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Basal cell carcinoma (BCC) of the skin, the most common malignancy in individuals of mixed European descent, is
increasing in incidence due to an aging population and sun exposure habits. The realization that aberrant activation
of Hedgehog signaling is a pathognomonic feature of BCC development has opened the way for exciting progress
toward understanding BCC biology and translation of this knowledge to the clinic. Genetic mouse models closely
mimicking human BCCs have provided answers about the tumor cell of origin, and inhibition of Hedgehog sig-
naling is emerging as a potentially useful targeted therapy for patients with advanced or multiple BCCs that have

hitherto lacked effective treatment.

Introduction

Description of basal cell carcinoma. In 1827 Arthur Jacob termed the
skin tumor that we now call basal cell carcinoma (BCC) “Ulcus
rodens” (1). In 1900, Krompecher described BCC as a malignant,
locally invasive, and destructive cancer and named it “Carcinoma
epitheliale adenoides”; he then went on to pioneer the classifica-
tion of skin tumors using histogenetic principles, three years later
coining the term “Basalzellenkrebs” (2, 3), a term indicating that
the tumor originated in the basal layer of the epidermis or hair fol-
licle (HF). In contrast, in 1910, Mallory used the term “hair matrix
tumor” to specify the follicular origin of BCC (4), illustrating the
long-standing controversy and uncertainty about the cellular ori-
gin of BCC. The locally aggressive, but overall rather benign, course
of the disease, with metastasis being largely absent, was similarly
noted early on and spurred the debate as to whether BCC could be
considered a truly malignant cancer or a “semi-malignant” tumor.
The WHO classification has retained the name “BCC” since 1974
(5). BCC is the most common human cancer and accounts for
about two-thirds of all skin cancers in patients of mixed European
descent. In the US this corresponds to approximately one million
cases per year (6, 7).

Clinical appearance of human BCC and related tumors. The inci-
dence of BCC is strongly associated with exposure to UV radia-
tion; tumors develop primarily on the sun-exposed skin of elderly
individuals with fair skin phototypes, are rarely found on palmo-
plantar surfaces or in children, and never appear on the mucosa.
Additional established risk factors include ionizing radiation (IR),
arsenic, and immune suppression (8, 9). Clinically, BCCs appear as
pearly and telangiectatic papules or nodules with or without ulcer-
ation, or as indurated, erythematous, or ulcerated patches with a
discrete papular border, and may be pigmented.

Morphologically, BCC encompasses a group of epithelial intra-
dermal tumors characterized by a primary cellular component that
resembles the undifferentiated basal cells of the epidermis and its
appendages. These basaloid cells are often arranged in palisades at
the tumor periphery, are separated from the surrounding stroma
by optically empty spaces, and form nodules, bands, or strings,
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with some continuity with the overlying epithelium in most cases.
Visible desmosomal intercellular structures are absent, and the
tumor cells have little cytoplasm and show chromatin-rich nuclei
with frequent mitoses when compared with normal skin; however,
they are often apoptotic, consistent with slow tumor growth (10).

BCCs display different morphological growth patterns: superfi-
cial, nodular, micronodular, infiltrating, sclerosing, and fibroepi-
thelial (Figure 1). Nodular BCCs in particular may resemble adnex-
al tumors or, in some regions, squamous cell carcinoma, as these
BCCs demonstrate a variety of types of differentiation including
basosquamous or metatypical, cystic, adenoid, pigmented, and
infundibulocystic differentiation.

The diversity in the phenotypic appearance of BCCs indicates
that the cell of origin may be a stem or progenitor cell. Moreover,
these observations raise the question as to whether BCC is a mono-
clonal tumor or whether it is the result of field cancerization.
Studies investigating clonal patterns of X chromosome inactiva-
tion suggest that the majority of BCCs do represent monoclonal
tumors and that anatomically distinct BCCs may sometimes share
the same cellular origin (11, 12).

Genetics of BCC development. Major advances in our understand-
ing of the molecular changes leading to BCC formation have
come from studies of patients with a hereditary predisposition to
BCC development. As early as 1894, Jarisch and White described
patients with features typical of the autosomally inherited syn-
drome (13, 14) now known as basal cell nevus syndrome (BCNS,
also known as Gorlin syndrome), which was later described in
detail by Robert Gorlin and others (15, 16). The birth incidence of
BCNS in the United Kingdom is 1 in 19,000 (17); BCNS patients
typically develop numerous BCCs starting at a young age and are
prone to developing other tumors including medulloblastomas.
Soon after the cloning of the Hedgehog (Hh) receptor Patched 1
(PTCHI) as the BCNS disease gene (18, 19), it became clear that a
majority, if not all, of sporadic BCCs show abnormal activation of
the Hh pathway (9, 20), ascribing constitutive activation of the Hh
signaling pathway (Figure 2 and reviewed in ref. 21) as a prerequi-
site for the development of a BCC.

Other genetic syndromes such as Bazex-Dupré-Christol syn-
drome (22), Rombo syndrome (23), cartilage-hair hypoplasia
(CHH) (24), and xeroderma pigmentosum (XP) (25) are associ-
ated with a high risk for BCC (reviewed in ref. 26), illustrating the
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Figure 1

Major subtypes of human BCC. (A-E) Macroscopic (A, C, and E) and microscopic (B, D, and F) appearance of nodular (A and B), superficial (C
and D), and sclerosing (E and F) human BCCs. Original magnification, x100 (B, D, and F).

involvement of additional genetic factors and pathways such as
DNA repair (XP) and telomere maintenance (CHH).

Crosstalk between Hb and other molecular signaling pathways in BCC.
The Wnt pathway has a well-established role in normal HF devel-
opment and cycling, and both human and mouse BCCs have
increased levels of B-catenin, a critical mediator of Wnt signaling
(27, 28). In accordance with these observations, overexpression of
the potent Wnt antagonist, Dkk1, in mouse epidermis resulted
in the inhibition of benign Hh-driven hamartomas, showing that
active Wnt signaling is required for their growth (29).

In line with its importance in epidermal development, the EGFR/
MEK/ERK pathway has been shown to modulate GLI-dependent
transcription in human keratinocytes (30) and to synergisti-
cally induce oncogenic transformation of human keratinocytes
(31). Additionally, the tumor suppressor pS3 may influence BCC
development. The complete loss of p53 was shown to result in
upregulated expression of the Hh pathway mediator smoothened
(Smo) in the interfollicular epidermis (IFE) in mice, thereby mak-
ing these keratinocytes receptive to BCC induction (32).

Finally, the correct cellular context is important for the persis-
tent growth of BCCs, and epithelial-stromal interactions play a role
in creating a favorable microenvironment. Stromal cells, isolated
from human BCCs, express high levels of gremlin 1, which antago-
nizes the pro-differentiation factors BMP2 and BMP4, synthesized
in the BCC tumor cells, thereby sustaining tumor growth (33).

Modeling the disease

Genetic mouse models represent a major advance in cancer
research as they provide the possibility of studying tumors in the
context of the entire organism. The study of BCC tumorigenesis
in mice has been hindered by the inexplicable failure of mutagenic
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chemicals and UV or IR to induce BCCs (34). However, genetically
engineered mouse models for BCC provide the option to investi-
gate the molecular mechanisms of BCC formation and progres-
sion and the identification of the cells of origin. Due to the obli-
gate dependency of BCCs on activated Hh signaling, all current
BCC mouse models target different components of the Hh signal
transduction pathway, and these are summarized in Tables 1 and 2.
In this context it is important to note that tumors developing in
the mouse may not always fully mimic human BCCs but represent
various stages in a spectrum of benign to malignant Hh pathway-
induced BCC-like tumors, likely reflecting a similar variation in
humans, where benign hamartomas and BCCs appear to be driven
by different levels of Hh pathway activation (35-38).

Cell of origin and morphological diversity of BCC. Stem and progenitor
cells are thought to be the most probable sources of tumor initia-
tion due to their longevity and ability to self-renew (39, 40). In the
skin, several populations of cells with stem cell (SC) properties have
been discovered; however, defined SC markers are, as yet, limited
to the HF (Figure 3; reviewed in refs. 41, 42). A collection of recent
publications describes the use of mouse genetics to identify BCC
cells of origin using Cre-mediated cell-specific targeting, either by
lineage tracing, which involves the genetic labeling of cells, or by the
activation of oncogenic Hh signaling in distinct skin cell popula-
tions (Figure 3). The identification of tumor cells of origin and,
equally importantly, cells that cannot initiate tumorigenesis, will
make it possible to pinpoint molecular mechanisms that either pre-
dispose or protect a cell from oncogenic transformation.

In the first publication to address the cellular origin of BCC,
Youssef et al. used mice conditionally expressing SmoM2 (43), a
constitutively active variant of Smo (44). When SmoM2 expres-
sion was activated in different cell compartments in the epidermis,
Number 2
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The Hh signaling pathway — a simplified model. (A) In its “off” state, Ptch1 represses Smo activity. Gli2 and Gli3, effectors of the Hh pathway,
are phosphorylated by a kinase cascade, which includes PKA, CK1, and GSK3B, and are directed to the proteasomal degradation pathway via
the SPOP complex. A fraction of the Gli2/3 protein is processed into a repressor form, Gli-R, which inhibits Hh target gene transcription. (B) Hh
ligand binding to Ptch1 abrogates its inhibitory effect on Smo, allowing Smo to translocate into the primary cilium and induce accumulation of the
Gli-Sufu complex at the tip of the primary cilium. Activation of the Hh pathway results in accumulation of Gli-A and initiation of the transcription

of Hh target genes such as PTCH1, GLI1, and HHIP.

including HF SCs (Table 2), only cells originating in the IFE and
the upper infundibulum produced full-blown BCCs. Importantly,
the IFE-derived tumors also exhibited an HF-like protein expres-
sion pattern, demonstrating that the biochemical and morpho-
logical characterization of tumor cells may be misleading when
used to identify the cellular origin of cancers (29, 43).

These same mouse models (employing conditional expression of
SmoM2 in K14- or K15-positive cells; Table 2) were used to study
the effect of wound healing on BCC development (45). It was previ-
ously reported that active wound repair recruits HF cells for re-epi-
thelialization (46-48). In K15-SmoM2 skin, which targets SmoM2
expression mostly to the HFs, the HFs exhibited only occasional
basaloid lesions in the bulge and the hair germ (HG) (43, 49).
Intriguingly, during wound healing, the HF SmoM2-expressing
cells are mobilized to the IFE, where they drive BCC formation
and form tumors (45). Why does SmoM2 induce tumors in the
IFE upon wounding but not in the intact bulge or HG? One pos-
sible explanation is that the bulge microenvironment suppresses
SmoM2-mediated oncogenesis, as Glil and Gli2 mRNAs, which
encode Hh pathway effector proteins downstream of Smo, are
upregulated in IFE-associated tumors but not in HFs (45).

Our group has also addressed the question of the BCC cell of
origin and the effect of wounding on tumor growth (ref. 50 and
Table 2). Overexpression of human GLI1 under the control of the
K5 promoter resulted in BCC formation, preferentially in the IFE,
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butalso in the HF. Lineage-tracing of Lgr5* SCs, which give rise to
the bulge and HG, showed that in this BCC model, HF- and IFE-
associated lesions had distinct cells of origin, as no Lgr5*-traced
lesions were found in the IFE. However, Lgr5-labeled HF cells were
able to give rise to BCCs in the IFE upon wounding, in line with
the study by Wong et al. (45). In the LgrSCre-Ptch 1/ mouse model,
Ptch1 deletion in LgrS-expressing HF SCs resulted in the forma-
tion of locally restricted basaloid proliferations in the lower part
of the HF. In wounded skin, Ptch1-deficient LgrS* cells were again
recruited to the wound sites in the IFE, where they induced de
novo basaloid lesions (50). Thus, the concept that wounding is an
important factor in tumor development, postulated 150 years ago
(52), also appears applicable to BCC development.

Despite similar molecular pathogenesis, a considerable mor-
phological heterogeneity exists among BCCs (53). How do these
morphological differences occur? By comparing two different
BCC models, Grachtchouk et al. found that BKS-GLI2 mice (54)
with strong Hh signaling developed full-featured BCCs, while the
weaker Hh signal in AKS-SMO-M2 mice resulted in follicular ham-
artomas (35). Furthermore, a recent, more detailed study from the
same group revealed that activated SmoA1 expression in the HF
does not give rise to BCC-like lesions in the HF and that low levels
of GLI2AN expression throughout the basal compartment do not
lead to nodular BCCs in the HF (in contrast to the model with high
GLI2AN expression), but to slow-growing basaloid follicular ham-
Volume 122 Number 2
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Table 1
General mouse models used to study BCC formation

Cell targeting Effector Start of Hh
alleles alleles pathway modulation
K14 Shh Tg EQA
hK5 hSMO-M2 Tg E0A
All Ptch1+- E0

All Ptch1+- E0
BK5 hGLI1 Tg E0A
BK5 mGli2 Tg E0A
BK5 mGli2AN2 Tg E0A
ABK5 hSMO-M2 Tg E0A
All Ptch+- E0

Al Ptch+- E0
K5tTA (bovine) TREmGIi2 Tg E0A
All Sufu- E0
K6a-Cre Ptch1i EQA
K6a-Cre Ptch1i EO
K14-Cre Ptch1 E0A
Mx1-Cre Ptch 1 Various
CAGGS-CreER fl-STOP-fl-SmoM2-YFPP P10
K14-CreERT fl-STOP-fl-SmoM2-YFPD P30-P35
K14-CreERT fl-STOP-fl-SmoM2-YFPD.E P30-P35
K14-CreERT CLEG2-condF P30-P35
K14-CreERT CLEG2-condEF P30-P35

Additional Pathology Reference
treatment
No BCC-like lesions 89
No BCC-like lesions 90
No Trichoblastomas 91
UV, y-IR, X-ray BCC, trichoblastomas 91
No BCC, trichoepitheliomas, 36
cylindromas, trichoblastomas
No BCC 54
No BCC, trichoblastomas, cylindromas, 92
basaloid follicular hamartomas

No Basaloid follicular hamartomas 35
No Basaloid hyperproliferations 93
X-ray BCC (nodular and infiltrative) 93
DOX off BCC 75
No BCC, basaloid follicular hamartomas 94
No ORS hyperplasia 27
Retinoic acid® BCC-like lesions 27
BCC-like lesions 95
poly(l:C)¢ BCC-like lesions 95
No BCC-like lesions 96
No BCC-like tumors 97
No Inhibition of BCC-like tumors 97
No BCC-like tumors 97
No Enhanced BCC-like tumors 97

AEffective promoter activation is dependent on temporal regulation during embryogenesis (e.g., K14 starts at E9.5). BTo activate K6 expression in the IFE
and ORS at P32. CTo activate Mx1 promoter via interferon response. PFusion protein of mSmoM2 with YFP inserted into the Rosa26 locus. EAdditional
allele is Kif3a-. FCLEG2 denotes Myc-tagged, constitutively active human GLI2.

artomas resembling the tumors found in AKS-SMO-M2 mice (ref.
37 and Table 2). These observations support the suggestion that,
downstream of Ptch1, the level of Hh pathway activation, rather
than the exact molecular target, is crucial in determining the BCC
subtype. It is worth noting that high levels of GLI2AN expression
in the bulge and HG rapidly lead to nodular tumors, most likely
initiated in the lower bulge and the HG (37), and the HG may also
be the source for tumor-initiating cells in LgrSCre-Ptch1/ff mice
(50). The lower bulge and HG harbor cells with active Hh signal-
ing in telogen (55, 56), which may represent a cell population that
is preferentially susceptible to Hh pathway-driven tumorigenesis.

The influence of the hair cycle phase on BCC growth is also
important, and the authors of three studies have presented direct
evidence that BCC development occurs preferentially, but not
exclusively, during anagen phase (37, 57, 58). One reason may be
that cells located in the outer root sheath (ORS) of anagen HFs can
give rise directly to nodular BCCs, supporting the idea that this
compartment contains cells capable of transformation by onco-
genic Hh signaling and, therefore, provides an expanded pool of
potential tumor progenitors.

Together, the results obtained using mouse models to study
BCC development have so far revealed that oncogenic Hh signal-
ing can drive BCC-like tumor formation in several different epi-
thelial progenitor populations in skin, although the morphology
and the final outcome of BCC development are influenced by the
cell of origin, the mutated Hh pathway member, and the strength
of oncogenic Hh signaling.
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New therapies
Highly efficient treatment modalities such as surgery that aims at
complete extirpation, radiotherapy, curettage, cryotherapy, photo-
dynamic therapy, and topical applications of imiquimod or 5-fluo-
rouracil are available and effective for the great majority of BCC
patients (9, 59). However, the occurrence of locally aggressive and
invasive tumors, a bleak prognosis upon metastatic spread, a sig-
nificant rate of recurrence often associated with increased aggres-
siveness, as well as the multitude of tumors appearing in high-risk
populations such as BCNS patients, provide compelling reasons to
search for new preventive and therapeutic avenues (60).

Hb signaling as a target for new BCC therapies. The first evidence that
the Hh signaling pathway is sensitive to inhibition by small mole-
cules stemmed from the observation of cyclopia in lambs, induced
by the maternal ingestion of corn lilies (Veratrum californicum) (61),
followed by the demonstration that the active compound, cyclo-
pamine, inhibits Hh signaling (62) and binds to SMO (63). Initial
studies showed that, in addition to Hh inhibition in various in
vitro systems, the oral administration of cyclopamine reduced the
growth and development of BCCs in Ptch1"~ mice exposed to UV
irradiation (64), and its topical application to human BCCs can
induce regression (65).

New derivatives of cyclopamine with improved pharmaceutical
properties are now in clinical trials (Table 3 and ref. 66). Excellent
results were obtained with the orally administered SMO inhibi-
tor GDC-0449 (vismodegib; Table 3) in a phase I trial of patients
with locally advanced or metastatic BCC (67, 68). Phase II results
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using GDC-0449 in patients with locally advanced or metastatic
BCC (69) and in BCNS patients with multiple BCCs (70) were so
promising that the Data Safety Monitoring Board recommended
ending the placebo arm of the BCNS study in light of the differ-
ences between the study arms. Importantly, no resistance has so
far been reported. In addition, a phase I study of IPI-926 (Table 3)
given orally to patients with advanced types of BCC also resulted
in a positive response rate (71).

In the studies investigating systemic treatment with SMO inhibi-
tors, a common set of adverse effects has been observed, including
muscle spasms, loss of taste (dysgeusia), hair loss, fatigue, nausea,
and hyponatremia. It is likely that hair loss and altered taste, at
least, are related directly to SMO inhibition, since Hh signaling
is known to be active in HFs and taste buds (72, 73). One way to
avoid or reduce such effects might be to use these inhibitors topi-
cally, thus limiting systemic exposure. A small, short-term study
in BCNS patients with nodular and superficial BCC, employing
twice-daily topical treatments of the SMO inhibitor LDE225 for
four weeks, resulted in a positive response, and BCC regression
correlated with a decrease in Hh target gene expression in most
treated tumors (74). No treatment-related side effects were noted,
consistent with low levels of systemic exposure to the inhibitor.

A potential caveat associated with the use of Hh pathway antago-
nists for the treatment of BCC is the possibility that, while treat-
ment may result in a dramatic reduction in tumor mass, a small
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number of residual cells that are relatively insensitive to Hh sig-
nal inhibition may persist so that treatment may not be curative.
The existence of such a cell population has been shown both in a
mouse BCC model (75) and in a clinical trial of the SMO inhibitor
LDE225 (ref. 74 and Table 3).

Another concern is the development over time of resistance to
SMO inhibitors used in treatment, which may or may not involve
mechanisms similar to those that render certain BCCs refractory
to treatment from the start. Medulloblastoma is another tumor
type in which Hh signaling is frequently activated by mutations in
PTCHI or SMO, and the treatment of one patient with a medullo-
blastoma carrying PTCHI mutations with GDC-0449 led to rapid
but transient tumor regression (76). Subsequently, it was found
that an amino acid substitution in SMO that had no effect on Hh
signaling but disrupted the ability of GDC-0449 to bind SMO and
suppress this pathway was the underlying cause of the relapse (77).
Studies in animal models confirmed that the development of resis-
tance can be caused by mutations in Smo as well as by the ampli-
fication of downstream genes such as Gli2 and cyclin D1 (78, 79).
Potential methods of overcoming such resistance involve the use
of alternative SMO inhibitors (79) such as the FDA-approved anti-
fungal drug itraconazole, which was recently found to inhibit Hh
signaling by binding to SMO at a site different from cyclopamine
and to delay BCC development in Ptch1*/~ mice (80). At present,
itraconazole is being evaluated as a possible treatment for BCC
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Table 3
Emerging BCC therapies
Agent/compound Target Condition/patient group studied Study phase ClinicalTrials.gov ID  Reference
SMO inhibitors in clinical trials
GDC-0449~ SMO BCNS patients Il NCT00957229 70
GDC-0449 SMO Locally advanced or metastatic BCC Il NCT01367665 69
GDC-0449 SMO Operable BCC Il NCT01201915 -
GDC-0449 SMO BCC Il NCT00959647 -
GDC-0449 SMO Advanced BCC Il NCT00833417 -
GDC-0449 SMO Locally advanced or metastatic BCC Il NCT01160250 -
LDE-225 SMO BCNS patients Il NCT00961896 -
LDE-225 SMO Advanced solid tumors (BCC, medulloblastoma) | NCT01208831 -
LDE-225 SMO Advanced solid tumors (BCC, medulloblastoma) | NCT00880308 -
LDE-225 SMO Sporadic superficial and nodular BCC Il NCT01033019 -
LDE-225 SMO Locally advanced or metastatic BCC Il NCT01327053 -
LDE-225 SMO BCNS patients Il NCT01350115 -
LDE-225 SMO BCNS patients Preclinical - 74
Cur61414 SMO UV-treated Ptch7+-mice; Preclinical - 98,99
Ptch1+-/K14-CreERT2-p53"" mice exposed to IR
Cur61414 SMO Superficial and nodular BCCB | - 99
IP1-926 SMO BCC (including locally advanced or metastatic) | NCT00761696 71
BMS-833923 SMO Advanced or metastatic BCC | NCT00670189 -
TAK-441 SMO Advanced BCC | NCT01204073 -
Itraconazole SMO BCC Il NCT01108094 -
Downstream Hh pathway inhibitors
GANT 58, GANT 61 GLI NA Preclinical - 81
Arsenic trioxide GLI NA Preclinical - 83, 84
HPI1/2/3 GLI NA Preclinical - 82
HPI4 Ciliogenesis NA Preclinical - 82
Other agents
Vitamin D3 SMO/cell proliferation BCC 1 NCT01358045 -
Tazarotene RAR-B/RAR-y BCC on chest and back of BCNS patients Il NCT00783965 -
Tazarotene RAR-B/RAR-y BCC on face of BCNS patients Il NCT00489086 -

ADrug name vismodegib. BBCCs failed to show signs of clinical response or significant GLI1 target gene inhibition, likely due to inadequate drug absorption.

in a phase II trial (Table 3). Alternatively, blocking other signaling
pathways in resistant tumors may be effective, and in preclinical
studies of medulloblastomas, PI3K inhibition has emerged as a
promising possibility (78, 79).

In situations in which Hh pathway activation occurs down-
stream of SMO, targeting the final effectors in the pathway, such
as the GLI transcription factors, would be preferable. The poten-
tial viability of this strategy has been demonstrated by the identi-
fication of small molecule inhibitors acting at the level of GLI, or
at alternative steps downstream, and independent of SMO (refs.
81, 82, and Table 3). Interestingly, in two studies it has been found
thatarsenic trioxide, in clinical use for the treatment of acute pro-
myelocytic leukemia, can inhibit Hh signaling at the GLI protein
level, although the exact mechanism remains controversial (83,
84). However, given the diverse set of targets for arsenic trioxide,
it will be challenging to delineate critical targets in an in vivo
setting, and existing side effects may limit its attractiveness as a
treatment for BCC; curiously, arsenic exposure is also a known
risk factor in BCC development (85).

Given the key role of primary cilia in the transduction of the
Hh signal (Figure 2), inhibitors of ciliogenesis or ciliary function
represent a further means of intervention in BCC tumorigenesis,
and a small molecule blocking ciliogenesis has been identified as
an Hh inhibitor (ref. 82 and Table 3). Again, the multiple cellular
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effects expected as a result of cilia disruption will place obstacles
in the way of obtaining specificity.

Other potential new BCC therapies. Vitamin D3 has been shown
to block Hh signaling in vitro and in murine BCCs in vivo,
presumably at the level of SMO, in a manner independent of
vitamin D receptor (VDR) activation (86, 87). The enhanced dif-
ferentiation of keratinocytes induced via VDR activation is an
additional and well-established effect of vitamin D3. A phase III
trial combining topical vitamin D3 therapy and treatment with
an anti-inflammatory agent in patients with nodular BCC has
been initiated (Table 3).

Finally, topical treatment with the RARB/RARG-selective reti-
noid tazarotene has been shown to reduce the number and size
of early BCC lesions in irradiated Ptch1*/~ mice (87, 88), and its
efficacy in the control of BCC development in BCNS patients is
under study in two phase II clinical trials (Table 3).

To summarize, early clinical results targeting the Hh signaling
pathway are very promising, especially in regard to BCC treatment
and chemoprevention in BCNS patients and for the treatment
of locally aggressive or metastatic BCC. However, we still do not
have the answer to several important questions: (a) Will treatment
truly result in the eradication of BCCs, or will dormant tumor cells
remain? (b) What are the major resistance mechanisms in BCCs?
(c) Why are a substantial fraction of BCCs refractory to treatment
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from the start? Moreover, the adverse effects that develop with sys-
temic treatment are a significant concern, arguing for the develop-
ment of local treatment options.

Perspectives
The great advances in our understanding of BCC biology, derived
from deciphering its molecular genetics and from incisive studies
using genetic mouse models that closely mimic the human dis-
ease, have been translated rapidly into new and promising targeted
therapies. At the same time, it is important to realize that we are
only just beginning to resolve the long-standing question about
the BCC cell of origin. We know from studies in the mouse that
SCs and progenitor cells present in the HF can serve as cells of
origin, but that additional cells of origin must exist. The marked
plasticity of skin epithelial stem cell populations, as revealed upon
tissue injury, provides an additional layer of complexity.

Another challenging question begging an answer is the nature
of the genetic events that cooperate with an activated Hh signal-

ing pathway to determine BCC subtypes, ranging from the benign
nodular and superficial forms to aggressive and, in rare cases,
metastatic forms. Future studies will certainly provide answers to
many of these questions, and it is to be hoped, moreover, that the
lessons learned from treating BCC with Hh pathway inhibitors
will pave the way for progress in the treatment of other tumors
that depend on the presence of active Hh signaling.
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