over that of M195-specific TCD8 in A34R-immunized mice (Figure 4C), indicating that PD-1 is more highly expressed during secondary immune responses.

During chronic infections, persistent viral antigen causes PD-1-mediated TCD8 exhaustion through continuous stimulation of the TCR (17, 18, 51, 52). To determine whether antigen exposure alone is capable of inducing PD-1 expression and functional impairment in the respiratory tract, we immunized mice i.n. with M195-loaded DCs and then administered either an irrelevant peptide or M195 peptide i.n. to provide cognate antigen for TCR stimulation. After reexposure to cognate antigen, M195-specific TCD8 remained fully functional (Figure 4D) but significantly upregulated PD-1 (Figure 4E), indicating that antigen-dependent TCR signaling is sufficient for PD-1 upregulation but not functional impairment in the acute setting.

Taken together, the preceding data suggested that both cognate viral antigen and active LRI are required for PD-1 induction and TCD8 impairment. Since cognate antigen alone failed to induce impairment in the absence of infection, we hypothesized that upregulation of the PD-1 ligand PD-L1 was also required. HMPV or IAV infection of human bronchial epithelial cells upregulated PD-L1 in a dose-dependent manner (Supplemental Figure 7), consistent with previous findings for RSV (27). HMPV also induced PD-L1 upregulation in the lungs of infected mice: PD-L1 gene expression increased 4-fold by day 5 after infection and 10-fold by day 7, and decreased rapidly by day 14 (Figure 5A). In contrast, PD-L1 expression was unchanged on day 7 after DC immunization and increased slightly by day 14 (Figure 5B). Thus, PD-L1 expression increased early during viral infection in association with PD-1hi TCD8, but not during DC immunization, when TCD8 are PD-1lo.

Blockade or ablation of PD-1 signaling prevents pulmonary TCD8 functional impairment during acute viral LRI. To prevent PD-1 ligation and determine whether pulmonary TCD8 impairment requires infection-induced PD-L1, we injected mice with blocking antibodies against PD-1 ligands (anti-PD-L) prior to infection and then every 2 days following infection. Anti–PD-L resulted in a greater percentage of M195-specific TCD8 in the spleens of infected animals, but more importantly improved function of pulmonary TCD8 compared with that in mice treated with isotype control antibody (Figure 6A). The percentage of functional M195-specific cells increased from 65% to 95% CD107a+ and from 45% to 71% IFN-γ+ in anti–PD-L–treated mice (Figure 6B). Anti–PD-L also augmented the amount of IFN-γ synthesized in spleen and lung M195-specific TCD8 (Figure 6C). The percentage of PD-1lo M195-specific TCD8 increased in both the spleen and lung of anti–PD-L–treated mice (Figure 6D), again indicating that PD-1 upregulation alone is insufficient to induce TCD8 impairment and that ligation by PD-L1 is also required. To gauge the broader immunomodulatory effects of blocking PD-1 signaling, we quantified total cytokine levels in HMPV-infected lungs. Anti–PD-L resulted in increased levels of the proinflammatory cytokines IFN-γ, TNF-α, and IL-6, while IL-17A and the anti-inflammatory cytokines IL-10 and TGF-β were unchanged (Figure 6E). Both IL-2 and IL-4 were below the limit of detection (data not shown).

Importantly, prevention of pulmonary TCD8 impairment and augmentation of cytokine levels resulted in enhanced viral clearance, as anti–PD-L reduced lung viral titers 2-fold on day 5 after infection and more than 30-fold on day 7 (Figure 6F).

Despite the increased level of proinflammatory cytokines and functional TCD8, anti–PD-L was not associated with increased lung histopathology (Supplemental Figure 8). However, to gauge more relevant clinical outcomes in live mice, we utilized a mouse oximeter to quantify airway dysfunction, a key feature of severe
LRI in humans (53). Airway dysfunction and subsequent air trapping leads to pulsus paradoxus, an exaggeration in the pulse volume during respiration as a result of increased breathing effort (54). HMPV infection alone did not increase breathing effort compared with mock infection (Figure 6G). However, anti–PD-L resulted in double the breathing effort relative to that observed in isotype control–treated animals. Thus, anti–PD-L reduced functional impairment in a population of protective HMPV-specific TCD8, but did, to some degree, increase airway dysfunction.

We next employed PD-1−/− mice (55) to completely abolish PD-1 signaling and confirm that results from anti–PD-L treatment were due to inhibition of PD-1 signaling and not reverse signaling through PD-L1 (51). PD-1−/− mice were maintained on the B6 background, so we examined the HMPV-specific TCD8 response directed against the F528 and N11 epitopes. Similar to mice treated with anti–PD-L, PD-1−/− mice had a higher percentage of splenic HMPV-specific TCD8 (Figure 7A), as well as a greater percentage of lung F528- and N11-specific TCD8 that degranulated and produced IFN-γ as compared with WT mice (Figure 7B). This translated to a greater percentage of functional pulmonary HMPV-specific TCD8 in PD-1−/− mice (Figure 7C). Unlike in the experiments with anti–PD-L, we also observed a 3- to 4-fold increase in the absolute number of both tetramer+ (Figure 7D) and IFN-γ+ (Figure 7E) TCD8 in PD-1−/− mice relative to WT mice (Figure 7E). IFN-γ and
TNF-α cytokine levels were significantly elevated in the lungs of PD-1−/− animals, while IL-10 and IL-17A were trending upward and IL-6 and TGF-β were unchanged (Figure 7F). Given both the increased number of HMPV-specific TCD8 and their increased functionality in PD-1−/− mice, we asked whether PD-1 signaling functions to prevent immunopathology during acute viral LRI. WT and PD-1−/− mice exhibited the same pattern of peribronchiolitis and perivasculitis, with similar numbers of CD3+ mononuclear cells infiltrating each of these spaces (Figure 7G), suggesting that abrogation of PD-1 signaling in the setting of acute LRI does not exacerbate lower airway histopathology.

We next tested the effect of PD-1 ablation on influenza virus LRI. Because TCD8 were not impaired on day 7 (Figure 3A), we examined the TCD8 response at day 8 after infection with IAV (strain HK/x31) in WT versus PD-1−/− mice. NP366-specific pulmonary TCD8 drastically upregulated PD-1 in WT mice (Figure 8A) and were impaired (Figure 8B). IFN-γ+ and CD107a+ NP366-specific TCD8 were increased in the lungs of PD-1−/− mice compared with WT animals (Figure 8, B and C). The IAV-specific PD-1−/− TCD8 did not contain more GzmB (Figure 8D), suggesting that increased supernatant GzmB levels found in some studies may be attributable to increased degranulation and not increased production (29, 56), while more prolonged blockade of the PD-1 pathway may be necessary to increase TCD8 granzyme expression (21, 57). PD-1−/− mice took longer to recover from infection than WT mice, as measured by weight loss (Figure 8E). Additionally, both WT and PD-1−/− animals exhibited increased breathing effort compared with mock-infected mice, but, in contrast to anti–PD-L treatment
Discussion

Pulmonary TCD8 impairment has been described during murine acute viral LRI (8–12), but the mechanism has not been elucidated.
We show in two different mouse models and during both primary and secondary LRI that the PD-1/PD-L1 pathway mediates this impairment. Both dominant and subdominant epitope-specific TCD8 were impaired during HMPV, IAV, or VACV infection, indicating that loss of pulmonary TCD8 function via PD-1 signaling is not restricted to a single virus family. Pulmonary TCD8 impairment resembles the exhaustion phenotype observed during chronic viral infections, wherein TCD8 upregulate PD-1 and fail to respond when restimulated by viral antigen. TCD8 exhaustion occurs several weeks after infection, with the ability to produce IFN-γ and TNF-α lost first, followed by impairment of degranulation and cytotoxic capabilities (17, 19). In contrast, we found that PD-1–mediated pulmonary TCD8 impairment occurred rapidly (by day 7 after infection), with simultaneous loss of degranulation and IFN-γ production that continued for several weeks after viral clearance.

Since PD-1 was upregulated early during acute viral LRI on TCD8 but also maintained for several weeks following clearance, it is unclear whether early exposure to viral antigen or persistent low-level TCR stimulation from residual antigen maintains PD-1 expression via PD-1 signaling is not restricted to a single virus family. Pulmonary TCD8 impairment resembles the exhaustion phenotype observed during chronic viral infections, wherein TCD8 upregulate PD-1 and fail to respond when restimulated by viral antigen. TCD8 exhaustion occurs several weeks after infection, with the ability to produce IFN-γ and TNF-α lost first, followed by impairment of degranulation and cytotoxic capabilities (17, 19). In contrast, we found that PD-1–mediated pulmonary TCD8 impairment occurred rapidly (by day 7 after infection), with simultaneous loss of degranulation and IFN-γ production that continued for several weeks after viral clearance.

Anti–PD-L treatment improves secondary immune responses by overcoming TCD8 impairment during challenge infection. (A) Experimental strategy: mice were either not immunized (HMPV only) or immunized i.n. with M195-loaded DCs. Eighteen days later, mice were challenged with HMPV. Immunized mice were injected i.p. with isotype control antibody (M195-DC + isotype) or both anti–PD-L1 (250 µg) and anti–PD-L2 (200 µg) blocking antibodies (M195-DC + anti–PD-L) for 2 days prior to infection and then on days 1 and 3 during HMPV infection. (B) and (C) Five days after challenge, the lung M195-specific TCD8 response was quantified (B), and the functionality of these cells was calculated (C). (D) PD-1 expression of lung M195-specific TCD8. (E) Lung viral titers were quantified by plaque assay. Data are combined from 2 independent experiments with 4–6 individual mice per group per experiment. *P < 0.05, **P < 0.005 (2-tailed paired t test); ***P < 0.005 (2-tailed Student’s t test).

The Journal of Clinical Investigation

http://www.jci.org Volume 122 Number 8 August 2012

2977

Figure 10
PD-1 and PD-L1 are expressed in the lower airways of pediatric patients with severe 2009 H1N1 pandemic IAV or RSV infection. Lung autopsy specimens were fixed and stained with H&E (A–C), anti-CD8 (D–G), anti–PD-1 (H–K), or anti–PD-L1 (L–S) antibodies. Tonsil (D and H) or spleen (L and P) tissue were used as positive controls. “Lung control” (A, E, I, M, and Q) is from a patient with non-pulmonary disease, while “2009 H1N1 case” (B, F, J, N, and R) is from a 12-year old patient with 2009 H1N1 pandemic IAV infection and “RSV case” (C, G, K, O, and S) is from an 18-month-old child with RSV infection. Original magnifications as indicated.

function is also required for the induction of PD-1 ligands and subsequent inhibitory signaling.

Therefore, we hypothesized that regulation and expression of PD-L1 contributes significantly to impairment during acute viral LRI. In vitro, both HMPV and IAV infection of human bronchial epithelial cells resulted in PD-L1 upregulation, corroborating findings from studies with RSV, where it was also shown that IFN-γ alone is capable of increasing PD-L1 (27). In vivo, we found that PD-L1 expression correlated with viral replication and the induction of the adaptive immune response, as PD-L1 was upregulated 6-fold by day 5 after infection (the peak of viral replication) and 10-fold by day 7. HMPV, RSV, and IAV all infect respiratory tract epithelial cells. Antiviral T \text{CD8} must recognize and interact with these infected cells in order to clear each virus. Furthermore, it has been demonstrated that RSV infection of primary human bronchial epithelial cells induced PD-L1 upregulation, leading to impairment of human T \text{CD8} in vitro (56). Therefore, we propose a model whereby viral antigen signaling through the TCR leads to PD-1 upregulation on pulmonary T \text{CD8}, while viral infection of airway epithelial cells induces PD-L1, leading to PD-1 ligation and inhibitory signaling when T \text{CD8} interact with infected cells. This may represent a negative feedback loop designed to protect the lung against immune-mediated damage. Antiviral T \text{CD8} enter the lung at day 5 after infection capable of degranulating and producing IFN-γ, yet by day 7 they show signs of impairment. IFN-γ produced by either CD8+ or CD4+ T cells may then upregulate PD-L1 on respiratory epithelial cells, thereby initiating PD-1 signaling in antiviral T \text{CD8} and downregulating their effector functions. This contrasts with chronic viral infections caused by LCMV (62, 63) and HIV (63), where myeloid cells have been shown to contribute more to impairment and exhaustion, suggesting that viral tropism may dictate which cell types mediate impairment. In the case of
viral LRI, it could be infected lung epithelial cells, adjacent cells exposed to type I or type II IFNs, or both of these cell populations that contribute to T_{CD8} impairment in vivo.

We show that pulmonary T_{CD8} impairment is preventable, indicating a novel therapeutic avenue for acute viral LRLs, for which few specific treatments currently exist. Disruption of PD-1 signaling via therapeutic antibody blockade preserved T_{CD8} effector functions and decreased viral titers. As T_{CD8} functions also improved during both HMPV and IAV infections of PD-1^{−/−} mice, targeting the PD-1/PD-L1 pathway may provide clinical utility by enhancing antiviral T_{CD8} during a variety of acute LRI. Increasing T_{CD8} effector functions and the presence of proinflammatory cytokines did not exacerbate airway histopathology in either anti–PD-L1–treated or PD-1^{−/−} mice. This contrasts with both chronic LCMV infection (19) and acute coronavirus CNS infection (35), where PD-1^{−/−} mice exhibited exacerbated pathology and increased mortality, indicating that PD-1 may play differential roles depending on the virus and site of infection. We observed differences even among LRI caused by different viruses, as anti–PD-L1 treatment of HMPV-infected mice resulted in mildly increased breathing effort and pulsat paraadoxus, whereas IAV infected PD-1^{−/−} mice displayed no enhanced airway dysfunction compared with WT mice. Thus, a therapeutic “window” for PD-1/PD-L1 modulation during acute viral LRI may exist between enhanced protection and immunopathology. Direct manipulation of the PD-1/PD-L1 pathway has so far proven safe and at least partially effective against both hematologic malignancies (30) and solid tumors (31) in humans and against SIV in nonhuman primates (57). Cytokine therapies that indirectly overcome PD-1 signaling also hold therapeutic promise (64, 65).

DC challenge of HMPV-primed mice was not capable of overcoming the impairment program set in motion during primary infection, adding to recent findings that high levels of viral antigen present during the initial infection mediate remodelling around the PD-1 locus, allowing for rapid expression in memory T_{CD8} upon reexposure to antigen (66). Furthermore, our results and those from the LCMV chronic infection model (67) indicate that antigen-experienced T_{CD8} are highly susceptible to PD-1-mediated impairment. During challenge infection, T_{CD8} rapidly upregulated PD-1 and were more severely impaired than during primary infection. Following DC immunization, we demonstrated that memory T_{CD8} provide some protection against viral challenge, which can be augmented by blocking PD-1 signaling. Therefore, modulation of the PD-1/PD-L1 pathway should be considered in the rational design of novel HMPV, RSV, or IAV vaccines. Future experiments are needed to further uncover the role of PD-1 in inhibiting memory T_{CD8} responses.

Finally, we determined that PD-1 and PD-L1 are abundantly expressed in the lower airways during acute viral LRI in humans. Additional studies are needed to determine whether PD-1 levels are associated with T_{CD8} impairment and poor clinical outcomes in patients with severe acute viral LRI. However, unlike in chronic infections with HIV and HCV, peripheral blood T_{CD8} may not exhibit functional impairment, and thus examination of pulmonary T_{CD8} will be required. Additionally, while our findings suggest that the PD-1/PD-L1 pathway may contribute to severe disease in humans, it will be interesting to determine what role this pathway plays in the ability of common respiratory viruses to continuously reinfect individuals. Human airway epithelial cells upregulate PD-L1 and PD-L2 in response to IFN-γ and TNF-α in vitro (27, 68) and to human rhinovirus infection in vivo (69). Therefore, upon reinfection, upper and lower respiratory tract epithelial cell PD-L1 would be poised to impair airway-resident memory T cells as well as newly recruited cells, thus preventing an effective early immune response to limit viral replication. Results from anti–PD-L1–treated mice that were DC immunized suggest that memory T_{CD8} may be similarly, if not more, affected by PD-1 signaling than naive cells. Taken together, our results indicate that antigen-dependent PD-1 upregulation and subsequent ligation by PD-L1 play a prominent role in mediating pulmonary T_{CD8} impairment. These findings suggest that targeting the PD-1/PD-L1 pathway may provide therapeutic potential in patients with acute viral LRI and offer novel approaches for developing effective respiratory viral vaccines.

Methods

Mice and viruses

B6 mice were purchased from the Jackson Laboratory. B7tg mice were obtained with permission from Alexander Sette (La Jolla Institute for Allergy and Immunology, La Jolla, California, USA) and François Lemonnier (Institut Pasteur, Paris, France). PD-1^{−/−} mice were obtained with permission from Tasuku Honjo (Kyoto University, Kyoto, Japan). All animals were bred and maintained in specific pathogen-free conditions in accordance with the Vanderbilt Institutional Animal Care and Use Committee. Six- to 12-week-old age- and sex-matched animals were used in all experiments. HMPV (pathogenic clinical strain TN/94-49, genotype A2) was grown and titered in LLC-MK2 cells as previously described (42). Influenza virus strains A/34/PR/8 (PR8; H1N1; ATCC) and HK/x31 (x31; H3N2; provided by Jon McCullers, St. Jude Children’s Hospital, Memphis, Tennessee, USA) were grown in MDCK cells and titered on LLC-MK2 cells. The CR-19 strain of VACV was grown and titered on BSC-40 cells. For all experiments, mice were anesthetized with ketamine-xylazine and infected i.n. with 1.5 × 10⁷ PFU of HMPV, 10⁷ PFU of PR8, 5 × 10⁶ PFU of x31, or 10⁶ PFU of VACV in a 100-μl volume. x31 was used in experiments with PD-1^{−/−} mice because it induced a more robust CD8⁺ T cell response than PR8.

Viral titration and quantification of total lung cytokines

Viral titers were measured by plaque titration as previously described (42). Cytometric Bead Array was used to quantify IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10, IL-17A, and TGF-β cytokine levels in undiluted lung homogenates according to the manufacturer’s instructions (BD Biosciences).

Epitope prediction, synthetic peptides, and IFN-γ ELISPOT assays

The online prediction algorithms SYFPEITHI (http://www.syfpeithi.de/), BIMAS (http://www-bimas.cit.nih.gov/molbio/hla_bind/), and IEDB (http://www.immuneepitope.org/) were used to generate HMPV epitope predictions for the HLA-B*0702 (70), H2-Dr, and H2-K^d alleles. The top approximately 80 HLA-B*0702- and 40 H2-Dr-, and 40 H2-K^d-restricted 8- to 10-amino-acid-long predictopes were synthesized for HLA-B*0702 (by Mimetopes) or H2^d (by GenScript) to greater than 95% purity as determined by analytical high-performance liquid chromatography. ELISPOT analysis was performed as previously described (71). The mitogen concanavalin A (ConA, Sigma-Aldrich) was used as a positive control, while stimulation with an irrelevant peptide served as the negative control. The average number of spots in the negative control wells was subtracted from each experimental value, which was then expressed as spot-forming cells (SFC) per 10⁶ lymphocytes.

Generation of MHC class I tetramers

The construct encoding a hybrid heavy chain of the HLA-B*0702 molecule was designed by replacing amino acids 206-299 of the human α3 domain with...
research article

(CNCB RefSeq NM_002116.6 and NM_00514.6) with amino acids 203–296 from the mouse H2-Kb molecule (NCBI RefSeq NM_001001892.2). Constructs expressing H2-Kb and -Dp heavy chains were previously described (72). Recombinant heavy chains encoding a C-terminal BirA recognition sequence and βm were produced in Escherichia coli as described (73). MHC class I monomers were refolded with cognate peptide ligands (74), biontilinated, and purified as described (75). UV-mediated exchange of conditional peptide with virus-derived peptides and quantification of peptide exchange were conducted as previously described (76). MHC tetramer formation with PE- and APC-streptavidin–conjugated fluorochromes (Invitrogen) was performed as previously described (76). Tetramers were generated for the following viral epitopes: HMPV (HLA-B*0702/M195–203 [APYAGLIM1], HLA-B*0702/N118–208 [YPRMDIPKI], H2-Dp/F526–536 [SGVTNNGF1], H2-Kb/N111–119 [LSYKHA1]); influenza virus (H2-Dp/ NP566–574 [ASNENMETM]); and VACV (HLA-B*0702/A34R02–90 [LPRPDRTHL], HLA-B*0702/D1R08–270 [RPSTRNFFEL]).

Tetramer staining

Lymphocytes were isolated from spleens and lungs of infected animals as follows: lungs were rinsed in R10 medium (RPMI-1640 [Mediatech] plus 10% FBS, 2 mM glutamine, 50 μg/ml gentamicin, 2.5 μg/ml amphotericin B, and 50 μg/ml β-mercaptoethanol [Gibco, Invitrogen)] to remove blood. The lungs were then minced with a scalpel and incubated with 2 mg/ml collagenase A (Roche) and 20 μg/ml DNase (Roche) for 1 hour at 37°C. Single-cell suspensions of digested lungs or whole spleens were obtained by pressing through a steel screen (80 mesh) and then passing over a nylon cell strainer (70-μm pore size). Erythrocytes were lysed using Red Blood Cell Lysis Buffer (Sigma-Aldrich). 2 × 10^6 to 3 × 10^6 lymphocytes were added to each well of a 96-well round-bottom plate (Falcon). Lymphocytes were first stained with violet LIVE/DEAD dye (Invitrogen) according to the manufacturer’s instructions, then Fc blocked with 1 μg per 10^5 cells anti-CD16/32 (BD Biosciences), and finally incubated with PE- or APC-labeled tetramers (0.1–1 μg/ml), anti-CD8α (clone S3-6-7, BD Biosciences), and anti-CD19 (clone 1D3, eBioscience). In some experiments, cells were also stained for PD-1 (clone J43, BD Biosciences) or with an isotype control antibody (hamster IgG2k). Surface/tetramer staining was performed for 1.5 hours at 4°C in PBS containing 1% FBS for HLA-B*0702 tetramers. For H2p tetramers, surface/tetramer staining was performed for 1 hour at room temperature in FACs buffer containing 50 mM dastatinb (LC Laboratories) (77), as preliminary experiments demonstrated enhanced tetramer staining under these conditions. Background staining levels with an irrelevant tetramer (typically 0.05%–0.2% of CD8+ T cells) were subtracted from each experimental value. For intracellular GzmB staining, cells were additionally surface stained for CD45 (clone ME-14, BD Biosciences) and then fixed and permeabilized (BD Fix/Perm Reagent) and incubated with anti-GzmB (clone GB12, Invitrogen) for 30 minutes at 4°C. GzmB+ cells were identified by exclusionary gating from the CD62L− population as previously described (78). Flow cytometric data were collected using an LSR II (BD Biosciences) and analyzed with FlowJo software (Tree Star).

Peptide restimulation and ICS

In parallel with tetramer staining, lung or spleen lymphocytes isolated from the same mice were restimulated in vitro for 6 hours at 37°C with the indicated synthetic peptide (10 μM final concentration) in the presence of anti-CD107a antibody (clone 1D4B, BD Biosciences). The protein transport inhibitors brefeldin A and monensin (BD Biosciences) were added for the final 4 hours of restimulation. Stimulation with PMA/ionomycin (50 ng/ml PMA plus 2 μg/ml ionomycin, Sigma-Aldrich) served as a positive control. After restimulation, cells were surface stained for CD3e (clone 145-2C11), CD8α, and CD19, followed by fixation/permeabilization and staining for intracellular IFN-γ (clone XMG1.2), TNF-α (clone MP6-XT22), and/or IL-2 (clone JES6-5H4) (all from BD Biosciences) and analyzed by flow cytometry. Background CD107a/cytokine levels following restimulation with an irrelevant peptide were subtracted from each experimental value.

Generation of bone marrow–derived DCs and immunizations

In preliminary experiments, we isolated primary pulmonary DCs from naive mice using magnetic selection with anti-CD11c microbeads (Miltenyi Biotec) and then peptide-loaded/LPS-matured them before immunizing recipient mice i.n. The purity of the isolated CD11c+ DCs was 95%–98% and approximately 8%–10% were CD103+ lung-resident DCs, which have been shown to efficiently home to draining LNs to prime naive T cells during respiratory virus infection (59). Intranasal immunization with 3 × 10^6 peptide-loaded, LPS-matured lung CD11c+ DCs elicited unimpaired, PD-1+ epitope-specific Tc10 (data not shown). However, because of the need for large numbers of naive mice to obtain a sufficient quantity of pulmonary DCs, bone marrow–derived DCs were employed for all immunization experiments. Bone marrow–derived DCs were generated as previously described (79) with slight modifications. Briefly, bone marrow was obtained from the femurs and tibiae of B7tg mice, lysed of erythrocytes, and resuspended at 10^7 cells/ml in DC medium (R10 plus 20 ng/ml rmGM-CSF and 10 ng/ml rmlL-4 [Peprotech]) in 10-cm sterile tissue culture dishes. After 3 days of culture, 75% of the medium was replaced with fresh DC medium, and at day 6 cells were counted and replated. On day seven, 100 ng/ml LPS (Siena-Aldrich) and 10 μg/ml peptide were added overnight to mature and load the DCs with a particular epitope, respectively. The next day, DCs were collected, counted, and resuspended in PBS. By this time more than 85% of cells were CD11c+ as determined by flow cytometry, which is characteristic of murine DCs. Maturation status was determined by staining unmatured or LPS-matured DCs for HLA-B*0702 (clone sc-s3304, Santa Cruz Biotechnology Inc.), H2-IAα (clone 25-9-17, BD Biosciences), CD86 (clone GL-1, BD Biosciences), CCR7 (eBioscience), CD11b (clone M1/70, BD Biosciences), and CD11c (clone HL3, BD Biosciences). For generation of lung-infiltrating epitope-specific Tc10, mice were immunized i.n. with 2 × 10^6 peptide-loaded, LPS-matured DCs. Some mice were then challenged as described in the figure legends. Additionally, some mice immunized i.n. with M195-loaded DCs were treated daily i.n. with either 50 μg of M195 peptide or an irrelevant HLA-B*0702-restricted peptide. The same procedure was used to isolate lung lymphocytes from DC-immunized mice and virus-infected mice.

Real-time RT-PCR

Metal screens used for obtaining single-cell lymphocyte suspension from lungs (see above) were rinsed with 1 ml of RLT lysis buffer (Qiagen), and the cell lysates were collected and frozen at −20°C. Samples were thawed and RNA was extracted using the MagNA Pure LC Total Nucleic Acid Isolation Kit (Roche Applied Sciences) on a MagNA Pure LC using the Total NA External Lysis protocol and stored at −80°C until further use. Real-time RT-PCR was performed in 2-μl reaction mixtures containing 5 μl of extracted RNA on an ABI StepOnePlus Real-Time PCR System (Life Technologies/Applied Biosystems) using the AgPath-ID One-Step RT-PCR kit (Applied Biosystems/Ambion). For HMPV genome detection, primers and probe targeting the HMPV N gene were previously published (80). Viral genome copy number was determined using a standard curve generated with RNA runoff transcripts of the target. For PD-L1 gene expression, exon-spanning primers and probes were obtained and used according to the manufacturer’s instructions (Applied Biosystems/Ambion). All values were normalized to the housekeeping gene Hprt, and experimental samples are reported as fold change in PD-L1 compared with that in mice that were mock infected (100 μl i.n. of LLC-MK2 cell lysate) using the ΔΔCt method. Cycling conditions

were 50°C for 30 minutes, followed by an activation step at 95°C for 10 minutes and then 45 cycles of 15 seconds at 95°C, and 30 seconds at 60°C. Samples with Ct values less than 40 were considered positive.

PDL-1 blocking antibodies

Mice were injected i.p. with rat isotype control antibody (Bio X Cell, clone LTF-2) or both rat anti-mouse PDL-1 (Bio X Cell, clone 10F.9G2) and rat anti–mouse PDL-2 (Bio X Cell, clone TY-25) antibodies as described in the figure legends.

PDL-1 expression on human bronchial epithelial cells

The human bronchial epithelial cell line BEAS-2b was either mock infected with LLC-MK2 cell lysate or infected at various MOI with either HMPV or PR8 in serum-free Opti-MEM containing trypsin. Forty-eight hours later, cells were collected, LIVE/DEAD stained (see above), and then incubated with mouse anti–human PDL-1 antibody (clone MIH1, BD Biosciences) or isotype control for 30 minutes at 4°C. The fold increase in PDL-1 expression relative to mock infection was determined by flow cytometry.

Immunohistochemistry of mouse and human lung specimens

Mouse. Mock- (i.e., LLC-MK2 cell lysate) or virus-infected lungs were inflated with 10% formalin and fixed overnight. Samples were then paraffin embedded and sectioned at 5-μm thickness before being placed on charged slides and baked overnight at 50°C. The paraffin was removed from the slides, and the sections were placed in heated Target Retrieval Solution (Dako) for 20 minutes. After 20 additional minutes of cooling, the slides were rinsed in Tris-buffered saline–Tween for 5 minutes immediately prior to being placed on an automated Leica BOND-MAX IHC stainer. Endogenous peroxidase was neutralized with 0.03% hydrogen peroxide. Lungs were stained with anti-CD3 (Santa Cruz Biotechnology Inc.) for 60 minutes at room temperature. The Bond Intense R detection system was used for visualization.

Human. Tissue blocks obtained at autopsy from patients with confirmed LRI were provided by the Vanderbilt Translational Pathology Shared Resource with approval from the Vanderbilt Institutional Review Board (#111350). Influenza virus was detected by nasal swab in most cases and confirmed by lung H1N1 viral probe at the time of death. RSV infection was confirmed by rapid antigen testing. PIV-3 was confirmed by viral culture. Control lung specimens were obtained from individuals who expired from non-pulmonary disease. Patient characteristics are provided in the relevant figure legends. Samples were prepared as described above for mouse lungs. Anti–PD-L1 (clone 29E.2A3, BioLegend), anti–PD-1 (clone 7A11B1, Sigma-Aldrich), and anti-C D8 antibodies (clone CB/144B, Thermo Scientific) were used as the primary antibodies. The Bond Refine Polymer detection system was used for visualization. The slides were counterstained lightly with Mayer’s hematoxylin, dehydrated, and coverslipped.

Pulse oximetry

A rodent pulse oximeter (MouseOx, Starr Life Sciences Corp.) was used to measure breath distension as previously described (81).

Statistics

Data analysis was performed using Prism version 4.0 (GraphPad Software). Comparisons between tetramer staining and ICS within the same animals were performed using a paired 2-tailed test. Comparisons between 2 groups were performed using an unpaired 2-tailed Student’s t test. Multiple group comparisons were performed using a 1-way ANOVA with a Bonferroni post-test for comparison of individual groups. A P value less than 0.05 was considered significant, with values of P < 0.005 and P < 0.0005 reported where applicable. Error bars in each graph represent SEM.

Study approval

All animals were maintained in accordance with the Guide for the Care and Use of Laboratory Animals (NIH publication no. 85-23. Revised 1985) and were handled according to protocols approved by the Vanderbilt University Subcommittee on Animal Care (IACUC). The study involving analysis of human autopsy specimens was approved by the Vanderbilt University Institutional Review Board.

Acknowledgments

We thank D. Flaherty, B. Matlock, and K. Weller at the Vanderbilt Flow Cytometry Shared Resource and M. Rock and S. Yoder at the Vanderbilt Immunology Core for providing technical support and assistance with development of flow cytometry reagents. We also thank A. Sette, F. Lemonnier, and T. Honjo for providing mice used in these studies and J. McCullers for providing influenza virus strain HK/x31. This work was supported by AI085062 (to J.V. Williams), AI082417 (to J.V. Williams), AI040079 (to S. Joyce), AI042286 (to S. Joyce), HL054977 (to S. Joyce), and GM007347 for the Vanderbilt Medical Scientist Training Program (to J.J. Erickson). The VMC Flow Cytometry Shared Resource is supported by the Vanderbilt Ingram Cancer Center (P30 CA68485) and the Vanderbilt Digestive Disease Research Center (DK058404). This work was supported in part by Vanderbilt CTSA grant UL1 RR024975-01 from the National Center for Research Resources (NCRR)/NIH.

Received for publication January 12, 2012, and accepted in revised form June 7, 2012.

Address correspondence to: John V. Williams, 1161 21st Avenue South, D-7235 MCCN, Nashville, Tennessee 37232-2581, USA. Phone: 615.936.2186; Fax: 615.343.9723; E-mail: john.williams@vanderbilt.edu.

9. DiNapoli JM, Murphy BR, Collins PL, Bukreyev A. Impairment of the CD8+ T-cell response in lungs following infection with human respiratory syncytial virus is specific to the anatomical site rather than the virus, antigen, or route of infection. Viral J. 2008;5:105.

33. Zhang Z, et al. Phospho-activated programed death-1 expression by virus-specific CD8 T cells correlates with the outcome of acute hepatitis B. Gastroenterol-