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Delivery of oxygen to tissues is the primary function of the cardiovascular system. NO, a gasotransmitter that signals 
predominantly through protein S-nitrosylation to form S-nitrosothiols (SNOs) in target proteins, operates coordi-
nately with oxygen in mammalian cellular systems. From this perspective, SNO-based signaling may have evolved 
as a major transducer of the cellular oxygen-sensing machinery that underlies global cardiovascular function. Here 
we review mechanisms that regulate S-nitrosylation in the context of its essential role in “systems-level” control 
of oxygen sensing, delivery, and utilization in the cardiovascular system, and we highlight examples of aberrant 
S-nitrosylation that may lead to altered oxygen homeostasis in cardiovascular diseases. Thus, through a bird’s-eye 
view of S-nitrosylation in the cardiovascular system, we provide a conceptual framework that may be broadly appli-
cable to the functioning of other cellular systems and physiological processes and that illuminates new therapeutic 
promise in cardiovascular medicine.

Oxygen and NO: co-evolution for common function
From the appearance of the simplest metazoans to the most com-
plex multicellular life forms, the ability to efficiently handle oxygen 
has remained essential for survival and has therefore been subject 
to intense evolutionary pressure. A single-cell organism must rap-
idly adapt its core homeostatic processes to fluctuations in oxy-
gen tension, functions retained in specialized cells of higher verte-
brates (1, 2). In addition to cell-autonomous pathways for oxygen 
homeostasis, complex multicellular organisms have also developed 
sophisticated mechanisms to efficiently coordinate oxygen delivery 
and utilization across diverse organ systems (3–5). From this per-
spective, the human cardiovascular system in all its complexity has 
evolved for the principal purpose of oxygen delivery.

Although oxygen itself can function as a signaling molecule (2, 
6), its signaling repertoire is dependent largely on heme binding 
and is therefore limited, as hemes do not generally convey cellular 
signals. Thus, organisms have necessarily evolved parallel mecha-
nisms to precisely control oxygen flux and function. Utilization 
of the ancient gasotransmitter NO, highly abundant in the pri-
mordial atmosphere and linked to anaerobic respiration, likely 
co-evolved with oxygen to serve a common function — regulation 
of aerobic respiration (i.e., oxygen delivery and utilization). While 
NO, like O2, binds transition metal centers to elicit cellular signals, 
the majority of its cellular influence is achieved through posttrans-
lational modification (PTM) of cysteine thiols, a process termed 
S-nitrosylation (7). The universal presence of cysteine thiols in all 
major classes of proteins greatly expands signaling possibilities, 
and regulation of protein function via S-nitrosylation may be 
viewed as the prototypical system for redox-based and gasotrans-
mitter-mediated signal transduction (8).

Recent reviews of S-nitrosylation have detailed the redox biochem-
istry of reactive nitrogen species (8–10) and cataloged the myriad 
proteins and cellular processes known to be regulated by this mod-
ification across systems, including the cardiovascular system (11, 
12). Nearly 1,000 S-nitrosylated proteins have been identified in the 

heart alone (13, 14), and cross-talk with a plethora of other PTMs 
has been described (15). Principles underlying reversibility, specific-
ity, and enzymatic control of S-nitrosylation have received particular 
attention. Here, we take a thematic perspective that highlights the 
essential role of protein S-nitrosylation in the systems-level control 
of oxygen delivery and utilization, which is arguably the essential 
function of the cardiovascular system. Using these physiological 
insights, we highlight examples of how S-nitrosylation is dysregu-
lated in cardiovascular disease and how modulation of this signal-
ing mechanism holds therapeutic promise. Through this bird’s-eye 
view of S-nitrosylation in the cardiovascular system, we provide a 
conceptual framework that may be broadly applicable to cellular 
systems, physiological processes, and diseases.

S-nitrosylation as a prototypical system of protein PTM
Systems governing PTM of proteins generally fall into two broad 
categories, those with a ubiquitous sphere of influence (e.g., phos-
phorylation) and those with a more limited cellular purview (e.g., 
methylation). S-nitrosylation, like phosphorylation, is clearly 
evolutionarily conserved and ubiquitous, affecting most, if not 
all classes of proteins across all cellular compartments (8, 9, 16). 
By contrast, other oxygen/redox-based modifications, including 
hydroxylation and sulfenylation, have been identified to date with 
specific classes of proteins and functions (2, 17). Here, we draw 
parallels between S-nitrosylation and other important PTMs (e.g., 
phosphorylation, ubiquitinylation, acetylation) to provide a con-
ceptual framework for understanding the molecular machinery 
that governs this fundamental biologic process (Figure 1).

In mammals, the principal sources of newly synthesized NO 
are the three NOS isoforms (NOS1–3). Nitrate and nitrite may 
also contribute to the NO reservoir (18, 19), particularly under 
duress. The transfer of the NO moiety to cysteine thiols in target 
proteins is carried out by peptide or protein nitrosylases, which 
mediate either metal-to-Cys or Cys-to-Cys transfer. Metal-to-Cys 
nitrosylases are proteins that transfer NO groups from transition 
metals (e.g., Fe2+, Cu2+) to cysteine thiol. For example, mammalian 
hemoglobin (Hb) undergoes auto-nitrosylation via intramolecu-
lar transfer of NO from heme iron (iron nitrosyl; HbFeNO) to a 
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specific cysteine thiol in the β-globin chain (Cysβ93) (20, 21). Sim-
ilarly, transfer of metal-coordinated NO from cytochrome c (22) 
or ceruloplasmin (23) is employed in the synthesis of S-nitrosog-
lutathione (GSNO). Cys-to-Cys nitrosylases (referred to herein as 
transnitrosylases) are typically S-nitroso-proteins (SNO-proteins) 
involved in Cys-to-Cys transfer of the NO group from donor to 
acceptor protein (9, 24). The net nitrosylation (NO group trans-
fer) reaction is analogous to the group transfer reactions catalyzed 
by ubiquitin ligases, palmitoyltransferases, or acetyltransferases 
(Figure 1). Conversely, protein denitrosylation has been shown 
to play a major role in decreasing cellular S-nitrosylation (25–29) 
much the same way that protein phosphatases, deubiquitinases, 
and deacetylases set cellular levels of their respective PTMs (9, 
11). To date, two major enzymatic systems mediating protein 
denitrosylation have been described (Figure 1): GSNO reductase 
(GSNOR) (30, 31) and thioredoxin (Trx) (26, 32). The GSNOR 
system (two GSNORs have been identified, but only one has been 
studied in detail; ref. 25) denitrosylates GSNO, the major low-mo-
lecular-weight SNO in mammalian cells (33). Although GSNOR 
acts directly only on GSNO, it governs protein S-nitrosylation by 
influencing the cellular equilibrium that is maintained by trans-
nitrosylation reactions between SNO-proteins and GSNO (8, 24). 
Studies of GSNOR-deficient organisms have demonstrated the 
central role of GSNOR in SNO-based signal transduction and car-
diovascular function (refs. 27–29, 34, 35, and Figure 2). Members 
of the TRX enzyme family (TRX1 and TRX2) mediate the deni-
trosylation of multiple SNO-protein substrates in the cytosol and 
mitochondria (25, 36).

Studies over the past decade have established close parallels 
between guiding principles for S-nitrosylation (SNO-based sig-
naling) and other PTM systems. Signals are propagated through 
stimulus-coupled and spatiotemporally restricted interactions 
within signaling complexes. The composition of SNO-based sig-
naling complexes includes NOSs (which provide the source of 
NO), NO group donors including GSNO and other SNO-pro-
teins that can participate in transnitrosylation (propagation) 
reactions, and denitrosylases (which curtail the signals) (Figure 
1). By analogy to kinases, which align with substrates through 
hydrophobic and ionic interactions, hydrophobic and charged 
amino acids surrounding substrate cysteines (“SNO motifs”) 
may provide for alignment with nitrosylases (8, 9, 37). Thus, 
SNO-protein abundance reflects regulated equilibria between 
S-nitrosylation and denitrosylation pathways, rather than rates 

of NO production per se. The next section, which details the role 
of SNO-based signaling in cardiovascular function and oxygen 
homeostasis, illustrates the operation of these principles under 
physiologic and pathophysiologic states.

SNO-based signaling regulates cardiovascular 
performance and optimizes oxygen delivery
Systemic oxygen delivery is largely determined by microcirculatory 
blood flow and, to a lesser extent, by blood O2 content, which is 
a function of Hb O2 saturation (SaO2) and blood Hb concentra-
tion. SNO-based signals regulate each of these determinants and 
therefore play an essential role in optimizing oxygen delivery. Fur-
thermore, S-nitrosylation allows for crosstalk between NO and 
O2-sensing pathways to signal tissue oxygen levels and to effect 
changes in O2 bioavailability (5). Here, we illustrate how the SNO-
based system exerts coordinated effects across multiple organs to 
provide an integrated mechanism for sensing oxygen levels and 
executing molecular responses to hypoxic cues (Figure 3). Inas-
much as oxygen sensing and delivery are perturbed in all cardio-
vascular disease, it follows that dysregulated SNO signaling con-
tributes to disease pathogenesis.

S-nitrosylation and myocardial performance during simulated hypoxia. 
Signaling via the β2-adrenergic receptor (β2-AR) coordinates 
hypoxic adaptation across multiple organs, including the lungs 
(improved ventilation/perfusion matching) (38–41), skeletal mus-
cle (hypoxic vasodilation [HVD]) (41–43), and heart (augment-
ing contractility) (44). Through its influence on β2-AR signaling, 
S-nitrosylation may regulate hypoxic responses. The G protein 
receptor kinase 2 (GRK2), which mediates β2-AR desensitiza-
tion, undergoes agonist-coupled inhibitory S-nitrosylation in an 
eNOS-dependent manner (28). Absent S-nitrosylation, cardiac 
contractility (28) and peripheral vasodilation (45) decline during 
maintained adrenergic stimulation (28). β-Arrestin2 (a scaffolding 
protein that targets the β2-AR for internalization via endocytosis) 
and dynamin (a core component of the clathrin-mediated endocy-
totic machinery) also undergo S-nitrosylation downstream of the 
β2-AR, leading to enhanced receptor trafficking (34, 46). Although 
the precise chain of molecular events is not fully understood, it is 
known that GRK2, β-arrestin2, and dynamin are each complexed 
with eNOS, and stimulation of the β2-AR leads to eNOS activa-
tion and subsequent S-nitrosylation of these proteins (34, 46, 
47). Thus, coordinate S-nitrosylation events may serve to enable 
β2-AR signaling by preventing desensitization and promoting 
receptor recycling to facilitate oxygen transport (cardiac output) 
and delivery (vasodilation). The abundance of SNO-GRK2 and 
SNO-β-arrestin2 is diminished in eNOS–/– mice and enhanced in 
GSNOR–/– mice (28, 34); eNOS and GSNOR thus promote S-ni-
trosylation and denitrosylation of these proteins, respectively, 
through the intermediacy of GSNO. eNOS also binds dynamin 
(46), but whether S-nitrosylation is mediated directly by a trans-
nitrosylase activity of NOS (48, 49) or via GSNO is not known. 
GSNOR–/– mice further exhibit increases in cardiac output under 
basal conditions, reflecting marked peripheral vasodilation (29) as 
well perhaps as pronounced myocardial angiogenesis that results 
from stimulatory S-nitrosylation of HIF-1α under normoxic con-
ditions (35). In addition, GSNO has direct inotropic effects (50). 
GSNOR–/– mice also show constitutive increases in β2-AR abun-
dance (28), as is seen in ischemia. Collectively, then, enhanced S-ni-
trosylation in GSNOR–/– mice underlies hypoxia-mimetic changes 
throughout much of the cardiovascular system (Figure 2). Sim-

Figure 1
Framework for PTMs and signaling. (A) Parallels between S-nitrosy-
lation and other PTMs (phosphorylation, ubiquitinylation, and acet-
ylation) highlight shared features of bona fide signaling systems. 
S-nitrosylation is ubiquitous, reversible, and subject to enzymatic 
control (by nitrosylases and denitrosylases), enabling spatiotempo-
ral and target specificity. The biochemistry of NO group transfer and 
denitrosylation reactions is depicted. Note that auto–S-nitrosylation 
is shown as an example of metal-to-Cys NO transfer (e.g., as occurs 
from the Hb heme center to Cysβ93 to form SNO-Hb). However, 
metal-to-Cys NO transfer between two different peptides or proteins 
may also occur (e.g., between cytochrome C and glutathione to 
form GSNO). (B) Denitrosylases. Two classes of denitrosylases are 
shown, which comprise four enzymes in mammals, including two 
GSNORs and two thioredoxins. GR, glutathione reductase; GSH, 
reduced glutathione; GSNHOH, glutathione N-hydroxysulfenamide; 
GSSG, oxidized glutathione; TrxR, Trx reductase.
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ilar SNO-based regulation of β2-AR signaling in particular, and 
hypoxia-mimetic responses more generally, are likely operative in 
other tissues, including the airways and alveoli, kidney, blood, and 
skeletal muscle, as discussed below (Figure 3).

S-nitrosylation regulates striated muscle performance. Oxygen con-
sumption can increase 5- to 10-fold in exercising humans over the 
course of minutes (51). Accordingly, skeletal muscle has evolved 
efficient mechanisms to rapidly adapt to large shifts in oxygen 
demand. Just as β2-AR activation increases cardiac contractility 
during hypoxia (44), β2-AR–coupled increases in bioactive NO are 
also critical for compensatory vasodilation during mild to moder-
ate hypoxic exercise (52, 53). In a manner that parallels myocardial 
β2-AR signaling, SNO-based signals inhibit β2-AR receptor desen-
sitization in the periphery to facilitate adrenergic responses (45). 
Specifically, as local O2 tension (pO2) begins to fall during exercise, 
NO signals to increase blood flow by potentiating β2-AR–coupled 
HVD in working muscle (53) via a mechanism that likely involves 
SNO-GRK2 and inhibition of β2-AR desensitization (28, 45). As 
exercise intensity and tissue hypoxia increase, the source of bioac-
tive NO becomes less dependent upon β-adrenergic mechanisms 
(53) and shifts to rbc-based SNO delivery (3, 4, 10, 54) (see SNO 
signaling and the respiratory cycle below). Together, these two mecha-
nisms may support oxygen delivery across a broad range of exercise 
intensity and duration.

A parallel mechanism operates in skeletal muscle via hypox-
ia-dependent, stimulatory S-nitrosylation of the skeletal muscle 
ryanodine receptor (RYR1) (55–57), a key mediator of sarcoplas-
mic reticulum (SR) calcium release and excitation-contraction 

coupling (ref. 58 and Figure 2). S-nitrosylation of RYR1 occurs 
only during hypoxia, increases the open probability (PO) of the 
channel, and potentiates SR calcium release (57, 59–62). This 
pO2-dependent SNO-RyR1 formation is mediated by NO derived 
from neuronal NOS (nNOS) complexed with RYR1 (63). In nor-
moxia, by contrast, RYR1 undergoes stimulatory oxidation of 
redox-sensitive cysteine thiols (55, 60). The source of oxidizing 
equivalents is the SR-resident NADPH oxidase 4, which colocal-
izes with RYR1 and produces H2O2 in proportion to ambient pO2, 
thus functioning as a physiological oxygen sensor (55). Accord-
ingly, both S-oxidation and S-nitrosylation stimulate RYR1, but 
at different physiologic pO2, reflecting conditions from resting 
to exercising muscle (56). Alternatively stated, when pO2 falls 
into the hypoxic range (as occurs in exercising muscle), regula-
tory thiols in RYR1 become reduced and protein conformation 
is allosterically altered in a manner that favors S-nitrosylation 
(57). Conversely, S-nitrosylation is superseded by S-oxidation in 
the normoxic conformation assumed by RYR1 in resting mus-
cle. Thus, coordinate S-nitrosylation and oxidation of Cys thiols 
within RYR1, which are favored during hypoxia and normoxia, 
respectively, allow redox control over the range of physiological 
pO2. From a pathophysiologic perspective, excessive S-nitrosyla-
tion of RYR1, which can occur in settings of nitrosative stress, 
causes SR calcium leak and plays a maladaptive role in Duch-
enne muscular dystrophy (64), malignant hyperthermia (65), 
and exercise intolerance (66). Inasmuch as skeletal muscle dys-
function is commonly present in chronic heart failure (67, 68), 
perturbations in SNO-based signaling may underlie pathological 

Figure 2
S-nitrosylation regulates cardiomyocyte sig-
naling at critical oxygen-responsive nodal 
points. The central roles are highlighted for 
the denitrosylase GSNOR in physiologic con-
trol of β2-AR signaling, SR calcium release, 
HIF-1α responses, and mitochondrial func-
tion. S-nitrosylation reactions that have been 
proven by genetic criteria to occur through 
the intermediacy of GSNO include those tar-
geting GRK2, RYR2, and HIF-1α. Ligand-de-
pendent S-nitrosylation of GRK2, β-arrestin2, 
and dynamin is eNOS dependent. eNOS is 
complexed with GRK2, β-arrestin2, and 
dynamin, as depicted. Coordinate titration of 
S-nitrosylation (envisioned via receptor-cou-
pled activity of transnitrosylases and den-
itrosylases) across multiple steps in these 
pathways determine net signaling responses. 
The effects of GSNOR (from observations 
in GSNOR–/– mice) manifest as increases 
in cardiac output under basal conditions, a 
persistent state of systemic vasodilation, 
and protection from ischemic insult, estab-
lishing a central role for GSNO in cardiovas-
cular hemodynamics and oxygen delivery. 
Effects of GSNOR on mitochondrial targets 
are inferred from studies using GSNO. HRE, 
hypoxia response element.
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crosstalk between these two tissues. Targeting key SNO-proteins 
common to both tissues (e.g., HDAC2) (69–72) may represent a 
new therapeutic approach.

Like skeletal muscle RYR1, RYR2 in cardiac muscle also under-
goes nNOS-dependent stimulatory S-nitrosylation (refs. 60, 72, 
and Figure 2). However, unlike skeletal muscle (where NO can 
directly modify RyR1), the transfer of an NO group from nNOS 
to RyR2 requires GSNO (i.e., transnitrosylation) (62). In addition, 
SNO-RyR2 is abundant during normoxia and stimulates channel 
activity independently of oxygen concentration (29, 62). However, 
pO2 may retain an influence on RYR2 S-nitrosylation in the heart 
through the β2-AR (see above; specifically, through β2-AR–cou-
pled RYR2 denitrosylation involving GSNOR) (29). The impor-
tance of this regulatory pathway has been established by study of 
GSNOR–/– mice, which exhibit depressed β-adrenergic inotropic 
responses, impaired β-agonist–induced denitrosylation of RYR2, 
and pathological calcium leak (29). Similarly, nNOS–/– hearts have 
diminished SNO-RyR2, excessive diastolic SR calcium leak, con-
tractile dysfunction, and susceptibility to arrhythmias (73, 74). We 
note that while the β2-AR system and RYR2 serve as important 
examples of SNO-based regulation, S-nitrosylation likely controls 
other aspects of cardiac homeostasis in an oxygen-dependent man-
ner. For example, emergent evidence suggests S-nitrosylation of 
mitochondrial proteins may protect against myocardial ischemia 
(75), potentially via prevention of pathologic protein oxidation 
and inhibition of apoptosis. Likewise, inhibitory S-nitrosylation 
of mitochondrial complex I, in certain contexts, may play an adap-
tive role in mechanoenergetic coupling (ref. 76 and Figure 2). As 
disruption of the SNO/redox balance in myocytes is a hallmark 
of human heart failure (77), restoration of this equilibrium may 
provide a fruitful approach to restoring cardiac performance.

SNO signaling and the respiratory cycle. Oxygen delivery is a func-
tion of blood O2 content and blood flow. The ability to augment 
blood O2 content is markedly constrained, varying linearly with 
Hb concentration and SaO2. Conversely, modulation of regional 
blood flow, which is proportional to vessel radius to the fourth 
power, has a dynamic range encompassing several orders of mag-
nitude. Thus, volume and distribution of local blood flow are the 
principal determinants of tissue oxygen delivery (10). Mammals 
have a robust capacity to autoregulate systemic blood flow to 
dynamically couple local oxygen demand with oxygen delivery — a 
process termed HVD. The central role of rbc in HVD was estab-
lished half a century ago by Guyton (78), who showed that HVD is 
inversely proportional to SaO2 and recapitulated by rbc contain-
ing desaturated but not saturated Hb (78). By contrast, HVD is 
independent of arterial pO2 (79–81). Guyton proposed that ery-
throcytes sequestered a vasoconstrictor in the lungs (78), and the 
critical importance of SaO2 (as distinguished from pO2) was over-
looked at the time. Later, rbc were appreciated to liberate vasodi-
lator SNOs during hypoxia. Specifically, circulating rbc transport 
bioactive NO to the peripheral microcirculation and release it in 
proportion to locally declining oxygen gradients, in a process gov-
erned by changes in the quaternary conformation of Hb associated 
with changes in O2 concentration (3, 4, 10, 54, 81). The molecu-
lar basis for this effect involves a critical cysteine within the Hb 
β-chain (Cysβ93) that exhibits dynamic S-nitrosylation coupled 
to Hb allostery (3, 4, 20, 81). Oxygen binding to the heme-iron of 
Hb promotes a transition from T state (in deoxygenated blood) to 
R state (in oxygenated blood), during which heme-bound NO is 
transferred to the thiol group of Cysβ93. This auto–S-nitrosylated 

cysteine remains hydrophobically buried in the R configuration 
and thus devoid of vasodilatory activity. With the transition from 
R to T state as erythrocytes travel to increasingly hypoxic regions 
of the systemic microcirculation, the NO group on Cysβ93 is 
exposed to solvent and is released via transnitrosylative transfer to 
glutathione or thiols of the rbc membrane protein AE-1 to form 
GSNO and SNO AE-1 (10, 54, 82). In this manner, oxygen itself 
serves as a principal allosteric regulator that couples physiological 
release of O2 and bioactive NO. Inasmuch as blood flow is the prin-
cipal determinant of O2 delivery, this remarkable function of Hb 
represents an elegant means of dynamically matching vasomotor 
tone with local oxygen gradients (refs. 5, 80, and Figure 2). The 
physiologic importance of SNO-Hb in human hypoxic adaptation 
was recently demonstrated in an observational study of healthy 
subjects undergoing progressive high-altitude acclimatization in 
the Himalayas (83). Blood concentrations of SNO-Hb progres-
sively increased with ascent and were independently correlated 
with exercise capacity at high altitude.

SNO signaling and pulmonary gas exchange. NO bioactivity exerts 
control over ventilation-perfusion (V/Q) matching through a 
dual mechanism: (a) a permissive action on the β2-AR (28, 34) (see 
above), which may improve V/Q matching by enhancing alveolar 
clearance of fluid (84) and (b) the process of hypoxic pulmonary 
vasoconstriction (HPV), whereby the pulmonary arterial microcir-
culation preferentially perfuses well-ventilated alveolar units (refs. 
5, 10, and Figure 3). Physiological trapping of NO by erythrocytes 
involves capture or inactivation of NO by hemes of Hb and serves 
as an important contributor to HPV (85–88). NO trapping during 
hypoxia may be facilitated by regulation of rbc membrane NO per-
meability via conformation-dependent binding of Hb to the rbc 
transmembrane protein AE-1 (54). In normoxia, the rbc plasma 
membrane constitutes a significant barrier to NO entry mediated 
by tight association between the submembrane cytoskeleton and 
the cytoplasmic domain of AE-1. In hypoxia, Hb binds AE-1 (bind-
ing is favored in the T state) and alters the submembrane cytoskel-
etal scaffold in a manner that increases NO permeability, thereby 
facilitating NO trapping (54, 89–91). As basal vasodilatory tone in 
the pulmonary arterial circulation is set by a relatively high level of 
local NO production (from eNOS), NO trapping during hypoxia 
provides an important braking mechanism on vasodilation and, 
consequently, regional pulmonary blood flow. In other words, 
avid NO trapping by less-well-oxygenated erythrocytes perfusing 
less-well-ventilated lung units, and attenuation of NO trapping by 
well-oxygenated erythrocytes perfusing well-ventilated lung units, 
can facilitate V/Q matching (5). pO2-regulated NO permeability 
may also facilitate unloading of bioactive NO from SNO-Hb in the 
transition from R state to T state in the systemic microcirculation 
to mediate HVD and in the lungs to mitigate excessive pulmonary 
vasoconstriction (refs. 10, 53, and Figure 3).

Defects in NO processing by rbc are associated with multiple car-
diovascular diseases, including sepsis (excess levels of SNOs in rbc) 
and pulmonary arterial hypertension (PAH) (decreased rbc SNO 
levels). In sepsis, uncontrolled production of SNOs (27, 82, 92), 
known as nitrosative stress, is believed to contribute to multiorgan 
failure with resultant disruption of NO-based vascular autoreg-
ulation, particularly V/Q matching in the lung and shunting in 
tissues (27, 82, 93). SNO content is increased 20-fold in rbc from 
humans with septic shock and acute respiratory distress syndrome 
(27, 82), and vasoactivity of these rbc is dysregulated in a murine 
lung bioassay (82, 93). The link between pO2 and SNO delivery 
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that underlies HVD is also overwhelmed in sepsis (94, 95), possibly 
due to promiscuous transnitrosylation of exofacial rbc membrane 
proteins that results in pO2-independent vasodilation. Accumula-
tion of rbc SNOs and loss of allosteric control of SNO release (93, 
95) may help explain the severely dysregulated blood flow pattern, 
which is greatly enhanced but chaotic, in the septic microcircula-
tion. This mechanism is supported by studies of GSNOR–/– mice, 
which exhibit increased rbc SNO content, decreased basal vascular 
tone (29), and excessive mortality during experimental models of 
sepsis (27). Conversely, rbc in patients with PAH and hypoxemia 
have reduced levels of SNO-Hb but preserved rbc NO trapping, 
which reduces microcirculatory NO bioavailability. This defect 
may promote excessive pulmonary vasoconstriction in well-ven-
tilated alveolar units and impair blood flow to hypoxic tissues in 
the systemic circulation (96). As aberrant vascular autoregulation 
in both the pulmonary and systemic circulation are hallmarks of 
advanced heart failure (97), defects in SNO processing by rbc in 
heart failure (98) likely also contribute to disease progression.

SNOs regulate ventilation. During hypoxia, mammals increase total 
lung ventilation by augmenting breathing rate (hypoxic ventilatory 
drive) and tidal volume, both of which are regulated by SNO-based 
signals. The central limb in this response is classically initiated by 
hypoxia-sensing cells in the carotid body, which relay to nNOS-rich 
neurons in the brainstem nucleus tractus solitarius (nTS). nNOS 
activation in the nTS is critical for the hypoxic ventilatory response 
and likely involves formation of low-molecular-weight SNOs (99, 
100). Injection of low-molecular-weight SNOs, in particular GSNO 
or S-nitroso-L-cysteine, into rodent nTS dramatically increases 
minute ventilation in a manner that closely mimics the physiolog-
ical effects of hypoxia (101). Furthermore, nTS injection of a low-
mass fraction derived from deoxygenated blood, which contains 
Hb-derived SNOs, reproduces the effects of GSNO, whereas a low-
mass fraction derived from oxygenated blood has no effect. Using 
pharmacological and genetic approaches, it was also discovered 
that enzymatic processing of GSNO to cysteinylGlySNO by γ-glu-
tamyl transpeptidase (γ-GT) was required for GSNO to augment 
minute ventilation, and mice deficient in γ-GT were shown to have 
a grossly abnormal ventilatory response to hypoxia (101). Together, 
these data show that endogenous SNOs (likely those derived from 
deoxygenated rbc) can act at the level of the nTS to mediate the ven-
tilatory response to hypoxia (101) and SNO-based signaling may 
play a more pervasive role in controlling the drive to breathe, e.g., in 
carotid body chemoreceptors. In addition to central effects, SNOs 
can also augment ventilation via bronchodilation (102, 103) and 
possibly via effects on contractile function of breathing muscles 

(e.g., diaphragm, intercostals) (55, 56). These findings also suggest 
a link between aberrancies in SNO signaling (104) and the dis-
rupted breathing pattern/mechanics (104, 105) that are frequently 
observed in patients with heart failure.

SNOs and the cellular response to hypoxia versus anemia. Systemic 
hypoxia (decreased pO2) and anemia (decreased rbc mass and blood 
Hb concentration) both result in reduced oxygen delivery to tissues. 
Although both stressors activate HIF-1α, a ubiquitous transcrip-
tional regulator of hypoxic adaptation (1), the mechanism of acti-
vation differs. In sustained hypoxia, arterial O2 delivery is reduced 
due to low pO2 and SaO2. In this setting, inactivation of cellular 
O2 sensors (in particular, O2-dependent prolyl hydroxylases) results 
in the stabilization/accumulation of HIF-1α and enhanced tran-
scriptional activity. Canonical HIF-1α targets include erythropoi-
etin, VEGF, and GLUT1, which regulate erythropoiesis, angio-
genesis, and glucose utilization, respectively (1, 5). On the other 
hand, anemia reduces blood O2 content through a reduction in Hb 
concentration while preserving PaO2 and SaO2. Therefore, while 
both hypoxia and anemia are associated with reduced O2 delivery, 
the relative sparing of SaO2 during anemia fails to trigger classi-
cal O2-dependent HIF-1α signaling (5). Rather, HIF-1α activation 
during anemia occurs because S-nitrosylation — generating SNO-
pVHL, SNO-PHD2, and SNO-HIF-1α — serves to activate HIF-1α 
under normoxic conditions (106–109). In addition, GSNOR abun-
dance has been found to decrease in rodent models of acute ane-
mia, which could further augment SNO bioactivity and hypoxic 
adaptation (110). Notably, endogenous SNOs are critical for ische-
mic cardioprotection in mouse models (35). Inasmuch as anemia 
is a robust predictor of adverse outcomes in patients with ischemic 
heart disease (111–113) and heart failure (114), these experimental 
data strongly suggest that aberrant SNO-based signals can mediate 
the detrimental effects of anemia in these clinical settings and sug-
gest new therapeutic approaches.

Therapeutic potential of modulating S-nitrosylation
Decreased levels and/or impaired bioavailability of SNO-mod-
ified proteins have been observed in a variety of disease states 
characterized by tissue hypoxia (5), including congestive heart 
failure (98). To the extent that NO donors (e.g., isosorbide dini-
trate, nitroglycerin) have beneficial effects in patients with heart 
failure and ischemic heart disease (115–118), these therapies 
may function, in part, via modulating S-nitrosylation of key 
myocardial proteins (e.g., RYR2, HIF-1α, and β2-AR signaling 
components including GRK2). More efficient methods of SNO 
delivery to the myocardium (e.g., low-molecular-weight SNOs, 
SNO-loaded rbc) may have clinical benefits in this setting (50). 
In particular, rbc represent an attractive vehicle for SNO deliv-
ery: (a) rbc interface with endothelium to form the largest aggre-
gate intercellular interaction in the human body and therefore 
can exert beneficial effects across multiple organs; (b) rbc deliver 
both NO bioactivity and oxygen under the control of pO2-based 
allostery and thereby facilitate autoregulatory control (3); and 
(c) rbc provide unique access to the microcirculation that is dys-
functional in many cardiovascular diseases. The importance of 
rbc-mediated SNO delivery is reflected in the clinical observa-
tion that anemia is strongly associated with adverse outcome 
in patients with cardiovascular disease, even with modest lev-
els of blood loss (111–114). Paradoxically, liberal restoration of 
plasma Hb concentration via standard clinical practices (i.e., 
transfusion of banked erythrocytes, administration of erythro-

Figure 3
SNO-based integration of oxygen utilization and homeostasis across 
organ systems. SNO-based signals exert coordinated effects across 
multiple organ systems to provide an integrated mechanism for sensing 
oxygen levels and executing molecular responses to hypoxic cues. The 
roles of SNOs in cardiac and skeletal muscle performance; respira-
tory cycle functions (vasodilator and vasoconstrictor function of Hb), 
including HVD and alveolar ventilation and perfusion matching (rbc NO 
permeability and trapping); the central ventilatory drive; and chronic 
adaptation to hypoxemia and anemia (HIF-1α signaling) are depicted. 
SNO-mediated activation of HIF-1α has been demonstrated in multiple 
tissues, including the kidney (127). Specific details shown in the kidney 
inset are derived, in part, from observations in the heart, brain, and 
other tissues. EPO, erythropoietin. 
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Conclusions
O2 sensing and coupling mechanisms at the cellular, tissue, and 
integrated system levels involve critical roles for S-nitrosyla-
tion–based signaling, a ubiquitous and evolutionarily conserved 
mechanism for control of cellular function. In particular, SNOs 
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equated with reduced bioavailability of SNOs and their hypox-
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