1 Supplementary information

2 Supplemental Methods

3 Measurement of anti-SARS-CoV antibody ELISA titers. Whole blood and BALF were 4 collected from SAR-CoV-infected mice at 6 days p.i. and sera were prepared. ELISA titers were measured as follows. 96-well Maxisorp Immuno Plates (Nunc) were coated with 2×10^5 PFU of 5 6 formaldehyde and UV-inactivated SARS-CoV (BEI Resources). After washing, wells were 7 exposed for 1.5 hours to serially diluted sera or BALF from naïve or infected mice. Wells were washed and then treated sequentially with 1:2000 dilution of HRP-conjugated goat anti-mouse 8 9 IgG/IgM/IgA secondary antibody (Pierce Biotechnology) for 1 hour at 37 °C and 10 tetramethylbenzidine (K-Blue MAX TMB substrate, Neogen Corporation) for 10 minutes at 11 room temperature. Reactions were stopped with 1.5 M H₂SO₄, and absorbance was read at 450 12 nm. The total anti-SARS-CoV IgG/IgM/IgA ELISA titer was defined as the highest dilution of 13 the test sample giving a twofold increase over the naïve mice samples.

14

Measurement of hemagglutination inhibition (HAI) titers in sera and BALF. Whole blood and BALF were collected from IAV-infected mice at 21 days p.i. and sera were prepared. To measure HAI titers, serum and BALF samples were serially diluted two-fold from 1:5 to 1:320, mixed with 4 HA units of IAV for 30 minutes at room temperature, and then incubated with a 1% suspension of chicken red blood cells for 45 minutes at room temperature to visualize the reactions.

21

Supplemental Figures

Supplemental Figure 1. Similar antigen uptake, processing and presentation by rDCs from young and aged mice. (A) 6-week-old and 22-month-old mice were treated with 10 μg/75 μl OVA-FITC or OVA-DQ i.n. After 1h, lungs were harvested and single cell suspensions prepared. The fluorescence intensities of OVA-FITC or OVA-DQ associated with CD11c+MHCII+CD11b+ and CD11c+MHCII+CD103+ rDCs are shown. (B) 6-week-old and 22month-old mice were inoculated with 200 µg/75 µl OVA-FITC or OVA-DQ i.n.. After 18 hours, single cell suspensions were prepared from lung DLNs. The percentage of OVA-FITC+ or OVA-DQ⁺ cells within the CD11c⁺MHCII⁺ DC population is shown. 5-6 mice/group/experiment; data are representative of 3 independent experiments. (C) OVA-FITC⁺ migratory rDCs were sorted from lung DLNs of 6-week-old and 22-month-old mice using a FACSDiva 18 hours after i.n. OVA-FITC treatment. OT-I CD8 T cells were negatively enriched from the spleens of naïve OT-I Tg mice and stained with 2.5 μ M CFSE. 1×10⁴ OVA-FITC⁺ rDCs and 1×10⁵ OT-I CD8 T cells were cultured in a volume of 200 µl in round-bottomed 96-well plates (Corning) at 37 °C for 4 days in complete RPMI 1640 media. CD8 T cells were analyzed for CFSE dilution by flow cytometry. Data are representative of 3 independent experiments.

Supplemental Figure 2

A: 6 wk recipient

Supplemental Figure 2. Defective SARS-CoV-specific CD8 T cell response in aged mice is not T cell-intrinsic. (A) 5×10^7 splenocytes from 6-week-old or 12-month-old (B6-Thy1.2) donor mice were adoptively transferred into 6-week-old B6 (B6-Thy1.1) recipients prior to SARS-CoV infection. (B) 5×10^7 splenocytes from 6-week-old (B6-Thy1.1) mice were adoptively transferred into 6-week-old or 12-month-old (B6-Thy1.2) recipient mice prior to SARS-CoV infection. Flow cytometric analysis of endogenous and exogenous epitope S436-specific CD8⁺ T cell responses assessed by intracellular IFN- γ staining at day 6 p.i. is shown. Numbers represent the percentage of IFN- γ ⁺ CD8 T cells. 4 mice/group/experiment. Data are representative of 2 independent experiments.

Supplemental Figure 3

Supplemental Figure 3. Treatment with PGD_2 antagonist BW A868C enhances rDC migration and T cell responses in SARS-CoV-infected 22 month old mice. (A) 22-month-old mice were i.n. inoculated with 50 µl 8 mM CFSE. Six hours after instillation, mice were infected with SARS-CoV together with BW A868C or vehicle. After 18 hours, single cell suspensions were prepared from lung DLNs. The numbers represent the percentage of CFSE⁺ cells within the CD11c⁺MHCII⁺ DC population per LN. Total CFSE⁺ DC numbers per LN are also shown. (B) Lung cells were harvested from and 22-month-old B6 mice 6 days after SARS-CoV infection. Tetramer staining for epitope S436, and total numbers of CD8 T cells and tetramer S436⁺ CD8 T cells are shown. Numbers represent the percentage of tetramer⁺ CD8 T cells. n=3-4 mice/group/experiment. Data are representative of 3 independent experiments. (C) 22-month-old mice were i.n. infected with 1×10^4 PFU MA15 virus. Mortality was monitored daily. n= 8 mice in vehicle group; 10 mice in BW A868C group. *P* value, determined by a Kaplan-Meier survival test, is: *P* = 0.017.

Supplemental Figure 4

Supplemental Figure 4. Treatment with PGD₂ antagonist BW A868C does not enhance antibody responses in SARS-CoV and IAV-infected old mice. (A) Sera and BALF from SARS-CoV-infected mice at 6 days p.i. were analyzed for total IgG/IgM/IgA by ELISA as described in Supplemental Materials and Methods. The ELISA titer was defined as the highest dilution of the test sample giving a twofold increase over the naïve mice samples. n=4 mice/group. (B) Sera and BALF from IAVinfected mice at 21 days p.i. were serially diluted two-fold from 1:5 to 1:320, mixed with 4 HA units of IAV, and then incubated with a 1% suspension of chicken red blood cells for 45 minutes at room temperature to visualize HAI titers. n=3-5 mice/group.