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Chromosomal instability (CIN) is a hallmark of human neoplasms. Despite its widespread preva-
lence, knowledge of the mechanisms and contributions of CIN in cancer has been elusive. It is now
evident that the role of CIN in tumor initiation and growth is more complex than previously thought.
Furthermore, distinguishing CIN, which consists of elevated rates of chromosome missegregation,
from aneuploidy, which is a state of abnormal chromosome number, is crucial to understand-
ing their respective contributions in cancer. Collectively, experimental evidence suggests that CIN

enables tumor adaptation by allowing tumors to constantly sample the aneuploid fitness landscape.
This complex relationship, together with the potential to pharmacologically influence chromosome missegregation
frequencies in cancer cells, offers previously unrecognized means to limit tumor growth and its response to therapy.

Introduction

Adaptation is a hallmark of human neoplasms, and the ability of
tumors to adapt to external pressures stems from tumor cell hetero-
geneity (1). Mechanisms responsible for this heterogeneity include
DNA mutation, chromosomal translocation, and gene amplifica-
tion. However, an additional pathway leading to tumor cell hetero-
geneity involves elevated frequencies of whole-chromosome misseg-
regation — otherwise known as chromosomal instability (CIN) (2, 3).
CIN is a hallmark of most solid tumors (4), and it has long been pos-
tulated that chromosome missegregation is an important mecha-
nism of tumor adaptation (1, 3). However, it was not until 1997,
when Lengauer and Vogelstein directly demonstrated evidence of
persistent chromosome missegregation in cancer cell lines, that
work exploring the role of CIN in tumorigenesis began (2).

A direct consequence of CIN is aneuploidy (5), which has been
implicated in tumorigenesis for decades (6). Many hematopoietic
malignancies were found to be clonally aneuploid, with an identifi-
able karyotype that carries a prognostic value (7-10). Furthermore,
individuals with constitutional global aneuploidy, such as those
with Down syndrome, mosaic variegated aneuploidy, and Turner
syndrome, are found to exhibit increased rates of malignancies
(11-16). Whereas aneuploidy and CIN are interrelated, they are
not synonymous, and confusion in the literature arises from using
both terms interchangeably (3). In many cases, aneuploidy can be
present independently of CIN by resulting from a single event of
chromosome missegregation, with subsequent clonal expansion of
the aneuploid karyotype. In such cases, tumors are homogeneously
aneuploid (17). CIN, on the other hand, typically yields a heteroge-
neously aneuploid tumor cell population that has the ability under-
go selective evolution, as is required for processes such as metasta-
sis and resistance to therapy. Work now shows that aneuploidy and
CIN may have independent contributions to tumor evolution and
growth, even while coexisting throughout the tumor’s lifetime.

Mechanisms of CIN
Chromosome segregation during mitosis requires the proper
attachment of chromosomes to microtubules at kinetochores (18).
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Kinetochores constitute the macromolecular sites at the centro-
meric regions of chromosomes that regulate their attachments to
microtubules (19). Dozens of gene products are involved in ensuring
chromosome segregation fidelity, and therefore it is not surprising
that defects in multiple mechanisms that lead to errors in chromo-
some segregation appear in cancer (20). These include faulty sister
chromatid cohesion (21), defective centrosome duplication (22-24),
telomere dysfunction (25), hyperactive or hypoactive spindle assem-
bly checkpoint (SAC) (26-28), and overly stable attachments of
microtubules to chromosomes (29, 30). Most of these mechanisms
converge to produce lagging chromosomes during anaphase (3,
24,29, 30). Chromosomes lag due to their erroneous attachment
to microtubules emanating from opposite spindle poles (31, 32).
This results in their presence at the mitotic spindle midzone dur-
ing anaphase, separated from the properly segregating chromosome
masses (Figure 1). In fact, direct live-cell imaging shows that most
chromosomally unstable cancer cell lines exhibit elevated frequen-
cies of lagging chromosomes, while stable diploid cells do not (5).
Furthermore, altered frequencies of lagging chromosomes were
shown to directly correlate with altered chromosome missegrega-
tion when observing individual cell division events (29).

The process of chromosome segregation begins at nuclear enve-
lope breakdown when mitotic chromosomes initiate contact with
microtubules of the nascent spindle (33). The interaction of micro-
tubules with the chromosomes is stochastic, yet sister chromatids
must become attached to opposite spindle poles prior to the onset
of anaphase if chromosomes are to properly segregate (refs. 33-35
and Figure 1A). Further complicating the segregation process is
the ability of each chromosome to stably attach to 20 to 25 micro-
tubules at kinetochores (36), and, in many instances, individual
kinetochores are attached to microtubules emanating from oppo-
site spindle poles. This erroneous attachment must be corrected
prior to anaphase onset to avoid the formation of lagging chro-
mosomes (31, 32) (Figure 1A). The correction of attachment errors
is made possible by the dynamic behavior of microtubules (37),
whereby they constantly attach and detach from chromosomes at
measurable rates on the order of minutes (30, 38). It was shown
that simply increasing the average duration of attachment of
microtubules to chromosomes — by depleting microtubule desta-
bilizers at the kinetochore — leads to the persistence of attachment
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Lagging chromosomes as markers of CIN. (A) Schematic diagram of a mitotic spindle at metaphase and at anaphase, depicting normally
attached “bi-oriented” chromosomes as well as 1 lagging chromosome, which is improperly attached simultaneously to both spindle poles. Upon
anaphase onset, this improper attachment can lead to lagging chromosomes. Microtubules, kinetochores, and chromatin are depicted in green,
red, and blue, respectively. (B) H&E-stained cells undergoing anaphase from tumor biopsies of patients with DLBCL, exhibiting lagging chromo-
somes (arrow, middle) as well as chromatin bridges (arrow, right), which frequently result from lagging chromosomes. Scale bar: 5 um.

errors and resultant chromosome missegregation, while decreas-
ing the duration of attachments suppressed CIN in cancer cells
with high rates of missegregation (29, 30). Furthermore, work
linking centrosome duplication to CIN demonstrated that the
presence of extra centrosomes increases the rate of formation of
erroneous attachments to a point that overwhelms the correc-
tion rates achieved by microtubule dynamics (23, 24). This hap-
pens because multipolar spindles coalesce their supernumerary
poles and become bipolar spindles that contain numerous errors
in the attachment of microtubules to chromosomes, ultimately
leading to the presence of lagging chromosomes during anaphase
(23, 24, 39). Finally, it was shown that both hyperactive as well as
hypoactive SAC signaling can directly lead to chromosome misseg-
regation (27, 28, 40-42).

The SAC is a signaling cascade that functions during cell divi-
sion to delay the onset of anaphase until all chromosomes have
aligned along the metaphase plate and each sister chromatid is
attached to a unique spindle pole (43). SAC signaling originates
at kinetochores, and it is tightly coupled to the occupancy of
attached microtubules; it is evident that stable kinetochore-micro-
tubule attachments are necessary to allow for anaphase onset (44).
In the case of reduced SAC signaling, cells undergo anaphase pre-
maturely before the erroneous attachments of microtubules to
chromosomes are corrected. However, in examples of hyperactive
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SAC signaling, the mechanism resulting in chromosome misseg-
regation is not entirely understood. It is possible that persistent
SAC signaling can lead to metaphase arrest and the formation of
tetraploid cells (45), which have been shown to confer increased
tumorigenic potential and higher tolerance of and susceptibility
for chromosome missegregation (45). Alternatively, some proteins
involved in SAC signaling could also be involved in the regulation
of microtubule attachments to chromosomes, and therefore a
hyperactive SAC would also indirectly increase the stability of erro-
neous attachments leading to chromosome missegregation (42).

Finally, recent work described a process termed chromothripsis,
in which massive chromosomal rearrangements occur in cancer
cells when single chromosomes are fragmented, followed by the
cellular attempt for repair (46). Typically, this repair is far from
perfect, and many chromosomal regions are lost. Although this is
not considered whole-chromosome missegregation, repeated loss
of chromosomal segments can lead to the same effect as aneuploi-
dy. It is notable that chromothripsis is estimated to occur in 2% to
3% of all cancers and 25% of bone cancers (46, 47).

The majority of the work involved in identifying these mech-
anisms was performed in cancer cell lines or mouse models. In
many cases, the starting material consisted of normal chromo-
somally stable diploid cells, which were subsequently made aneu-
ploid and chromosomally unstable. Thus, it remains to be seen
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The relationship between ploidy and CIN in the context of tumor initia-
tion and growth. Frequent chromosome missegregation events lead to
aneuploidy, which in turn leads to transcriptome imbalance and addi-
tional chromosome missegregation as well as DNA damage. Aneu-
ploidy brought about by chromosome missegregation also triggers the
p53/p21 tumor suppressor pathway, which in turn limits further pro-
liferation of aneuploid cells. The circular arrow depicts the proposed
self-propagating nature of CIN in tumor cells.

whether these mechanisms of chromosome loss indeed take place
in human cancers, and strong clinically derived evidence is still
lacking. However, it was recently shown that lagging chromo-
somes are prevalent in fixed tissues taken from patients diagnosed
with diffuse large B cell lymphoma (DLBCL) (Figure 1B) and that
the frequencies of lagging chromosomes significantly correlated
with tumor prognosis and overall survival (48). Collectively, data
from cancer cell lines as well as fixed tumor samples suggest that
lagging chromosomes may be the major mechanism leading to
chromosome missegregation in cancer.

CIN in tumor initiation and growth
The role of chromosomal imbalance in tumorigenesis has been
appreciated for over a century, since Théodore Bovéri observed
aneuploid karyotypes in cancer cells (6). It is now evident that more
than 70% of common solid neoplasms are aneuploid (4, 49), and,
in many instances, the onset of heterogeneous aneuploidy corre-
lates with the aggressiveness and stage of the tumor (40, 50-54). As
aresult, it has been a long-standing assumption that chromosome
missegregation is a driver of tumor initiation and growth.
Experimental evidence has implicated CIN in tumor initiation
(55). In one study, inducing chromosome missegregation in mice
by perturbing microtubule attachments to chromosomes led to
the spontaneous formation of lymphomas and lung tumors
(56). Furthermore, overexpressing the kinetochore-microtubule
stabilizing protein hecl in mice induced the formation of lung
adenomas, liver carcinomas, hemangiosarcomas, and islet cell
hyperplasias (28). It was also shown that increasing SAC signal-
ing by overexpressing Mad2 led to CIN, and this was required
for the development of anaplastic tumors in a mouse model of
mammary adenocarcinoma (57). Interestingly, the creation of
tetraploid cells, which are more prone to chromosome misseg-
regation, was also shown to increase tumor formation (45). It is
important to note that, in many of these studies, an additional
genetic alteration was required for tumorigenesis, such as the
1140
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deletion of the p53, p21, or pI194f tumor suppressor genes (45, 56).
Accordingly, it was shown that disruption of the p53/p21 path-
way was required for the tolerance of aneuploid karyotypes, and
inducing chromosome missegregation in cells with an intact
pS53 signaling pathway led to durable cell cycle arrest (ref. 58
and Figure 2). Together, these findings raise the question of the
precise role of CIN in tumor evolution. The dependence of CIN
on defective p53 signaling suggests that elevated frequencies
of chromosome missegregation likely occur at an intermediate
stage in tumor evolution, and the prevalence of chromosome
missegregation during early tumorigenesis in humans remains
unclear. It is theoretically possible that CIN may be sufficient
to induce tumor formation by directly inactivating the p53 sig-
naling pathway. Experiments in mammalian cells show that the
number of chromosome copies proportionately correlates with
the level of mRNA in cells (59, 60); given that individual human
chromosomes encode an estimated thousand genes each, the
presence or absence of single chromosomes can have a dramatic
effect on whole-cell gene expression. The resulting imbalance has
the potential to deregulate cell cycle proteins, tumor suppressors,
and oncogenes. Indeed, in mice that were heterozygous for tumor
suppressor genes p53 and APC, inducing CIN led to the loss of
heterozygosity and the development of thymic lymphomas and
colonic tumors, respectively (61). Finally, recent work shows that
the process of chromosome missegregation can directly lead to
DNA damage and translocation (62). In this study, Janssen et
al. showed that lagging chromosomes are frequently damaged
during cytokinesis, triggering a DNA double-stranded break
response involving the ATM, Chk2, and p53 proteins.

Experimental mouse models demonstrate that inducing CIN
also leads to increases in tumor growth rate. In a mouse model
in which lung tumor growth was driven with the Kras oncogene,
withdrawing the oncogene did not prevent tumor relapse when
CIN was induced by overexpressing the SAC protein, Mad2 (27).
This suggests that CIN could be an autonomous driver in the lat-
ter stages of tumor growth, overriding dependence on the initial
tumorigenic signals. These findings corroborate longitudinal
observations of human neoplasms, in which the rate of aneuploi-
dy and karyotypic abnormalities (and by inference, CIN) increases
with increasing tumor grade and invasiveness (40, 50-54).

The simple role of CIN as a promoter of tumor initiation and
growth has been recently challenged by surprising experimental
findings showing that chromosome missegregation and aneu-
ploidy can also act to inhibit tumorigenesis (63). In some of these
experimental settings, the effect of chromosome missegregation
on tumorigenesis may be tissue specific. For instance, inducing
CIN appears to have an antitumorigenic effect in the liver (56).
This is particularly interesting given that the liver is largely a poly-
ploid organ, with potentially increased basal rates of chromosome
missegregation. Thus, it is possible that further increasing misseg-
regation levels can be physiologically intolerable and reduce cellu-
lar fitness. This postulate is supported by experiments in cancer-
derived human cell lines showing that increasing chromosome
missegregation beyond a certain level can be cytotoxic (64). In
murine syngeneic models of lung cancer, targeting cyclin E led
to multipolar cell division combined with massive chromosome
missegregation, which had a significant antineoplastic effect
(65). In another mouse model, protein levels of the SAC signal-
ing protein Bub1 are reduced to generate CIN. Bubl is involved
in the SAC signaling as well as regulation of microtubule attach-
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ments to chromosomes. While Bubl heterozygosity increased
the number of colonic tumors in the susceptible APC""/* strain,
Bub1 heterozygous mice had lower propensity for small intestinal
tumors compared with that of wild-type mice (66). Along these
lines, computational work predicts that a chromosome misseg-
regation rate between 103 and 102 per chromosome is optimal
for cellular fitness (67). These rates correspond to single chromo-
some missegregation events every 2 to 20 divisions, which are also
in line with observations in human cancer cell lines and tumor
samples in which the frequencies of cells exhibiting chromosome
missegregation ranged from 10% to 60% (5, 48). In its essence,
this permissible boundary of chromosome missegregation is not
a novel concept given that CIN is a cellular agent of change. The
same idea is proposed for the level of DNA mutation that permits
the fitness of a population (68); at these optimal rates, adaptation
is made possible, but the ability to change is sufficiently limited
to preserve acquired beneficial traits.

CIN and the aneuploid fitness landscape

A considerable challenge in the field stems from the salient need
to separate the individual contributions of aneuploidy from those
of CIN. This might not be a simple task, given that chromosome
missegregation leads to aneuploidy, and it is technically difficult to
experimentally obtain homogeneously aneuploid cells that do not
exhibit elevated frequencies of chromosome missegregation. Fur-
thermore, it is not feasible to directly observe chromosome misseg-
regation events in human tumors in real time. As a consequence,
aneuploidy has frequently been used as a surrogate marker for CIN
(27,56, 69,70). For instance, studies searching for gene expression
signatures for CIN in human cancers instead used expression pro-
files common to aneuploid cells, under the assumption that these
cells are also likely to exhibit CIN (71). At the same time, in most
experiments performed in mouse models, chromosomally stable
diploid cells are transformed into both aneuploid and chromo-
somally unstable cells, making it challenging to determine whether
aneuploidy or CIN are the drivers of tumorigenesis. The complex
relationship between CIN and tumor initiation and growth may be
better understood when a clear distinction between CIN and aneu-
ploidy is kept in mind. Given the plethora of genes on each chro-
mosome, the possible combinations of gene transcript imbalance
created by aneuploid karyotypes are incredibly large. In addition,
not all aneuploid karyotypes are favorable for either tumor initia-
tion or growth, just as mutations can be beneficial or deleterious
to tumor cells. We term the ever-changing cellular fitness over the
wide range of possible aneuploid karyotypes the aneuploid fitness
landscape, in which both favorable and unfavorable chromosomal
combinations exist. This concept is supported by experimental evi-
dence in yeast showing that aneuploidy leads to quantitative pro-
teome changes and phenotypic variations; however, this depended
on the environmental condition, and not all aneuploid karyotypes
behaved similarly (72). Since cancer is an evolutionary disease, it
seems likely that tumor cells with specific chromosomal com-
binations — such as loss of heterozygosity of tumor suppressor
genes (61, 67) — would experience a growth advantage. In this way,
the tumor would be sampling the aneuploid fitness landscape to
select for chromosomal combinations that confer survival benefit.
Meanwhile, the dynamic nature of selection pressures on tumors
is likely to alter the relative fitness of a given karyotype, thus it is
expected that a certain karyotype, favorable under normal growth
conditions, may not be growth-promoting when the tumor is
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challenged with chemotherapy. This fits with the experimental
evidence that chromosome missegregation must fall within physi-
ologically permissible boundaries, whereby missegregation levels
that are too high can drive cells quickly out of favorable karyo-
types (64), whereas excessively low missegregation frequencies can
hamper the tumor’s ability to continuously sample the aneuploid
fitness landscape that is slowly but constantly shifting.

CIN and tumor prognosis

Even though the relationship between aneuploidy and tumor
prognosis has been established for many decades, evidence for
the selective contribution of CIN on prognosis has been generally
lacking. Some have attempted to link gene expression signatures
prevalent in aneuploid cells to patient survival and prognosis
(71), using aneuploidy as a surrogate marker for CIN. Some of
the aneuploidy-related gene expression signatures that correlated
with poor prognosis were indeed involved in the maintenance of
microtubule stability, such as the expression of TPX2 (73). Inter-
estingly, it was also found that, in many cancer types, deregula-
tion of the genetic signature associated with CIN generally led
to reduced patient survival and inferior outcome; however, gene
expression signatures at the extreme end of the spectrum para-
doxically had improved survival, and their tumors responded
more readily to therapy (74). Furthermore, overexpression of
cyclin E (with concomitant increase in heterogeneous aneu-
ploidy) correlated with poor prognosis and inferior outcome in
patients diagnosed with DLBCL (75). Finally, in a similar cohort
of patients diagnosed with DLBCL, work directly examining
chromosome missegregation events in cells fixed while undergo-
ing anaphase showed that a two-fold increase in chromosome
missegregation frequency significantly correlated with overall
survival, prognosis, tumor stage, and treatment response (48).
Furthermore, in these patients, a two-fold increase in the rates
of chromosome missegregation significantly correlated with the
tumor’s ability to spread to distant sites, including the bone mar-
row. This preliminary evidence is encouraging; however, a firm
understanding of the role of CIN on tumor prognosis is still
lacking in most cancer types.

CIN as a therapeutic target

Therapeutic targeting of CIN in cancer is still at its preclinical
stages. Nevertheless, kinetochores represent an attractive thera-
peutic target to modify chromosome missegregation in cancer,
given their role in regulating microtubule attachments to chromo-
somes (20, 30, 38, 76, 77). Overexpression of kinetochore proteins
that destabilize attached microtubules is sufficient to significant-
ly decrease chromosome missegregation rates and suppress CIN
(29, 30). Alternatively, increasing microtubule stability (for
instance, by using inhibitors of the microtubule destabilizing
kinase, Aurora B; ref. 78) increases chromosome missegregation
rates. In fact, these inhibitors have shown preliminary success in
treating primary as well as resistant tumors (79-82). However, a
common dose-limiting adverse effect of many new mitotic drugs
is severe bone marrow toxicity and subsequent neutropenia (82).
A possible approach to circumvent this toxicity would be to target
CIN as an adjuvant therapy to standard treatment, thus limiting
the ability of tumors to acquire drug resistance and relapse.

The nature of therapeutic interventions targeting CIN will
inevitably depend on the existing levels of chromosome misseg-
regation in the specific tumor as well as the effect of either
Number 4 1141
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decreasing or increasing chromosome missegregation on tumor
prognosis. In tumors in which CIN is associated with poor prog-
nosis, such as DLBCL (48), suppressing chromosome missegre-
gation could reduce the frequency of metastasis and drug resis-
tance. Yet, given that extremely elevated rates of CIN also appear
to decrease tumor fitness in some cancers (67, 74, 83), further
increasing chromosome missegregation rates could be beneficial.
Therefore, determining chromosome missegregation frequencies
of a given tumor and comparing these to the optimal level of CIN
that allows for tumor adaptation might be a prerequisite to any
therapeutic approach targeting CIN.

Concluding remarks

In summary, it is evident that chromosome missegregation
may be as important a factor in tumor development as DNA
mutations and chromosomal translocations. Until recently,
little attention has been paid to the process of whole-chromo-
some imbalance. Given the widespread relevance of CIN in
human cancers, understanding the mechanisms that lead to
chromosome missegregation, the role it plays in the evolution

of tumors, and the potential for therapeutic intervention will
provide a significant improvement in our ability to find cures
for resistant cancers.

Note added in proof. Recent work demonstrates that chromosomal
instability can lead to DNA breaks and chromosome pulverization
by the formation of micronuclei that replicate out of phase from
the main cellular nucleus (84).
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