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Half of patients with muscle-invasive bladder cancer develop metastatic disease, and this is responsible for
most of the deaths from this cancer. Low expression of RhoGTP dissociation inhibitor 2 (RhoGDI2; also
known as ARHGDIB and Ly-GDI) is associated with metastatic disease in patients with muscle-invasive blad-
der cancer. Moreover, a reduction in metastasis is observed upon reexpression of RhoGDI2 in xenograft mod-
els of metastatic cancer. Here, we show that RhoGDI2 suppresses lung metastasis in mouse models by reducing
the expression of isoforms V1 and V3 of the proteoglycan versican (VCAN; also known as chondroitin sulfate
proteoglycan 2 [CSPG2]). In addition, we found that high versican levels portended poor prognosis in patients
with bladder cancer. The functional importance of tumor expression of versican in promoting metastasis was
established in in vitro and in vivo studies in mice that implicated a role for the chemokine CCL2 (also known as
MCP1) and macrophages. Further analysis indicated that RhoGDI2 suppressed metastasis by altering inflam-
mation in the tumor microenvironment. In summary, we demonstrate what we believe to be a new mechanism
of metastasis suppression that works by reducing host responses that promote metastatic colonization of
the lung. Therapeutic targeting of these interactions may provide a novel adjuvant strategy for delaying the

appearance of clinical metastasis in patients.

Introduction

One-half of patients with muscle-invasive (MI) urothelial cancer
(UC) of the bladder develop distant metastases, even after radical
surgery of the primary tumors. We identified RhoGTP dissocia-
tion inhibitor 2 (RhoGDI2; also known as ARHGDIB and Ly-GDI,
and abbreviated herein as GDI2) as an invasion and metastasis
suppressor in human bladder cancer cell lines (1) and have shown
that its expression is inversely associated with clinical outcome
after treatment of MI tumors (2). Independently, in compara-
tive gene expression profiling of invasive bladder cancer cell lines
and human MI UC samples, we identified versican (VCAN; also
known as chondroitin sulfate proteoglycan 2, [CSPG2]) as highly
expressed in invasive and metastatic cancers (3).

Versican is a highly conserved structural component of the ECM
that is involved in neuronal development (4-8), the inflammatory
phase of pulmonary-vascular diseases, atherosclerosis (9-12), and
the invasive and metastatic signatures of many cancers (13-25).
Four isoforms or spliced variants have been reported for versican,
and the roles of VO, V1, and V3 and to a lesser extent V2 isoforms
are recognized in cancer, vascular disease, and neuronal develop-
ment (detailed in refs. 8, 26, 27, and the references cited therein).
These isoforms contribute to proliferative, adhesive, and migra-
tory states of tumor cells and modulate their interactions with
stroma in the tumor microenvironment (26, 28, 29).

Versican expression is regulated by cytokines, chemokines,
and hypoxia (6, 7, 9-12, 21, 26, 29-36) via transcription factors
such as TCF-4, SP-1, AP-1, and p53, which have binding motifs
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in the versican promoter (5, 19, 27, 36-38). Versican promoter
upregulation via AP-1 accounts for the higher mRNA expression
levels observed in invasive human melanoma cells (36, 39). TCF-4
has been reported to control the expression of versican isoforms
in prostate cancer cells (19, 27, 38).

Here, we demonstrate what we believe is a novel mechanism of
metastasis suppression by showing that the metastasis suppressor
activity of GDI2 is dependent on a reduction of versican expres-
sion. Experiments with human and murine xenografts in the con-
text of pharmacologic and genetic manipulation using transgenic
mice suggested that both CCL2 and macrophages were necessary
for versican to exert its metastasis-promoting role. We believe this
work is the first demonstration of a tumor metastasis suppres-
sor blocking the prometastatic inflammatory host response in a
distant organ and, by virtue of this fact, highlights the therapeutic
potential of targeting both malignant and host-derived compo-
nents of the tumor microenvironment.

Results

Versican is a putative effector of the GDI2 metastasis suppressor. Reduced
mRNA expression of GDI2 is associated with poor clinical out-
come in UC (Figure 1A). Since recent reports found that regula-
tion of transcription may be central in metastasis suppressor gene
function (40, 41), we used a transcriptional screen to identify
putative effectors of GDI2. We compared gene expression by high-
density oligonucleotide microarrays of low GDI2-expressing and
highly metastatic UMUC3 cells previously (42) transfected with a
GFP-GDI2 (GFP) fusion protein to those harboring a GFP vector
alone. Reexpression of GDI2 in these cells leads to a significant
reduction in metastatic colonization of the lung (42).
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Figure 1

GDI2 and versican expression and disease outcome. (A) Kaplan-Meier curves showing stratification of DSS as a function of GDI2 RNA expres-
sion in 2 independent studies (left: Sanchez-Carbayo et al., ref. 44; right: Kim et al., ref. 46). (B) Supervised clustering of microarray analysis of
metastatic UMUCS3 cells reexpressing GDI2-GFP and GFP controls was limited to 92 significantly differentially expressed probes by more than
3-fold (right). Unsupervised clustering of 92 GDI2-regulated probes in 46 human urothelial carcinomas (43) (left). Stage of the tumor is classified
as carcinoma in situ (green), NMI (orange), and MI (black) urothelial bladder cancer. Probes for VCAN mRNA are indicated by arrowheads. (C)
Dot plots of standardized (z scored), logged (base 2) expression of VCAN probes comparing NMI and Ml urothelial bladder cancer in 4 indepen-
dent studies shown (upper left: Sanchez-Carbayo et al., ref. 44; upper right: Stransky et al., ref. 45; lower left: Dyrskjot et al., ref. 47; lower right:
Kim et al., ref. 46). Differences in distributions were tested by the Mann-Whitney U test. (D) Kaplan-Meier plots showing stratification of DSS as
a function of VCAN expression in the same 2 studies as in A (left: Sanchez-Carbayo et al., ref. 44; right: Kim et al., ref. 46). Reproduced with
permission from the Journal of Clinical Oncology (44), Molecular Cancer (46), Cancer Research (43), and Nature Genetics (45, 47).

This comparison identified 92 significantly differentially
expressed probes by a more than 3-fold change. Given the role of
GDI2 in suppression of invasion and metastasis (1), we restricted
further analysis to candidates significantly associated with MI dis-
ease in a cohort of UCs (n = 46) profiled by microarray (ref. 43 and
Figure 1B). Using hierarchical clustering analysis to examine the
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pattern of expression of these probes in the human tumors, we
observed the pattern of GDI2-regulated genes related to disease
stage (Figure 1B). Interestingly, versican was the most repressed by
reexpression of GDI2 (fold change > 8-fold) while being the most
significantly overexpressed in invasive as compared with nonin-
vasive cancer. Supporting the notion that GDI2 represses versi-
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can expression in vivo, we found an anticorrelation (rho -0.274,
P =0.009) between GDI2 and VCAN mRNA expression in a com-
pletely separate cohort of human bladder tumors (44).

Also consistent with the notion that versican might mediate
part of the GDI2 invasion and metastasis suppressor phenotype,
we found, in 4 separate microarray cohorts of UCs (44-47), signif-
icantly higher RNA expression of versican in MI as compared with
non-muscle invasive (NMI) UCs (Figure 1C). In 2 of these cohorts
(44, 46), where survival follow-up data was available, we found a
significant association between level of expression of versican and
survival (Figure 1D). Importantly, expression of versican protein
in both tumor cells and stroma of human urothelial carcinoma
tissues (Figure 2A) was correlated with poor disease-specific sur-
vival (DSS) (Figure 2B).

Lung metastasis and versican expression in vivo are reduced by tumor
GDI2. Expression of GDI2 in UMUCS3 significantly suppressed
the expression of V1, V2, and V3 versican isoforms at the level of
transcript, total cellular protein, and protein secretion in condi-
tioned medium (CM) (Figure 3, A and B). In lung colonization
assays, GDI2 reexpression in UMUC3 reduced colonization (Fig-
ure 3C) and the number of visible lung metastases (Figure 3D) and
decreased the expression of V1, V2, and V3 versican isoforms in
lung metastatic deposits (Figure 3E).

We (48) and others (49) have reported that pulmonary macro-
phage infiltration is a prerequisite for lung metastasis develop-
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Figure 2

The expression of VCAN in human bladder tumors. (A) Immuno-
histochemical staining and scoring of VCAN in NMI (n = 92) and Ml
(n = 102) tumors. Original magnification, x100 (upper panels); x200
(lower panels). (B) Kaplan-Meier plots showing stratification of DSS
for all patients as a function of tumor cytoplasmic VCAN (left) and
intensity stromal VCAN (right) staining (log rank, P < 0.0005 and
P =0.002, respectively).

ment after tail-vein injection of cancer cells. Since versican is a
component of the tumor inflammatory response facilitating lung
metastases (50) and has been linked to macrophage-mediated
inflammatory vascular disease (9, 10, 12, 14, 29, 38, 51-54), we
hypothesized that GDI2 might suppress lung metastasis through
downregulation of versican, in turn leading to a reduction of mac-
rophage lung infiltration. We compared macrophage infiltration
within and adjacent to metastatic lung foci that developed after
tail-vein injection of GFP and GDI2 cells and found a reduction in
mice injected with GDI2 cells compared with GFP controls (Figure
4A). Additionally, the levels of tumor- and host-derived cytokines
(human and murine hIL-6 and hCCL2, mIL-6, and mCCL2) and
Cox-2 activity, all implicated in macrophage recruitment, polariza-
tion, and inflammation, were decreased in lysates of GDI2-injected
lungs (Figure 4, B and C).

Tumor GDI2 reduces versican expression in cancer cell-macrophage
cocultures. Versican is regulated by cytokines and other soluble fac-
tors in the tumor microenvironment (50). Hence, it is conceivable
that cytokines expressed by macrophages in the tumor micro-
environment can stimulate their own as well as tumor versican
expression. We sought to determine the impact of tumor GDI2 on
this process by using a coculture system of cancer cells and U937
macrophages to determine whether such interaction led to altera-
tions in versican expression. Coculture of UMUCS3 cells with U937
cells, without cell-cell contact, increased the expression of versican
isoforms at the protein (Figure 5A) and transcript levels (Figure
5B) in both cell types, while expression of GDI2 in cancer cells
reduced versican induction in both cell types. These findings sug-
gest tumor GDI2 reduces expression of versican in cancer cells and
also exerts an effect on macrophage versican expression through
cancer cell-secreted factors.

Coculture of cancer cells with primary macrophages or macro-
phage cell lines induces an increase in proinflammatory cytokines
in their CM (48, 55, 56). To determine whether GDI2 regulates
this process, we evaluated the effect of GDI2 on inflammatory
mediators in coculture, finding that GDI2 expression in cancer
cells decreased the secretion of IL-6 and CCL2 cytokines in CM
of the cocultures (Figure 5C) as well as Cox-2 activity (Figure 5D).
We found a correlation between the expression of versican and
the other 2 cytokines in the microarray cohort of human bladder
tumors; this finding supports the idea that there is a regulatory
relationship among IL-6, CCL2, and versican expression operating
in the microenvironment of human bladder tumors (CCL2, rho
0.514, P < 0.001; IL-6, tho 0.537, P < 0.001).

Tumor GDI2 suppresses cancer cell and macrophage invasion via ver-
sican. We next determined the effect of GDI2 on cancer cell inva-
siveness in response to either complete growth medium (CGM) or
U937 macrophages and the role versican played in this process.
Knockdown of all versican isoforms in UMUC3 (Figure 6A) phe-
nocopied the antiinvasive profile of GDI2 cells (Figure 6B). Over-
expression of V1 and V3, but not V2, isoforms increased UMUC3
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Figure 3

GDI2 overexpression reduces lung metastasis and VCAN expression. (A) WBs showing the expression of GFP and GFP in UMUCS cells.
Tub, tubulin. (B) The expression of VCAN transcripts (left) and protein (right) in GFP and GDI2 cells was determined by qRT-PCR and WB
of cell lysates and CM. Bars represent mean + SEM, n = 3. *P < 0.05; **P < 0.01 (compared with GFP, Student’s t test). Relative expression
was normalized to the housekeeping gene GUS-B. Equal protein loading was confirmed by tubulin. (C) Tumor cell burden in lungs was deter-
mined by gPCR of human 12p chromosome at indicated time points after tail-vein injection of cancer cells. Bars represent mean + SEM, n = 3.
*P < 0.05, Student’s t test, comparing GFP and GDI2. **P < 0.001, 1-way ANOVA with Tukey’s multiple comparison post-hoc test. (D) Photos

of lung metastasis (mets) (circled in yellow) and scatter plot of the incidence and number of visible metastases 6 weeks after injection of cancer
cells. *P < 0.05, %2 test, comparing the incidence; **P < 0.01, Student’s t test, comparing the number of metastases. (E) WB of VCAN isoforms

in representative lung lysates (n = 3) 6 weeks after injection of cancer cells shown in D.

matrix invasiveness (Figure 6B) while abrogating the antiinvasive
effect of GDI2 reexpression. Since transendothelial migration
(TEM) of cancer cells is an important step in metastasis (48, 49),
we investigated the effect of GDI2 on cancer cell TEM (48) by
evaluating the ability of cancer cells to traverse primary human
pulmonary microvascular endothelial cell (PMVEC) monolayers
toward either CGM or U937 macrophages. Tumor GDI2 reexpres-
sion decreased the cancer cells’ ability to traverse PMVECs whether
in the presence of CGM or U937 macrophages (Supplemental Fig-
ure 1A; supplemental material available online with this article;
doi:10.1172/JC161392DS1). Knockdown of versican phenocopied
the inhibitory effect of GDI2 on UMUC3 TEM. V1 and V3 over-
expression dramatically increased TEM of GFP cells toward CGM
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(Supplemental Figure 1A) and U937 cells (Supplemental Figure
1A) as compared with controls and abrogated the inhibitory effect
of GDI2 reexpression. In contrast, overexpression of V2 isoform
in cancer cells had neither effect. Since cancer cells can exert a
chemortactic effect on macrophages (55, 57-61), we investigated
the effect of tumor GDI2 on the ability of cancer cells to promote
macrophage chemotaxis through Matrigel or PMVECs and found
that GDI2 reexpression reduced U937 cell migration compared
with GFP controls (Supplemental Figure 1B). Versican depletion
in tumor cells had similar effects, while V1 and V3 (but not V2)
isoform expression in cancer cells increased their ability to attract
U937 cells (Supplemental Figure 1C) and also negated the sup-
pressor effect of GDI2 on U937 chemotaxis.
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We next sought to determine whether these findings generalize to
other human bladder cancer cell lines and have carried out additional
experiments with the human bladder cancer cell lines in which GDI2
was originally identified as a metastasis suppressor (1): T24 (non-
metastatic, high GDI2) and T24T (metastatic, low GDI2). Genetic
manipulation of V1 and V3 versican by overexpression and depletion
in T24 and T24T, respectively (Supplemental Figure 2, A-C), con-
firmed the results retrieved in the UMUCS3 cell line (Supplemental
Figure 3, A-C). Together, these results indicate that tumor GDI2,
through regulation of V1 and V3 versican isoforms, reduces the abil-
ity of cancer cells and macrophages to invade matrix and PMVECs.

Versican is required for metastatic colonization of the lung. Based on the
above observations, we hypothesized that GDI2-mediated suppres-
sion of metastasis depended on reduction of versican. To test this
hypothesis, we compared shVCAN-transduced cells depleted of all
isoforms (Figure 6A) with NTsh controls in tail-vein experimen-
tal metastasis assays, and found a significant decrease in the inci-
dence and number of lung metastases (Figure 7A). Decreased ver-
sican protein expression was confirmed for shVCAN lung lysates
and was associated with decreased macrophage infiltration and
inflammatory mediators in tumor-bearing lungs (Figure 7, B-D).
Knockdown of versican in another metastatic bladder cancer cell
line, T24T with low GDI2 expression (ref. 1 and Supplemental Fig-
ure 2, A and B), revealed similar results (incidence and number of
visible lung metastases after tail-vein injection of T24T-NTsh con-
trols and T24T-shVCAN) (Supplemental Figure 4A). In addition,
the levels of versican V1 and V3 protein expression in the lungs as
well as macrophage infiltration and proinflammatory mediators
were similarly suppressed after knockdown of versican in T24T
cells (Supplemental Figure 4, B-D).
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To determine whether suppression of versican expression is
required for the metastasis suppressor effect of GDI2, we evalu-
ated the effect of ectopic expression of V1 and V3 isoforms in GFP
and GDI2 cells on the development of lung metastases. We found
that overexpression of V1 and V3 (Figure 8, A and B) in GFP cells
was associated with an increase in the incidence, number, and size
of lung metastases as compared with their controls (vehicle con-
trol [VC]). V1 and V3 overexpression was associated with increased
macrophage infiltration (Figure 8, C and D) and V1 and V3 pro-
tein expression (Figure 9A) as well as tumor and host inflamma-
tory mediators in tumor-bearing lungs (Figure 9B). Importantly,
reconstitution of V1 and V3 levels in cells expressing GDI2 to those
found in control cells abrogated the suppressor effect of GDI2
on lung metastases, macrophage infiltration, and inflammatory
mediators in tumor-bearing lungs (Figures 7-9). These results sup-
port a central role for tumor-derived V1 and V3 versican isoforms
in the lung metastasis suppressor effect of GDI2.

Functional blockade of CCL2/CCR2 axis antagonizes versican-medi-
ated lung metastasis. Reports implicate CCL2 in cancer progression
and metastasis through their effects on macrophages (49, 58, 62,
63). CCL2 and versican expression are also induced by common
factors in vitro (9, 10, 18, 32). Since our results indicate that both
human and murine versican and CCL2 in the lung are reduced
as a function of tumor GDI2 expression (Figure 4B and Figure
7D), we wondered whether the prometastatic effects of versican
require CCL2. We used 2 approaches to answer this. First, we
used a syngeneic experimental metastasis assay and the MB49
murine bladder cancer cell line (48) in CCL2 (Ccl27/~) or CCL2
receptor (Ccr277) knockout mice and their C57B6/J6 WT coun-
terparts (12, 26, 64). Second, we used both neutralizing antibody
Volume 122 Number 4
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GDI2 modulates cancer cell-macrophage interactions through VCAN. (A) Schema of UMUC3-U937 cocultures. WB showing the expression of
VCAN isoforms in UMUCS3 or U937 lysates cocultured for 72 hours. (B) gRT-PCR (after 6 hours) in cell lines under the same conditions as in
panel A. In all coculture experiments, bars represent evaluated cells (U937 or UMUCS) that appear below the lines in the x axis labels. *P < 0.01,
compared with GFP in single-cell culture; **P < 0.01, comparing GFP and GDI2 in cocultures; #P < 0.05, comparing U937 in single and cocul-
tures; #P < 0.05, comparing U937 cocultured with GFP and GDI2. (C) hIL-6 and hCCL2 in 72-hour CM of single cultures of U937 (gray bars) or
UMUCS (either GFP or GDI2, black bars) and in cocultures of U937 with UMUCS3 (either GFP or GDI2, white bars). *P < 0.05, comparing GFP
and GDI2; **P < 0.01, comparing single cell to coculture. (D) Cox-2 activity was determined in cell lysates under the same conditions as in A.
*P < 0.01, comparing single cells to cocultures; #P < 0.01, comparing cocultures with GFP versus GDI2. Student’s t test was used.

to CCL2 (65) and an antagonist to CCR2, RS102895 (66, 67),
in experimental metastasis assays using V1 and V3 versican iso-
form-overexpressing UMUC3 cells.

We found significantly reduced lung metastasis (Figure 10A) and
macrophage infiltration in the lung (Figure 10B) following MB49
tail-vein injection in Ccl27~and Ccr27~ mice. The lack of host CCL2,
but not CCR2, was associated with decreased expression of V1, but
not V2, murine versican isoforms (no anti-V3-specific murine anti-
body was available) (Figure 10C), yet both were associated with a
decrease in IL-6 and CCL2 (Figure 10D). We also found that func-
tional blockade of CCR2 by RS102895 significantly reduced the
incidence and number of lung metastases of UMUC3-GFP cells
at baseline and upon overexpression of V1 and V3 (Figure 10E);
this finding supports the importance of CCL2. Use of an antibody
to neutralize CCL2 resulted in a similar reduction in metastases
of UMUCS3 cells at baseline and with overexpression of versican
isoforms V1 and V3 (Figure 10F). These results indicate that the
CCL2 and CCR2 are important in GDI2-versican-mediated lung
metastasis in both murine and human models of disease.
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Macrophage depletion inbibits versican-driven lung metastasis. Our
findings that the metastasis suppressor effect of GDI2 is mediated
through modulating cancer cell-macrophage interactions and
downregulation of versican prompted us to investigate whether
macrophage recruitment contributes to versican-mediated metas-
tasis. First, we transiently ablated macrophages by administration
of clodronate liposomes (48-50) and found that pharmacologic
ablation of macrophages not only decreased the incidence, num-
ber, and size of UMUC3-GFP lung metastasis, but also mitigated
metastasis induced by overexpression of V1 and V3 (Figure 11A
and Figure 12A). Interestingly, clodronate did not further reduce
lung metastasis or macrophage infiltration in UMUC3-GDI2 cells,
while macrophage infiltration of the lungs and metastasis was
significantly suppressed by clodronate treatment of UMUC3-GFP
(Figure 11B and Figure 12B). The expression levels of host and
tumor IL-6 and CCL2 as well as Cox-2 activity in tumor-bearing
lungs were significantly decreased after clodronate treatment (Fig-
ure 11, C and D, and Figure 12, C and D). Taken together, these
data argue that macrophage infiltration in the lung plays a central
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Figure 6

Effect of genetic manipulation
of VCAN in UMUCS cells on
their in vitro appearance. (A)
WB confirming the efficiency of
Vean knockdown/expression in
UMUC3-GFP and UMUC3-GDI2
cells transduced with shRNA
lentiviruses targeting all VCAN
isoforms (shVcan), an irrelevant
nontarget (NTsh), or retroviruses
overexpressing V1, V3, and V2
and their empty vector controls
(VC). Numbers represent the
relative band density normal-
ized to corresponding tubulin,
with GFP-VC considered as 1.
(B) Engineered UMUCS cells in
A were allowed to invade Matri-
gel-coated 8-um inserts toward
CGM or U937. *P < 0.05. Bars
represent mean + SEM of
counted invading/attracted cells
of 3 independent experiments
performed in triplicate. Student’s
t test was used.
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role in GDI2-mediated metastasis suppression via downregulation
of V1 and V3 versican isoforms.

Discussion
Clinical data from human disease as well as experimental rodent
models of carcinogenesis and metastasis reveal that bladder can-
cer primarily metastasizes to the regional lymph nodes and the
lungs. (68). The high incidence of pulmonary metastases in cancer
patients was initially believed to be a random process; however,
recent reports indicated that the development of lung metastasis
is likely an active highly selective process instigated by tumor cells
and strongly influenced by their interactions with host cells pres-
ent in the tumor microenvironment (69). Given that metastases
are responsible for most of the deaths from this disease, under-
standing of this process is critical.

Using common patterns of gene expression between bladder
cancer models and cohorts of human bladder tumors, we inferred
a possible linkage between reduced GDI2 expression and high
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_| umuc3 r

vC v2 VC V3

expression of the ECM molecule versican and poor clinical out-
comes. Specifically, the relationship of expression of versican and
GDI2 to patient survival, together with empiric observation of
repression of versican by reexpression of GDI2 in bladder cancer
cell lines suggested that its metastasis suppressor function may
depend on a reduction of versican. Herein we report that the pri-
mary mode of action of the metastasis suppressor molecule GDI2
is via reduction of the tumor-promoting inflammatory response
that has recently emerged as the seventh hallmark of cancer (70).
We used complementary pharmacologic and genetic preclinical
models and tools in vitro and in vivo to provide a mechanistic link
between the observed clinical associations of GDI2 to versican and
demonstrated the causal relation between the GDI2 suppression
of metastasis and reduction of versican V1 and V3 isoform expres-
sion in several models of human bladder cancer.

Versican is a complex and versatile ECM molecule that is indis-
pensable for life (8, 29). It functions not only as a scaffold or sub-
strate to be consumed during tumor-cell invasion, but represents a
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t test. (D) hIL-6, hCCL2, mIL-6, and mCCL2 levels and Cox-2 activity in lung lysates. Bars represent mean + SEM (n = 3, performed in duplicate).

*P < 0.05, Student’s t test.

central component of cancer-related inflammation, as it can bind
multiple types of cell adhesion receptors, growth factor receptors,
and chemokines to provide a complex set of environmental cues to
inflammatory and cancer cells in versican-rich sites (21, 29, 71). Our
work demonstrated an association between the expression of GDI2,
versican, and inflammatory cytokines such as CCL2 and revealed
that CCL2 chemokine expression was a key determinant of tumor
versican-driven metastasis. Several reports have implicated this
chemokine in myriad activities that have an impact on cancer pro-
gression and metastasis (49). Tumor CCL2 has been implicated in
recruiting CCR2* myeloid cells not only to primary tumor, but also
to prospective metastatic sites, promoting their maturation and dif-
ferentiation into an inflammatory phenotype that fosters extravasa-
tion, seeding, and persistent growth of tumor cells (49, 56, 63, 72-76).
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Indeed, recent data demonstrate that targeting CCL2 with antibod-
ies inhibited lung and bone metastases in vivo and may represent a
novel approach to cancer treatment (49, 63, 76). However, until our
report, it had not, to our knowledge, been reported that host CCL2
is necessary for versican-driven metastasis, allowing possible patient
stratification. CCL2 transcription as well as the signaling pathways
triggered by the CCL2/CCR2 axis have been shown in various sys-
tems to be regulated by NF-kB, and AP-1 either directly or through
other signaling intermediates (63, 65,72, 73,75-79). Thus, one could
speculate that factors in the tumor microenvironment that trigger
these signaling intermediates could induce both versican and CCL2.
Given that versican promotion of metastasis is dependent on host
CCL2, such parallel induction would confer an advantage to a tumor
by maximally promoting metastatic colonization.
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The association of GDI2 expression and metastasis development
appears to be tumor-type dependent. The metastasis suppressor
effect of GDI2 in bladder cancer has been shown to be influenced
by its unconventional regulation of RhoGTPases and posttran-
scriptional modification (42, 80). Interestingly, in other tumors
where this protein has been studied, such as breast (46, 81) and
colon cancer (82), its levels have been directly associated with worse
patient prognosis. While the mechanisms of action of GDI2 in
these cancers have not been fully elucidated, it is conceivable that
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the interactions of GDI2 with its downstream effectors are influ-
enced by the tumors’ histological type. If indeed the hypothesis that
the versican-CCL2-macrophage axis we describe here is critical for
metastasis in multiple tumor types, one would expect that in these
cancers, the expression of GDI2 would be directly related to that of
versican as opposed to being inversely related as we found in blad-
der tumors. Preliminary data has shown that this is indeed the case
(Y. Ruand D. Theodorescu, unpublished observations). The impor-
tance of this finding is that it provides us with tools to dissect the
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Forced expression of V1 and V3 in GFP and GD12 cells
increased lung VCAN and inflammatory mediators. (A)
WB showing the expression of VCAN isoforms in metas-
tasis-bearing lungs. (B) hiIL-6, hCCL2, mIL-6, and mCCL2
levels and Cox-2 activity in lung lysates. Bars represent
mean + SEM (n = 3, performed in duplicate).

UMUCS3 cells stably expressing GDI2 tagged by pEGFP-C1
were generated as earlier described (42). Stable knockdown of
all versican isoforms was done using shRNAs V1 5'-CCGGGC-
CACAGTTATTCCAGAGATTCTCGAGAATCTCTGGAATA-
ACTGTGGCTTTTTG-3' or nontarget shRNA (NTsh) control
vector, cloned in pLKO.1-puro (Mission-TRC; Sigma-Aldrich)
following the manufacturer’s protocol. shRNA plasmids were

packaged in 293T cells by cotransfection with compatible
packaging plasmids (Adgene). Culture supernatants contain-
ing the viral particles were collected 48 hours after transfec-
tion and filtered through 0.45-um filters (Thermo Fisher
Scientific). UMUC3, T24, and T24T cells were transduced
with lentivirus-containing supernatant in the presence of
8 ug/ml polybrene (Sigma-Aldrich) for 24 hours. Virus-contain-
ing medium was replaced with selection medium containing

1 ug/ml puromycin (Sigma-Aldrich) for 2 weeks. Cells with

v3 the most efficient knockdown were used in subsequent experi-

ments. Human V1 vector (5, 83), originally developed by Deiter
Zimmermann (University of Zurich, Zurich, Switzerland), was
cloned in a retroviral vector (50) and was a gift from Michael
Karin (UCSD, San Diego, California, USA), with the permis-
sion of Deiter Zimmermann. V3 retroviral vector (52) and
V3 overexpression vector were gifts of Thomas Wight (Hope
Heart Matrix Biology Program, Benaroya Research Institute at
Virginia Mason, Seattle, Washington, USA). V2 expression vec-
tor was a gift of Burton Yang (University of Toronto, Toronto,
Ontario, Canada). Plasmid transfection, viral transduction,

and antibiotic selection of stable cell lines were carried out as
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tumor-type dependent pro- and antimetastatic effects of GDI2,
which has previously been an intractable biological problem.

In conclusion, considering that versican is important for out-
growth of disseminated cancer cells, therapeutically targeting ver-
sican or blocking the cytokines required for its function, such as
CCL2, may provide a strategy for delaying the evolution of clinical
metastatic disease from microscopic deposits. Use of specific anti-
bodies or small molecule antagonists against the CCR2 appears
to be a promising anticancer strategy that can be specifically tar-
geted at high-versican-expressing tumors, optimizing the chance
for clinical response.

Methods

Cell culture, plasmids, transfections, and viral transductions

Human UMUCS3, T24, T24T, human monocytoid U937, and murine MB49
cells were obtained from and maintained as recommended by ATCC.
PMVECs were obtained from and maintained as recommended by Lonza.
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described earlier (50, 52, 84, 85).

In vivo experiments

Female athymic (nu*/nu*) mice, 4 to 6 weeks of age (National
Cancer Institute), were treated following the approved guidelines of the
Animal Care and Use Committee of the University of Virginia. For exper-
imental metastasis, cancer cells were injected in the lateral tail vein (48).
Mice were euthanized at indicated time points after injection when lungs
were harvested, and the number of visible surface metastases was counted.
Tissues were either processed for immunohistochemistry (IHC) or snap-
frozen for molecular analyses (48). For therapeutic experiments, mice were
randomized into groups that received clodronate encapsulated in liposome
nanoparticles (5 mg/ml) or empty liposomes as earlier described (48) before
tail-vein injection of cancer cells. For syngeneic metastasis experiments, 5- to
6-week-old Ccl27~ and Ccr27/~ mice and their WT counterparts (C57B6/J6)
were obtained from Jackson Laboratories and received a tail-vein injection of
1 x 104 MB49 cells/100 wl phenol red-free RPMI 1640. Mice were euthanized
after 3 weeks, and lung metastases were enumerated. In some experiments,
nude mice were injected with UMUCS3 cells overexpressing V1, V2, and V3
human isoforms and were randomized into groups that received neutral-
izing antibody to human CCL2 (MAB679, R&D Systems) or control mouse
IgG (10 ug/mouse) injected intraperitoneally every 4 days from the date of
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Figure 10

Involvement of CCL2 and CCR2 in VCAN-mediated lung metastasis. (A) Scatter plots of the incidence and multiplicity of lung metastases
after tail-vein injection of murine MB49 cells (1 x 104 cells/100 ul) in Cc/2-- and Ccr2-- mice and their WT counterparts (WT, C57BL/6).
*P < 0.05, %2 test, comparing the incidence; **P < 0.01, Student’s ¢ test, comparing the number of lung metastases between WT and Ccl2--
aand Ccr2-- cohorts, 3 weeks after injection of tumor cells. (B) Mac2 IHC of lung sections of mice in A. Bars represent mean = SEM of the
number of macrophages/HPF. *P < 0.05, Student’s t test. (C) WB of murine V1 (3-GAG) and V2 (a-GAG) in tumor-bearing lung lysates. (D)
Murine cytokines in WT, Ccl2--, and Ccr2-- lung lysates. Bars represent the mean + SEM of 3 independent experiments performed in dupli-
cates. *P < 0.01, Student’s t test. (E and F) Scatter plots of the incidence and multiplicity of lung metastases developed after tail-vein injec-
tion of transfected/transduced UMUCS cells in nude mice treated with CCR2 antagonist RS 102895 (RS) and its VC or neutralizing antibody
against human CCL2 (anti-CCL2) and isotype control IgG. *P < 0.01, 2 test, comparing the incidence, and Student’s t test, comparing the
number of visible lung metastases.
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Pharmacologic depletion of macrophages blocks V1-driven lung metastasis and inflammation. (A) Plots of incidence and multiplicity of lung metas-
tases after tail-vein injection of V1-expressing GFP and GDI2 cells in nude mice treated with liposome-encapsulated clodronate (clod) or empty lipo-
some vehicle (LipV). (B) Bars are mean + SEM of the number of macrophages infiltrating the lungs/HPF. *P < 0.05, Student’s t test. (C and D) Human
and murine cytokines and Cox-2 activity in lung lysates of mice under the experimental conditions described above. *P < 0.05, Student’s t test.

tumor cell inoculation (65). CCR2b small molecule inhibitor RS102895 was  Quantitative real-time PCR

given every 4 days at 10 mg/kg by oral gavage (66, 67). Mice were euthanized =~ Tumor cell burden was determined by quantifying human 12p chromo-
6 weeks after tumor cell injection. Lungs were extracted and the number of ~ some in genomic DNA in mouse lungs as described previously (48). Ver-
visible metastases was quantified. sican isoforms were detected in cells and tissues by quantitative RT-PCR
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(qRT-PCR). RNA was isolated using RNeasy Kit (QIAGEN) and reverse  Amntibodies and Western blots

transcribed with Superscript III Kit (Invitrogen) according to the manu-
facturer’s instructions. Primers used for amplifying versican isoforms were
described earlier (86). qPCR was performed using the SYBR Green PCR
Master Mix and Bio-Rad iCycler (Bio-Rad). The relative expression was nor-
malized to the housekeeping gene Gus-B.
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Human-specific versican antibodies include the following: polyclonal
rabbit anti-human V0/V1 and V0/V2 antibodies (Thermo Fisher Scien-
tific). The 12CS anti-versican antibody, which recognizes the N-terminal
domain on V3, was obtained from the Developmental Studies Hybridoma
Bank (University of Iowa, Iowa City, Iowa, USA). Rabbit polyclonal anti-
Volume 122

Number 4

April 2012 1515



research article

versican antibodies that detect mouse protein include the following: V1
(B-GAG) and V2 (0-GAG) (AbD Serotec). GDI2 antibody was purchased
from Spring Bioscience. Mac-2 and F4/80 antibodies were purchased from
BD Biosciences and AbD Serotec. Mouse monoclonal antibody against
a-tubulin was from Sigma-Aldrich. Monoclonal antibodies against human
MCP-1/CCL2 (MAB679) and isotype control IgG were from R&D Systems
and Coulter, respectively.

Immunoblotting

Subconfluent monolayers of human bladder cancer cells were grown in
6-well plates, serum-starved in serum-free medium (SFM) overnight, and
allowed to condition for 72 hours. In some experiments, cells were cocul-
tured with U937 (1 x 10° cells/ml SFM) and added to 0.4-um Transwell
chambers (Costar; Corning) without direct cell-cell contact. CM was col-
lected and cleared by centrifugation. Cells in upper and lower chambers
were harvested in lysis buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM
EDTA, 50 mM NaF, 0.5% sodium deoxycholate, 1% NP-40, 1 mM Na3VO,,
and 1x protease inhibitor cocktail mixture). Tumor-bearing and control
lung tissues were pulverized in lysis buffer and cleared by centrifugation at
12,000 g for 20 minutes at 4°C; protein concentrations were determined
by bicinchoninic acid (BCA) assay (Pierce; Thermo Fisher Scientific). Cell
and tissue lysates and CM were resolved by 4%-20% SDS-PAGE, transferred
onto PVDF membranes (Bio-Rad), and probed with the indicated antibod-
ies. For detection of V3 isoforms, cell and tissue lysates were treated in vitro
with 0.4 U/ml chondroitinase ABC (ChABC) in 100 mM sodium acetate,
pH 8.0, for 1 hour at 37°C, boiled for 10 minutes in reducing denaturing
Laemmli buffer, cleared by centrifugation, and subjected to Western blot
(WB) using 12CS anti-versican antibody. Protein detection was carried out
using HRP-conjugated secondary antibodies and SuperSignal Femto Maxi-
mum Sensitivity Substrate (Pierce).

Microinvasion and TEM assays

Invasion and chemotaxis assays were performed as described previously
(48,56,78). PMVECs were grown to confluence on 3- and 8 um-pore filters
in 24-well plates, and TEM assays of U937 and cancer cells were carried out
as described earlier (48, 56, 78).

Determination of CCL2, IL-6, and Cox-2 activity

Commercial ELISA kits were used to determine the concentrations of
human and murine IL-6 and CCL2 (RayBiotech. Inc.). Enzyme immunoas-
say kits for Cox-2 activity (Cayman Chemical Inc.) were used according to

the manufacturer’s instructions.

Construction and immunostaining of bladder cancer

tissue microarray

Protein expression patterns of versican were assessed using 2 tissue
microarrays (TMAs) (87, 88). Antigen-retrieval methods (0.01% citric acid
for 15 minutes under microwave treatment) were utilized prior to incu-
bation with mouse anti-versican monoclonal antibody (LifeSpan BioSci-
ences) at 1:400. Staining conditions were optimized on sections from for-
malin-fixed, paraffin-embedded testis as positive control, as recommended
by the manufacturer. The absence of primary antibody was used as a nega-
tive control. The secondary antibodies (Vector Laboratories) were biotinyl-
ated horse anti-mouse antibodies (1:500 dilution). Diaminobenzidine was
utilized as the final chromogen and hematoxylin as the nuclear counter-
stain (48, 87, 88). The consensus value of the 3 or 4 representative cores
from each tumor sample arrayed was used for statistical analyses. Versican
expression was evaluated in the tumor and in the stroma. Versican staining
in the stroma surrounding the tumor was categorized as negative (-), low
(+), intermediate (++), and high (+++). Cutoffs of expression for prognostic
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evaluation were selected based on the median values of expression among
the groups under analysis. For tumor scoring, “high” was designated as
staining more than 10% of tumor cells. For stromal versican, the presence
of any staining was designated as “high.”

Statistics

Human gene-expression profiling data. Duplicate isolates of mRNA from GFP
or GDI2 reexpressing UMUCS3 cells (42) were profiled for gene expression
using Affymetrix HG-U133 Plus 2.0 microarrays as described before (2).
Microarray data has been submitted (GEO GSE35014). Normalized log,
expression values were extracted by RMA implemented in MATLAB version
R2010B (MathWorks). For comparison with human tumor cohorts, data
sets used included Sanchez-Carbayo et al. (44) (n = 26 and 65, for NMI and
MI disease, respectively), Stransky et al. (45) (» = 16 and 14 for NMI and MI
disease, respectively), Kim et al., GSE13507 (46) (» = 103 and 62 for NMI
and Ml disease, respectively), and 2 studies by Dyrskjot et al., GSE3167 and
GSE89 (43,47) (n =33 and 13 for NMI and MI disease, respectively; n = 62
and 9 for NMI and MI disease, respectively). Processed data were down-
loaded from NCBI GEO and/or an online publication supplement (44,
45). For visualization, cases from the Dyrskjot (47) cohort were clustered
by expression of GDI2-regulated probes differentially expressed between
NMI and MI cases in MATLAB, using Euclidean distance and average link-
age. Correlation coefficient (rho) for rank-based Spearman’s correlation of
expression of indicated genes was used where indicated.

For plotting, log, data for individual probes were standardized (z scored)
before plotting values for NMI and MI tumors in Prism 5.0 (GraphPad
Software), testing differences in distributions by the Mann-Whitney U test.
On the Affymetrix HG-U133 platform, where multiple probes exist for
Vean, log, data for probes were standardized (z scored), then averaged. For
Kaplan-Meier analysis of the relationship between expression of Vean and
DSS, log-rank tests of differences in DSS by gene expression class (high or
low expressor) were performed in MATLAB. The DSS curves presented use
cutoffs at the optimal discriminating point for stratification of survival,
with log-rank P values shown. The relative strength of association of GDI2
or Vean expression to survival was further tested in multivariate Cox pro-
portional hazard regression models, also in MATLAB.

IHC. Association of versican expression with tumor stage was evaluated
using Wilcoxon-Mann-Whitney and Kruskal-Wallis tests (87, 88). Associa-
tions with DSS (DSS) were evaluated using the log-rank test. DSS time was
defined as the months elapsed between transurethral resection or cystecto-
my and death of disease. Survival curves were plotted using Kaplan-Meier
methodology, and statistical analyses were performed using the SPSS sta-
tistical package (IBM), version 18.0 (48, 87, 88).

Unless otherwise stated, all other data were statistically analyzed by
2-tailed Student’s ¢ test, 1-way ANOVA, and 2 square tests using Microsoft
Excel 7.0 and GraphPad Prism 5 for Windows (GraphPad Software). Differ-
ences were deemed significantat P < 0.05.

Study approval

All animal experiments were performed after approval of protocol and in
compliance with guidelines of the Animal Care and Use Committee of the
University of Virginia. Bladder cancer TMAs were constructed at the Span-
ish National Cancer Institute (87, 88). These arrays included primary uro-
thelial cell carcinomas of the bladder belonging to patients recruited under
Institutional Review Board-approved protocols; patients gave informed

consent in studies referenced (87, 88).
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