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Cardiovascular disease is the number one cause of mortality in the Western world. The heart responds to many 
cardiopathological conditions with hypertrophic growth by enlarging individual myocytes to augment cardiac 
pump function and decrease ventricular wall tension. Initially, such cardiac hypertrophic growth is often compen-
satory, but as time progresses these changes become maladaptive. Cardiac hypertrophy is the strongest predictor 
for the development of heart failure, arrhythmia, and sudden death. Here we discuss therapeutic avenues emerging 
from molecular and genetic studies of cardiovascular disease in animal models. The majority of these are based on 
intracellular signaling pathways considered central to pathologic cardiac remodeling and hypertrophy, which then 
leads to heart failure. We focus our discussion on selected therapeutic targets that have more recently emerged and 
have a tangible translational potential given the available pharmacologic agents that could be readily evaluated in 
human clinical trials.

Cardiac hypertrophy and clinical considerations
The primary function of the heart is to contract and pump blood. 
When contractile performance is perturbed or reduced in response 
to diverse (patho-)physiologic stimuli, the heart typically remodels 
and hypertrophies, in association with increases in myocyte cell 
volume (1). Pathologic hypertrophy of the myocardium temporari-
ly preserves pump function and reduces ventricular wall stress, but 
prolonged cardiac hypertrophy is a leading predictor for arrhyth-
mias and sudden death as well as dilated cardiomyopathy and 
heart failure (2–5). The hypertrophic growth of the myocardium 
is typically initiated by signal transduction pathways in response 
to either neuroendocrine factors or an ill-defined mechanical 
stretch– or wall tension–sensing apparatus (6–10). Pathologic 
growth of the myocardium can induce concentric remodeling of 
the ventricle that results in myocyte growth in a cross-sectional 
area, such as with hypertension or from hypertrophic cardiomyop-
athy due to mutations in sarcomeric genes (Figure 1). Alternative-
ly, select pathologic stimuli, or the transition to heart failure, can 
also elicit an eccentric or dilatory growth response in which the 
chamber effectively dilates with wall thinning, most likely through 
a predominate lengthening of individual myocytes (Figure 1).

In contrast to pathologic stimuli that elicit cardiac hypertrophy 
with poor patient prognosis, exercise and pregnancy induce a purely 
physiologic cardiac hypertrophy that is typically not associated with 
a predisposition toward future disease (11). In these cases, the myo-
cardium grows more uniformly, with increases in chamber size, wall 
thickness, and myocyte length and width (Figure 1). Interestingly, 
Rockman and colleagues showed that the duration of the stimulus 
does not determine the difference between physiological and patho-
logical hypertrophy, suggesting instead that the stimuli are inher-
ently different (12). Accordingly, other studies have clearly shown 
activation of different signaling pathways in transducing either 
response. Physiological hypertrophy typically involves activation 
of IGF1/PI3K/AKT/PKB-dependent signaling, ERK1/2, or CEBPβ 
(13–19). These pathways or effectors have been shown to antagonize 
cell death in the heart or to stimulate myocyte renewal, suggesting 

that physiologic growth stimulation through such pathways can be 
cardioprotective despite causing mild heart enlargement.

Clinical management of pathologic cardiac remodeling is tar-
geted to the underlying cause (e.g., hypertension) and typically 
involves a select array of pharmacologic agents that have shown 
efficacy in reducing hypertrophy and/or negative remodeling of 
the myocardium. In both humans and animal models, target-
ing the renin-angiotensin-aldosterone system can reverse cardiac 
hypertrophy or induce positive remodeling of the ventricles back 
to predisease states independent of effects on blood pressure, 
though blood pressure management is an additional protective 
aspect of these antagonists and is often the reason for initiat-
ing treatment (20, 21). Another highly employed agent that has 
antihypertrophic properties is the β-adrenergic receptor blocker 
(β-blocker), which can also positively influence the heart and 
regress negative ventricular remodeling and hypertrophy as well 
as extend life span in heart failure patients (21). Ca2+ channel 
blockers are also used to manage hypertension in patients, and 
work in animal models has suggested antihypertrophic effects of 
these agents that are independent of blood pressure lowering (22). 
All of these agents are thought to positively affect the heart and 
reduce hypertrophy and remodeling by limiting signaling through 
neuroendocrine circuitry and intracellular transduction pathways 
that underlie myocyte growth and are at the molecular basis of 
both cardiac hypertrophy and remodeling as well as heart failure 
(23, 24). However, additional agents are needed, as some patients 
are refractory to the beneficial effects of angiotensin-converting 
enzyme inhibitors, angiotensin receptor blockers, β-blockers, 
and Ca2+ channel blockers. Furthermore, the overall efficacy of 
these agents is somewhat limited, as cardiovascular disease still 
progresses even in responsive patients (25, 26). Here we discuss 
additional signaling pathways that have emerged more recently 
from mechanistic and genetic studies in animal models of cardiac 
remodeling that offer new treatment opportunities.

β-Adrenergic receptor signaling and associated kinases 
in cardiac hypertrophy and remodeling
Inhibition of β-adrenergic receptor signaling is perhaps the most 
effective and frequently employed therapy in addressing negative 
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cardiac remodeling associated with hypertension, postmyocardial 
infarction remodeling, or early stages of heart failure (27–30). One 
proposed benefit of β-receptor blockade is a myocyte-autonomous 
reduction in hypertrophy and cell death (31, 32). β-Adrenergic 
receptors are a subclass of GPCRs that elicit a number of down-
stream signaling events, including activation of adenylyl cyclase 
and elevation of cAMP as part of the acute fight-or-flight response 
that dramatically increases myocyte inotropy, chronotropy 
and lusitropy (Figure 2 and ref. 32). Increases in cAMP in the 
cardiomyocyte result in activation of PKA, which serves as a criti-
cal regulator of cardiac contractility by directly phosphorylating 
key Ca2+-handling proteins and contractile proteins to augment 
function. However, when activated for extended periods of time, 
such as during hypertension, heart failure, or volume overload due 
to valve dysfunction, these pathways may lose their initial benefi-
cial positive chronotropic and inotropic effects (33, 34), leading to 
hypertrophy and β-receptor desensitization (35).
β-Receptor desensitization and loss of dynamic and acute 

responsiveness may be the most detrimental effect associated 
with chronic receptor stimulation with augmented catechol-
amine load (33, 35). This process is directly regulated by GPCR 
receptor kinases (GRKs), some of which specifically phosphory-
late the β-adrenergic receptor and modulate β-arrestin signaling, 
which together negatively affect the myocardium by reducing the 
dynamic range in β-receptor function (refs. 36, 37 and Figure 2). 

For example, inhibition of GRK2 in genetically modified mouse 
models has been shown to abate heart failure and hypertrophic 
remodeling while maintaining optimal contractile performance 
(38). These results suggest that inhibiting this pathway may have 
clinical applications. Indeed, viral vector–mediated overexpression 
of a truncated dominant-negative protein that blocks GRK2 func-
tion toward the β-receptor is advancing into phase 1 and 2 clinical 
trials (39). Additionally, M119, a selective GRK2 small molecule 
inhibitor that antagonizes Gβγ interaction with GRK2, enhances 
cardiomyocyte contractility in vitro and slows hypertrophy and 
heart failure progression in mice chronically treated with isopro-
terenol (Figure 2 and ref. 40).

Although various cardiac GPCRs have negative effects when 
stimulated chronically, β-arrestin has recently been recognized 
to mediate potentially beneficial downstream signaling (41). The 
currently available GPCR receptor blockers inhibit both G pro-
tein– and β-arrestin–mediated responses. However, select types 
of GPCR blockers known as biased receptor blockers can differ-
entiate between the two components. Just such an antagonist 
specifically targeting the angiotensin receptor is currently being 
evaluated in phase 2 clinical trials (42, 43). TRV120027 inhibits the  
G protein–coupled response downstream of the angiotensin recep-
tor but leaves the positive effects associated with β-arrestin signal-
ing untouched (Figure 2). The hope is that such biased receptor 
inhibitors may have long-term benefits over simply blocking all 
downstream signaling of the receptor. Indeed, some of the existing 
β-receptor antagonists used in humans, such as carvedilol, func-
tion as biased agonists for β-arrestin and hence might provide 
additional benefit beyond simply blocking traditional coupled 
signaling through Gαs (44, 45).

PKCα inhibition
PKCα is activated by GPCR signaling in cardiomyocytes, elicited 
by most neuroendocrine effectors that function through Gαq and 
phospholipase C activation (46). Once activated, PKCα appears 
to function as a nodal regulator of contractility by affecting key 
intracellular Ca2+ and myofilament contractile proteins that alter 
signaling and myocyte function. For example, deletion of Prkca 
in the mouse, which encodes PKCα, results in markedly increased 
basal cardiac contractility, including increased sarcoplasmic retic-
ulum Ca2+ levels and Ca2+ cycling efficiency that protects these 
mice from cardiac hypertrophy and heart failure induced by cardi-
ac stress (47, 48). Transgenic mice with dominant-negative PKCα 

Figure 1
Overview of different types of cardiac hypertrophy. The normal heart 
can develop different types of hypertrophic remodeling depending on 
the stress. Exercise and pregnancy result in physiologic hypertrophy, in 
which individual cardiomyocytes increase in length and width and the 
heart undergoes a balanced type of eccentric hypertrophy (chambers, 
walls, and septum enlarge in unison). Pathologic stress or hypertrophic 
cardiomyopathy activates neuroendocrine factors that stimulate cardiac 
hypertrophy, often resulting in concentric remodeling, in which cardio-
myocytes mostly increase in width compared with length, resulting in 
wall and septal thickening and a loss of chamber area. Over time, this 
state can deteriorate into dilated and eccentric hypertrophy, in which 
individual cardiomyocytes reduce in width and lengthening becomes 
excessive, leading to extreme chamber enlargement with loss of wall 
and septal thickness, along with large increases in wall tension. Some 
disease states can lead directly to dilated cardiomyopathy without a 
prior concentric remodeling phase.
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(dn-PKCα) overexpression specific to cardiomyocytes were also 
protected from myocardial infarction–induced heart failure, as 
were diseased mice treated with PKCα/β inhibitors such as Ro-31-
8220 and ruboxistaurin (Figure 2 and refs. 48–50). Ruboxistaurin 
treatment also reduced cardiac remodeling, fibrosis, and heart 
failure in rat models of heart disease and improved cardiac func-
tion in pigs after myocardial infarction (51–54). By using gene-
targeted mice for Prkca, Prkcb, and Prkcg, the protective effects of 
ruboxistaurin were shown to result exclusively from PKCα inhibi-
tion. (55). In addition to Ca2+ cycling effects, ruboxistaurin may 
also improve contractility by inhibiting PKCα phosphorylation of 
myofilament proteins (56–59). Hence, inhibition of PKCα could 

blunt the hypertrophic response by mildly augmenting contrac-
tile function at multiple levels, thereby antagonizing the need for 
enhanced neuroendocrine/catecholamine drive as disease begins 
and progresses. Similar effects may be induced by the myosin acti-
vator omecamtiv mecarbil (which is advancing to phase 3 clinical 
trials to evaluate its potential as a heart failure therapy), which 
may also lessen cardiac hypertrophy and pathologic remodeling 
(60–62). However, agents like omecamtiv might increase oxygen 
demand and thereby have serious adverse effects when dosed 
too high (60–62). Ruboxistaurin has been used in well over 1,000 
patients in multiple phase 2/3 clinical trials for diabetic retinopa-
thy, with some patients treated as long as 2 years, suggesting it 

Figure 2
Signaling pathways underlying pathologic cardiac remodeling that have emerged as translational targets. Diagram of selected signaling effec-
tors or signaling pathways that underlie cardiac hypertrophy or the transition to heart failure, with a special emphasis on immediate translational 
potential given the pharmacologic agents in development or clinical trials for other disorders. The diagram is also segregated into compartments 
in the cardiomyocyte, from receptors to second messengers to effector kinases. Some pathways lead to alterations in contractility and/or gene 
expression. The individual signaling mediators are discussed in the text. The diagram also depicts different therapeutic options based on known 
pharmacologic agents or gene therapy approaches. Green indicates drugs that are FDA approved, although not necessarily for cardiovascular 
indications. Red indicates treatments that are currently in phase 1 and 2 clinical trials, but again, not necessarily for cardiovascular indications. 
Blue indicates targets that have been identified in animal models and might be translated into phase 1 and 2 clinical trials with investigational 
compounds. NFAT, MEF2, and GATA4 are well-known cardiac-acting transcription factors that affect cardiovascular stress responsiveness. GPCR-
BA, G-protein coupled receptor biased agonist, biased toward G-protein signaling; β-arrestin-BA, β-arrestin biased agonist. AC, adenylyl cyclase; 
ACE, angiotensin-converting enzyme; β-AR, β-adrenergic receptor; ARB, angiotensin receptor blocker; GC, guanylate cyclase; β-ARK-CT,  
β-adrenergic receptor kinase carboxyl terminus; NPR, natriuretic peptide receptor; PLC, phospholipase C; PLN, phospholamban; I-1, PP1 inhibi-
tor 1; RYR2, ryanodine receptor 2; SERCA, sarcoplasmic reticulum Ca2+ ATPase. Dotted lines indicate indirect pathways.
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should be safe to use in cardiac patients as well (63–65). It is sur-
prising that ruboxistaurin has yet to be evaluated in heart failure 
patients, even if just for mild inotropic support, since these agents 
appear safe in other human clinical trials and are overwhelmingly 
efficacious in animal models of heart disease (66).

Ca2+/calmodulin-dependent kinase II signaling
In the last few years the importance of Ca2+/calmodulin-depen-
dent kinase II (CaMKII) as a signaling regulator for cardiac remod-
eling and heart failure has become clear (67). Four genes encode 
the CaMKII isozymes α, β, γ, and δ, which are all activated by Ca2+/
calmodulin and other modifications (68). For example, when 
short-lasting activation through Ca2+/calmodulin is sustained, 
CaMKII may become self-activated, thereby reinforcing its kinase 
activity (69, 70). Additionally, ROS can oxidize the kinase, which 
results in sustained activation (71). Like PKA and PKCα, CaMKII 
regulates the activity of key intracellular Ca2+ handling or regu-
latory proteins, thus affecting contractility and relaxation of the 
cardiomyocyte, but also affecting gene transcription by control-
ling nuclear shuttling of class II histone deacetylases (HDACs) 
(Figure 2 and refs. 67, 68). Overexpression of the CaMKIIδ isoform 
in the heart alters Ca2+ handling in several important ways and 
induces cardiac remodeling and disease (72, 73). Consistent with 
these results, mice lacking CaMKIIδ show a reduction in the cardi-
ac hypertrophic response and/or less ventricular remodeling with 
cardiac pressure overload stimulation (74, 75).

Though CaMKII regulates multiple Ca2+-handling proteins, 
genetic inhibition surprisingly does not result in negative side 
effects in animal models. Rather, these mice are protected from 
arrhythmia, suggesting an additional medical application if a spe-
cific small molecule inhibitor was developed (69, 76, 77). Further-
more, Anderson and colleagues showed a link between aldosterone 
antagonism and inhibition of CaMKII, suggesting that the benefi-
cial effects of aldosterone antagonism are mediated by inhibition 
of CaMKII (78). However, aldosterone antagonists only block aldo-
sterone/NADPH oxidase–mediated activation of CaMKII, leaving 
other modes of activation unaffected. Therefore, the challenge is 
to directly target the kinase itself and develop a safe inhibitor that 
is highly specific for CaMKII. One potential candidate is SMP-114, 
which has been evaluated in human clinical trials for rheumatoid 
arthritis (Figure 2 and ref. 79). However, this CaMKII inhibitory 
compound has not been extensively evaluated for selectivity, nor 
has it been applied to animal models of heart disease.

Phosphodiesterase 5 inhibition
Studies in genetically modified mice as well as pharmacological 
studies in animal models have suggested that inhibition of phos-
phodiesterase 5 (PDE5) could be a novel approach to ameliorate 
pathologic remodeling of the heart. PDE5 activity is dependent on 
cyclic GMP (cGMP) selectivity over cAMP, and enzyme inhibition 
with drugs such as sildenafil (Viagra) results in elevated cGMP, 
presumably within cardiomyocytes, which then has an antihy-
pertrophic signaling effect (Figure 2 and ref. 80). Indeed, mice 
subjected to pressure overload stimulation show almost no car-
diac hypertrophy when treated with sildenafil before (81, 82) and 
even after signs of heart failure have developed (83). Sildenafil has 
been evaluated in numerous human clinical trials of heart disease, 
including congestive heart failure, diabetic cardiomyopathy, and 
pulmonary hypertension, most of which showed improved end-
points and outcomes (84, 85). The molecular mechanism whereby 

sildenafil achieves this beneficial cardiovascular profile remains 
controversial, as it appears that PDE5 is not basally expressed in 
adult cardiomyocytes (86), and sildenafil may have some effect 
on PDE1 (80) and PDE3 (87) that could produce a mild increase 
in cAMP and an increase in inotropy (Figure 2). A mild increase 
in contractility might have cardioprotective effects on its own by 
reducing neuroendocrine drive, as discussed earlier and reviewed 
previously (88). An alternative mechanism for sildenafil action 
may be activation of PKG through an elevation in cGMP, which 
has been suggested to be antihypertrophic by signaling to down-
stream effectors such as calcineurin–nuclear factor of activated  
T cells (Cn-NFAT), regulator of G protein signaling, and transient 
receptor potential canonical 6 (TRPC6), as well as the RhoA-Rho 
kinase pathway, which by itself may be a potential therapeutic tar-
get against pathologic cardiac remodeling, especially since specific 
pharmacologic agents are already used in animal models as well as 
human patients (81, 82, 85, 89–93). Regardless of the downstream 
mechanisms, studies to date in animal models suggest that silde-
nafil, and possibly tadalafil and vardenafil, might be therapeuti-
cally efficacious in the treatment of pathologic cardiac remodeling 
prior to or coincident with the onset of heart failure, as results 
from early clinical trials already suggest some efficacy in patients 
with more advanced heart failure and/or right heart disease due to 
pulmonary arterial hypertension (Figure 2).

MAPK inhibition
The MAPK signaling cascade is classically initiated by activation 
of small G proteins in cardiomyocytes, followed by activation of 
successively acting protein kinases composed of three to five levels 
of phosphorylation-based amplification signaling (Figure 2). The 
MAPK cascade is subdivided into three main branches consisting 
of p38 kinases, JNKs, and ERK1/2. Additional side branches in this 
cascade include ERK5 and its upstream activator MEK5, as well 
as ERK3/4, although the upstream regulatory kinases for these 
effectors are not well characterized (94, 95). The JNKs and p38 
kinases, which are activated by MEK4/7 and MEK3/6, respectively, 
generally serve as more specialized transducers of stress or injury 
responses, hence their classification as stress-activated protein 
kinases, while ERK1 and ERK2, which are activated by MEK1/2, 
are more specialized for mitogenic and growth factor transduction 
events and associated cellular processes.

Nearly all MAPK signaling components (upstream and down-
stream) are activated in end-stage human heart failure as well as 
in animal models of pathologic cardiac hypertrophy (96–98). Since 
this topic has been extensively reviewed previously (95), here we 
will only highlight the most medically relevant results that suggest 
therapeutic options. Constitutive activation of ERK1/2 signaling in 
the heart through expression of activated MEK1 produces concen-
tric cardiac hypertrophy with thickening of individual myocytes, 
although it does not progress to failure and is protective against 
cell death (99, 100). Moreover, genetic inhibition of ERK1/2 signal-
ing in the heart with either constitutive expression of an ERK1/2-
specific dual-specificity phosphatase or by combinatorial deletion 
of Erk1 and Erk2 promotes cardiac dilation by enhancing growth in 
myocyte length (101–103). Thus, inhibition of MEK1/2 or ERK1/2 
in patients with severe concentric remodeling and restrictive car-
diomyopathy might be a therapeutic option. A number of different 
MEK1 inhibitors, such as PD-0325901, are being used in human 
clinical trials for cancer, all of which show safety and some of which 
have good oral bioavailability (Figure 2 and ref. 104).
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Overexpression of MKK6 (p38 activation), MKK7 (JNK acti-
vation), or MEK5 (ERK5 activation) in the hearts of transgenic 
mice have each suggested a disease-causing effect of these kinases 
(105–107). Each appears to induce extreme cardiac dilation and 
decompensation with loss of contractile function, suggesting that 
inhibiting JNK, p38, or ERK5 with an appropriate pharmacolog-
ic agent might be therapeutic and antagonize the transition to 
dilated heart failure (Figure 2 and refs. 95, 108). However, cardiac-
specific deletion of the gene encoding p38α predisposes mice to 
disease with worse cardiac function, and dn-p38α mice develop 
more cardiac hypertrophy with pressure overload stimulation 
(109, 110). Similarly, transgenic mice expressing dn-JNK1/2 in 
the heart as well as combinatorial deletion of the 3 and 4 alleles of 
Jnk1 and Jnk2 (deletion of all 4 allele result in embryonic lethality) 
produced more hypertrophy with pressure overload stimulation 
(111). Mice lacking cardiac MKK4 or MKK7 are also more prone 
to heart disease with pressure overload stimulation, suggesting a 
protective function for these pathways in addition to the previ-
ously described maladaptive aspects of their signaling (112, 113). 
Thus pharmacologic inhibition of JNK or p38 as a treatment for 
human heart disease would be more complicated if these animal 
studies directly translate (Figure 2). However, hamsters with mus-
cular dystrophy and associated heart disease show less fibrosis 
and better cardiac function with systemic p38 MAPK inhibitor 
treatment, though a JNK inhibitor has no effect (114). Similar 
cardioprotection has also been observed in diabetic mice treated 
with a p38 MAPK inhibitor (115) and in mice following myocar-
dial infarction injury (116). Therefore, pharmacological inhibi-
tion of p38 (or MKK6) and JNK (or MKK4/7) might have value 
to inhibit fibrosis or for select types of cardiac disease such as 
diabetic cardiomyopathy.

In addition to the terminal MAPK effectors and their upstream 
MAPKKs, the MAPKKKs have been suggested as important reg-
ulators of cardiac hypertrophy and/or transition to dilation. A 
number of these MAPKKKs modulate cardiac hypertrophy and 
heart failure, such as TAK1, PAK1, ASK1, and MEKK1 (117–123). 
However, these are less tangible targets since there are currently no 
drugs available with high specificity toward any of these. Indeed, 
the ability to achieve appropriate specificity toward just one indi-
vidual kinase within a backdrop of some 500 serine-threonine 
kinases is a unique challenge for drug development, as even cur-
rent investigational compounds that have been highly refined only 
achieve “fingerprints” of varying selectivity. Despite this note of 
caution, the translation of many of the kinase-inhibitory drugs 
into the cardiac disease realm is still potentially important toward 
the goal of achieving greater efficacy and life span extension than 
the current standard of care agents offer.

HDAC inhibitors
HDACs remove acetyl groups from lysine residues in target pro-
teins and are key regulators of epigenetics through their activity 
toward histones in chromatin (124). Hence inhibition of HDACs 
might represent a novel therapeutic vantage point for pathologic 
cardiac hypertrophy/remodeling, given the known profile of gene 
expression changes that are commensurate with the disease (Fig-
ure 2). Genetically, mice lacking Hdac9 or Hdac5 genes show spon-
taneous cardiac hypertrophy with aging or exaggerated pathologic 
hypertrophy with pressure overload stimulation, suggesting that 
select class IIa HDACs are normally suppressors of disease (125). 
Thus, a pharmacologic compound that selectively inhibits class IIa 

HDACs would likely be deleterious. Indeed, a pharmacologic com-
pound that selectively inhibits class IIa HDAC binding with MEF2 
has been shown to impair myogenesis, which could be deleterious 
to cardiac function (126).

A more relevant therapeutic target are the class I HDACs, for 
which a number of clinical-grade pharmaceuticals have been 
developed (127). Indeed, pan-HDAC inhibitors reduce cardiac 
hypertrophy due to pressure overload stimulation, angiotensin II 
infusion, or isoproterenol in rodent models (128–130). This effect 
may be more specific to HDAC1, -2, or -3, as the more selective 
class I HDAC inhibitor apicidin suppresses cardiac hypertrophy 
and improves function in a mouse model of pressure overload 
(131). HDAC inhibitors also reduce fibrosis and negative remod-
eling of the heart after myocardial infarction injury in the rat, as 
well as in rat models of spontaneous and salt-sensitive hyperten-
sion (132–134). These results are consistent with genetic studies 
in Hdac2-null mice, which show less cardiac hypertrophy induced 
by various pathologic stimuli (135). However, conflicting results 
from another group that created heart-specific Hdac1- or Hdac2-
null mice showed no attenuation of the hypertrophic response by 
either gene deletion following pressure overload stimulation or 
isoproterenol infusion (136). Thus, the genetics remain compli-
cated by redundancy in this gene family, although pharmacologic 
studies in animal models of hypertrophy consistently support a 
therapeutic effect (Figure 2). The HDAC inhibitor romidepsin is 
FDA approved for the treatment of cutaneous T cell lymphoma, 
but arrhythmia and low white blood cell counts have been noted as 
significant concerns with this agent (137, 138). Although another 
FDA-approved HDAC inhibitor, vorinostat, has not shown such 
complications at this point, caution is warranted for its use in 
hypertrophy or heart failure because potential side effects cannot 
be ruled out at this point (139, 140).

Manipulation of Ca2+ dependent signaling effectors
Ca2+ channel blockers used for hypertension are also effective in 
reducing cardiac hypertrophy. While these drugs lower blood pres-
sure, they have not shown benefit in heart failure and are generally 
avoided because of the potential risk of arrhythmias and negative 
inotropic effects (141). Recent evidence in genetically modified 
mice with cardiac-specific loss of the L-type Ca2+ channel, which is 
the primary mechanism for Ca2+ entry in a cardiomyocyte, showed 
that reduced activity of these channels leads to a compensatory 
leak from the ryanodine receptor and induction of cardiac hyper-
trophy (142). Thus, Ca2+ channel blockers might not be a straight-
forward therapeutic option for other forms of heart disease that 
are independent of hypertension. Additional coverage of altera-
tions in Ca2+ handling through ryanodine receptor 2, sarcoplas-
mic reticulum Ca2+ ATPase, and phospholamban in heart failure 
are directly discussed in this Review series (Figure 2 and ref. 143).

Another potential cutting-edge therapeutic angle that affects 
Ca2+ signaling and pathologic hypertrophy is the inhibition of 
TRPC channels (Figure 2). TRPC channels permeate Ca2+ and 
Na+ in specific microdomains to initiate and/or maintain cardiac 
hypertrophy in association with GPCR signaling, which gener-
ates diacylglycerol to activate these channels (144, 145). Studies 
in mice have suggested that increased activity of either TRPC3 
or TRPC6 in the heart, both of which are normally induced with 
hypertrophy, is sufficient to cause ventricular remodeling, dila-
tion, hypertrophy, and disease (146, 147). Cardiac-specific expres-
sion of dn-TRPC3, dn-TRPC4, or dn-TRPC6 each antagonized the 
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degree of cardiac hypertrophy after pressure overload stimulation 
or infusion of phenylephrine/angiotensin II (148). Similarly, mice 
deficient in Trpc1 showed reduced cardiac hypertrophy and disease 
after pressure overload or neuroendocrine agonist stimulation 
(149). These results suggest that an appropriately designed inhibi-
tor that blocks one or more of these TRPC channels might be an 
effective therapeutic for cardiac hypertrophy or the transition to 
heart failure. Indeed, the presumed TRPC3/6 selective inhibitor 
Pyr3 was shown to attenuate pressure overload cardiac hypertro-
phy in mice (150). Thus, TRPC channels might represent novel 
targets for cardiac hypertrophy and failure, especially given the 
numerous compounds emerging from the pharmaceutical indus-
try with specificity for the TRPM and TRPV subfamilies (151).

An important downstream effector that mediates the pro-hyper-
trophic effects of TRPC channels in the heart is the Cn-NFAT 
signaling circuit. Cn is a Ca2+-activated serine-threonine protein 
phosphatase that dephosphorylates NFAT in the cytoplasm, 
resulting in its nuclear translocation and activation of hypertro-
phic gene expression (Figure 2). Nearly 15 years ago, Cn-NFAT sig-
naling was proposed to be both necessary and sufficient for car-
diac hypertrophy (152, 153). Since then, a large number of genetic 
studies in the mouse and pharmacologic-based studies in mice 
and rats have proven the absolute centrality of this Ca2+-activated 
signaling circuit in mediating cardiac hypertrophy (154, 155), sug-
gesting that Cn inhibitors could be used to treat associated car-
diac disease states. However, the immunosuppressive effects of Cn 
inhibitors, together with other more severe side effects associated 
with the higher dosages that are needed to treat hypertrophy, likely 
preclude such an approach in humans.

Conclusion
Although other potential targets exist, such as metabolism and 
redox regulation, mTOR inhibition by rapamycin, or even treatment 
with peptides such as adiponectin, the pathways discussed here fit a 
central theme of emerging inibitors that affect signaling pathways 

(156, 157). Indeed, the current standard-of-care pharmacologic 
agents that are used to treat hypertension and heart failure also 
reduce cardiac hypertrophy by targeting signaling effectors. Despite 
these current agents, the incidence and prevalence of heart failure is 
still increasing, underscoring the need for agents that act earlier or 
are more effective (26, 158, 159). Because many of the targets high-
lighted here have existing or newly developed pharmacologic agents 
with reasonable specificity and safety, the hope is that additional 
clinical trials can be instituted quickly for patients in early-stage 
heart failure, patients with hypertrophy that is nonresponsive to the 
standard-of-care agents, or in patients with hypertrophic cardiomy-
opathy due to mutations in sarcomeric genes. While presentation 
of cardiac hypertrophy is not typically an endpoint in clinical trials, 
diastolic dysfunction and early-stage heart failure might be. Many of 
the signaling pathways and effectors that induce pathologic hyper-
trophy in the first place likely lead to diastolic dysfunction and heart 
failure, so many of the pathways outlined here might be effective 
early and late in the disease process that culminates in heart failure. 
Therefore, as the use of animal models continues to uncover addi-
tional signaling effectors of cardiac hypertrophy and heart failure, 
agents against these targets might be translated into clinical trials 
to maintain a seamless pipeline of therapeutic options until a more 
efficacious treatment is uncovered.
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