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CD2AP in mouse and human podocytes
controls a proteolytic program that regulates
cytoskeletal structure and cellular survival
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Kidney podocytes are highly differentiated epithelial cells that form interdigitating foot processes with bridg-
ing slit diaphragms (SDs) that regulate renal ultrafiltration. Podocyte injury results in proteinuric kidney
disease, and genetic deletion of SD-associated CD2-associated protein (CD2AP) leads to progressive renal
failure in mice and humans. Here, we have shown that CD2AP regulates the TGF-B1-dependent translocation
of dendrin from the SD to the nucleus. Nuclear dendrin acted as a transcription factor to promote expression
of cytosolic cathepsin L (CatL). CatL proteolyzed the regulatory GTPase dynamin and the actin-associated
adapter synaptopodin, leading to a reorganization of the podocyte microfilament system and consequent
proteinuria. CD2AP itself was proteolyzed by CatL, promoting sustained expression of the protease during
podocyte injury, and in turn increasing the apoptotic susceptibility of podocytes to TGF-1. Our study identi-
fies CD2AP as the gatekeeper of the podocyte TGF-f response through its regulation of CatL expression and

defines a molecular mechanism underlying proteinuric kidney disease.

Introduction

Several hundred million people worldwide — about 1 in 15 adults
— have some form of kidney damage, and every year, millions die
prematurely of cardiovascular or renal complications linked to
chronic kidney disease (CKD). CKD often begins with urinary pro-
tein loss (proteinuria), an early sign of kidney injury that consti-
tutes a risk factor for further progressive destruction of the kidney,
a process that can last from weeks to several years (1). Proteinuria
stems from injury to podocytes, terminally differentiated cells that
reside in the kidney glomeruli, the location of the renal filtration
barrier. The function of podocytes is primarily based on their intri-
cate structure, which consists of a cell body, major processes, and
interdigitating foot processes (FPs), which are actin-driven mem-
brane extensions. At the interface of adjacent FPs, a specialized
intercellular junction known as the slit diaphragm (SD) is formed.
Nephrin, a key structural and signaling transmembrane protein of
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the SD, recruits proteins such as podocin, CD2AP, and Nck to the
podocyte membrane (2). One of the earliest events in the develop-
ment of podocyte dysfunction is the disruption of FPs (referred to
as FP effacement), which causes proteinuria, the first clinical sign in
CKD. Once podocytes are injured, there are 2 possible outcomes: (a)
proteinuria resolves and podocyte structure normalizes, or (b) renal
function declines, resulting in progressive glomerular and consecu-
tive tubular destruction (3). The latter outcome is characterized by
an increased occurrence of podocyte apoptosis, a recognized event
commonly observed during renal disease progression (4). Gener-
ally, the reason for heightened susceptibility of podocytes during
proteinuria is a phenomenon that is not well understood.

Recent years have shed light on the molecular makeup of the
SD and podocyte FPs, mainly through human and mouse genetic
studies (5). Clinically, acquired forms of glomerular dysfunction,
such as those seen in diabetes mellitus, are far more common and
follow similar patterns of injury. A key event in the development of
podocyte FP effacement and proteinuria lies in the induction of a
cytosolic form of the protease cathepsin L (CatL; encoded by Ctsl)
in podocytes that has recently been characterized in triggering the
disease process (6, 7). Ctsl mRNA is found in all tissues, but was
characterized as an enriched glomerular-specific transcript com-
pared with other segments of the kidney (8). Via mechanisms of
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Figure 1

High level of TGF-p1 induces expression
of CatL. (A) Levels of Tgfb1, Ctsl, and con-
trol gene in glomeruli of TGF-1 Tg and
WT animals. Phenotype categorization
is as described previously (23). (B) H&E-
stained sections of the renal cortex, show-
ing increased CatL staining in TGF-1 Tg
mice. Kidneys of WT and TGF-1 Tg mice
were stained for CatL using anti—cytosolic
CatL antibody, and nuclei were stained
using DAPI. (C) CatL staining levels in sec-
tions from B. ***P < 0.001. (D) H&E-stained
sections showing dendrin localization in the
nucleus of the podocytes in TGF-1 Tg ani-
mals (arrows). Kidneys of WT and TGF-f1
mice were stained for dendrin using anti-
dendrin antibody. (E) Dendrin staining
levels in sections from D. ***P < 0.001.
(F and G) H&E-stained sections showing
increased CatL staining in glomerulus of
3-week-old Cd2ap~- mice (arrows). Kid-
neys of WT and Cd2ap~- mice were
stained for CatL using anti—cytosolic CatL
antibody, and nuclei were stained using
DAPI. (H) Dendrin localization in glomeru-
lus of WT and Cd2ap~- mice at different
stages of development. WT1 was used to
stain podocyte nuclei (red). In the young
glomerulus, dendrin (green) was localized
at the membrane (ribbon staining pattern),
without any colocalization with WT1. At
4 weeks, dendrin staining was still localized
to the plasma membrane in WT mice, but
was predominantly found in the nucleus
costaining with WT1 in Cd2ap~- mice. Scale
bars: 20 um (B, D, F, and G); 30 um (H).

WT (4 wk) Cd2ap (4 wk)

alternative translation of Ctsl mRNA, a cytosolic CatL protein that  well as processing of histone H3 during embryonic stem cell dif-
lacks the lysosomal targeting sequence can be produced in a few  ferentiation in mice (11). In podocytes, cytosolic CatL proteolyzes
cell types, including podocytes (6, 9). Physiological functions of  the large GTPase dynamin (6) and the actin-binding protein syn-
cytosolic CatL include processing of transcription factors (10) as  aptopodin (7). Both events result in disorganization of the podo-
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cyte actin cytoskeleton and FP effacement. FP effacement can be
inhibited by blocking CatL activity or by protection of the target
proteins from CatL cleavage (6, 7).

Thus far, it is unclear how the expression of cytosolic CatL is regu-
lated. An important genetic model to study the sequela of podocyte
injury and glomerular disease is the Cd2ap~~ mouse model (12).
CD2AP, a scaffolding protein, is essential for proper signaling at the
SD (13, 14). Thus, homozygous CD2AP mutation or haploinsuffi-
ciency of the human CD2AP gene predisposes to renal disease (15),
and mice lacking 1 copy of Cd2ap develop glomerular renal failure
(16). Importantly, Tg mice expressing CD2AP only in podocytes pre-
vented the development of proteinuria, which demonstrated that
the renal failure is solely due to loss of CD2AP in podocytes (17).
Despite these findings, the molecular mechanism by which CD2AP
regulates function of podocyte has not been fully understood. It
has been shown that loss of CD2AP leads to increased expression
of TGF-B1 in podocytes and apoptosis (18, 19), demonstrating
that CD2AP somehow regulates podocyte survival by regulating
expression of TGF-f1. Furthermore, high levels of TGF-f1 have
been associated with translocation of dendrin from the SD to the
nucleus, which in turn increased podocyte apoptosis (20). Dendrin
binds CD2AP and nephrin at the SD, which suggests that loss of
CD2AP and subsequent increase in TGF-f1 expression in podocytes
might drive dendrin translocation in cells lacking CD2AP. Here, we
showed that genetic deletion or proteolytic degradation of CD2AP
allowed for an increase in podocyte TGF-f1 signaling that in turn
drove translocation of dendrin from the SD into the nucleus. We
next identified dendrin as a CatL transcription factor specifically
promoting expression of cytosolic CatL, a finding we believe to be
novel. Cytosolic CatL in turn drove reorganization of the actin cyto-
skeleton by proteolytically processing dynamin and synaptopodin.
Alteration in the actin cytoskeleton rendered podocytes hypersen-
sitive to proapoptotic signals. The prolonged presence of cytosolic
CatL led to sustained loss of CD2AP, which in turn promoted den-
drin translocation and drove sustained expression of cytosolic CatL,
establishing progressive renal disease. In summary, our results dem-
onstrate that CD2AP plays an unexpected role in the regulation of
the expression of cytosolic CatL and link SD injury with a proteo-
lytic program that underlies progressive renal disease.

Results

Increased TGF-B1 signaling induces CatL expression. Most forms of
glomerular diseases, such as diabetic nephropathy, are associated
with increases in TGF-B1 signaling (21). We have previously shown
that Ctsl mRNA and CatL protein levels are upregulated in glom-
eruli of patients with diabetic nephropathy (6). Thus, we exam-
ined whether mice Tg for TGF-B1 exhibit elevated CatL expression.
These animals, which express TGF-B1 in the liver controlled by
an albumin promoter, display elevated plasma concentrations of
TGF-B1, exhibit podocyte apoptosis at an early stage of disease,
and develop variable degrees of CKD and proteinuria (22, 23).
Because all animals have high levels of circulatory TGF-B1, which
in itself is not sufficient to explain the variability in the kidney
phenotype (glomerulosclerosis), we used real-time PCR (RT-PCR)
to examine mRNA levels of Tgfb1I in isolated kidneys of TGF-1 Tg
animals. There was an increase in mRNA levels for Tgfbl, which
correlated well with severity of the kidney phenotype (Figure 1). A
similar correlation was detected with respect to Ctsl mRNA levels
in glomeruli. Together, these data showed that there was a strong
association between Tgfb1 and Ctsl mRNA levels and severity of glo-
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merulosclerosis (r=0.96 and » = 0.97, respectively). The increase in
Ctsl mRNA levels in glomeruli translated into an increase in CatL
protein levels in podocytes, as revealed by immunohistochemical
staining for CatL (Figure 1, B and C). Together, these data showed
that increased exogenous levels of TGF-B1 can increase both
endogenous kidney TGF-B1 levels and CatL expression.

It has previously been shown that high levels of TGF-f1 induce
translocation of dendrin from the plasma membrane to the
nucleus of podocytes in culture (20). In line with these studies,
we found increased nuclear dendrin staining in TGF-pf1 Tg mice
(Figure 1, D and E). To explore the identified connection between
increased TGF-B1 and CatL levels in the glomerulus and TGF-1-
dependent nuclear localization of dendrin in podocytes, we turned
to the Cd2ap~~ mouse model of progressive kidney disease. Cd2ap~~
mice are born normal, but develop heavy proteinuria and renal
failure approximately 4 weeks after birth and die usually at 6 weeks
of age (12, 17). As glomerular disease progresses in these mice,
podocyte apoptosis increases, driven in part by an increase in intra-
glomerular TGF-PB1 signaling (18). Given the increased TGF-f1
levels in podocytes lacking CD2AP at the time of proteinuria
onset, these mice represent an ideal model to examine the con-
nection between TGF-1 signaling and CatL expression in podo-
cytes. We first examined whether increased CatL levels coincide
with proteinuria onset in Cd2ap~~ animals. Whereas glomeruli of
both WT and Cd2ap~~ mice exhibited low-level staining for CatL
at 1 week, staining for CatL increased in glomeruli of 3-week-old
Cd2ap~~ mice (Figure 1, F and G). The staining indicated that a
majority of CatL was present within the podocytes (Figure 1G,
arrows). Next, we examined whether dendrin could be found in
the nucleus in Cd2ap~/- animals. The classical plasma membrane
staining was observed for dendrin in Cd2ap~~ mice at 1 week of
age, when mice were still healthy (Figure 1H). Importantly, den-
drin exhibited a nuclear staining pattern in 4-week-old Cd2ap~-
mice (Figure 1H), which demonstrated that dendrin translocated
into the nucleus of podocytes during the early stages of podocyte
injury. In contrast, dendrin staining in the glomeruli of 1- or
4-week-old WT mice exhibited a characteristic membrane pattern
(Figure 1H), in agreement with its SD localization (20). Together,
our data extended prior observations by identifying a link among
loss of the SD adaptor protein CD2AP, increase in autocrine levels
of TGF-B1, dendrin translocation into the nucleus, and increased
levels of CatL in podocytes.

Loss of CD2AP leads to expression of cytosolic CatL in podocytes. To
elucidate the molecular mechanism that regulates expression of
CatL in a TGF-B1-dependent manner, we turned to podocytes
in culture. In agreement with the animal model and previously
published studies (17), conditionally immortalized podocytes
derived from Cd2ap~~ mice were indistinguishable from the WT
podocytes, with well-defined focal adhesions (FAs) and stress
fibers (Figure 2A, left panels). Similar to the course of pathol-
ogy in Cd2ap~~ mice, Cd2ap~~ podocytes cultured for more than
6 weeks developed distinct alteration in the actin cytoskeleton,
loss of mature FAs and increased number of focal complexes,
and loss of well-defined stress fibers and dramatically increased
number of transverse arcs (Figure 2A). The alteration in the actin
cytoskeleton was similar to that observed in cells treated with
LPS (6, 24) and was consistent with FP effacement at the onset
of proteinuria in Cd2ap~~ mice (12, 15). Because increased glo-
merular levels of TGF-B1 that can act in a paracrine/autocrine
fashion has been shown to occur at the onset of proteinuria (18),
Volume 121~ Number 10
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Figure 2

Prolonged loss of CD2AP leads to expression of cytosolic CatL. (A)
Actin cytoskeleton and FA organization in fully differentiated low-
and high-Tgfb1 Cd2ap- cells. Note the loss of well-defined stress
fibers and dramatic increase in number of transverse arcs in high-
Tgfb1 Cd2ap~- cells. FAs and F-actin were visualized with anti-paxil-
lin antibodies and rhodamine-phalloidin, respectively. (B) Low-Tgfb1
Cd2ap~- podocytes could be transformed into high-Tgfb1 Cd2ap-
podocytes by high TGF-1 levels. WT and low-Tgfb1 Cd2ap~- pas-
sage cells were treated with 5 ng/ml TGF-f31 in the media for 24 hours.
Actin cytoskeleton was monitored by staining cells with rhodamine-
phalloidin, and dendrin localization was monitored using anti-dendrin
antibody (green). (C—E) mRNA levels for Tgfb1 (C) and Cts/ (D and
E), determined by RT-PCR in podocytes. When indicated, cells were
treated with 5 ng/ml TGF-$1 for 24 hours or with 50 uM LPS for 24
hours. Podocytes expressing Actn4 mutant are also shown in E. (F)
Subcellular fractionation of low- and high-Tgfb71 Cd2ap~- podocytes
in isotonic sucrose. Total proteins from soluble (S) and particulate (P)
fractions were probed for CatL and for the lysosomal protein markers
Lamp-2 and mannosidase (Manno), then analyzed by Western blot-
ting. GAPDH was used as a loading control. Strong cytosolic CatL
induction (asterisk) was observed in both soluble and pellet fractions
of high-Tgfb1 Cd2ap~- podocytes. Scale bars: 20 um.

we compared Tgfbl mRNA levels in Cd2ap~~ podocytes that con-
tained WT organization of the actin cytoskeleton (early passage)
and those with altered actin cytoskeleton (late passage). Indeed,
late-passage Cd2ap~~ podocytes exhibited higher Tgfbl mRNA
levels than did early-passage Cd2ap~~ podocytes (Figure 2C). To
further explore the connection between high Tgfbl mRNA levels
and actin cytoskeleton alterations, we examined whether addi-
tion of high levels of recombinant TGF-B1 in the media could
induce alteration of the podocyte actin cytoskeleton. Culturing
of WT podocytes with 5 ng/ml TGF-p1 did not induce altera-
tion in their actin cytoskeleton (Figure 2B). In contrast, identical
treatment of early-passage Cd2ap~~ podocytes induced dramatic
alteration of their actin cytoskeleton (Figure 2B). This TGF-p1-
dependent alteration of the actin cytoskeleton coincided with
increased dendrin staining in the nucleus in Cd2ap~~ cells (Figure
2B). Notably, we detected dendrin in the nucleus to some degree
even in WT cells (ref. 20; Figure 2B; and Supplemental Figure
1A; supplemental material available online with this article;
doi:10.1172/JCI58552DS1).

Even at the basal state, Cd2ap~/~ cells exhibited higher Tgfb1
mRNA levels than did WT cells, and this level was further increased
upon culturing cells in TGF-B1 rich media (Figure 2C). Thus,
podocytes lacking CD2AP were susceptible to increased levels of
TGF-B1 in media, which in turn drove reorganization of their actin
cytoskeleton. Consequently, Cd2ap~~ podocytes with low Tgfb1
mRNA levels exhibited WT organization of the actin cytoskeleton,
and those with high Tgfb1 mRNA levels exhibited altered organiza-
tion of the actin cytoskeleton (Figure 2, A and B). While at present
we do not understand the molecular mechanism by which CD2AP
regulates expression of TGF-f1 in podocytes, experimentally, the
switch from low to high Tgfb1 was achieved by prolonged culturing
of Cd2ap~/~ podocytes to allow for endogenous autocrine TGF-f1
signaling (Figure 2A and Supplemental Figure 1A) as well as by
adding high levels of recombinant TGF-$1 into the media to rapid-
ly transduce the Tgfb1 signal (Figure 2, B and C). In both instances,
the levels of endogenous Tgfbl mRNA correlated with nuclear den-
drin staining (Figure 2B and Supplemental Figure 1A).
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Importantly, the increase in TGF-B1 induced an increase in Cts/
mRNA levels in Cd2ap~~ cells. In contrast, expression of Cts/ mRNA
in WT cells was resistant to high levels of TGF-B1 (Figure 2D).
However, even in WT cells, the higher the TGF- level in the media,
the higher the level of Ctsl mRNA (Supplemental Figure 1B), which
suggests that prolonged high levels of exogenous TGF-f§ might
trigger an increase in Ctsl mRNA. We made similar observations
when Ctsl mRNA levels were compared among WT cells, high-Tgfb1
Cd2ap~- cells, and cells treated with LPS (Figure 2E). Increased
Ctsl mRNA was not observed in podocytes expressing a gain-of-
function mutation in the o-actinin-4 gene (Actn4; Figure 2E) or
in podocytes in which dynamin or synaptopodin were downregu-
lated (Supplemental Figure 1C). These data, consistent with our
findings in animals (Figure 1, A and B), suggested that increased
TGF-P1 signaling has a specific effect on CatL expression.

Upregulation of Ctsl mRNA resulted in a dramatic increase in
the amount of cytosolic CatL (also referred to as short-form CatL;
Figure 2F, lane 3; Supplemental Figure 1D; and ref. 9). Indeed,
cytosolic CatL was also found in the nucleus (Supplemental Fig-
ure 1E), as described previously (10). We and others have shown
that cytosolic CatL downregulates protein levels of dynamin (6),
synaptopodin, and RhoA (7). In agreement with these findings,
high-Tgfb1 Cd2ap~~ cells exhibited lower levels of dynamin, syn-
aptopodin, and RhoA without affecting the level of a-actinin-4
(Supplemental Figure 1F). The decreased protein levels were not
caused by downregulation of mRNA for those proteins (Supple-
mental Figure 1, G and I), which suggests that decreased levels
are caused by proteolytic processing of these proteins by cytosolic
CatL. Together, these data suggest that Cd2ap~~ podocytes in cul-
ture phenocopy alterations that occur in podocytes in Cd2ap~~ ani-
mals at the onset of proteinuria: increased expression of endog-
enous TGF-B1 (18, 19), dendrin translocation into the nucleus
(Figure 1H), and increased expression of CatL (Figure 1G)

Cytosolic CatL alters the actin cytoskeleton in Cd2ap~~ cells. Our study
identified the presence of cytosolic CatL in high-Tgfbl Cd2ap~-
podocytes. To further explore the hypothesis that the presence
of cytosolic CatL drives alterations of the actin cytoskeleton in
Cd2ap~/~ cells by proteolytically processing a subset of proteins,
we inhibited CatL activity by lentivirus-based shRNAs and by
using the small-molecule cysteine protease inhibitor E64, which
blocks CatL. Downregulation of CatL by RNAi was confirmed
using RT-PCR and Western blot analysis (Figure 3, A and B). 3 dif-
ferent shRNAs downregulated CatL protein levels 70%-90% and
significantly reduced CatL activity in the cytoplasm of high-Tgfb1
Cd2ap~~ cells (Figure 3, B and C). In agreement with the fact that
the enzymatic assay measures activities of both CatL and CatB,
addition of CA074, a specific CatB inhibitor, resulted in further
lowering of the measured activity to the basal level (Figure 3C),
thus defining the specificity of the assay. Therefore, the CatB
inhibitor CA074 was included in all subsequent assays. As shown
in Figure 3D, downregulation of CatL in high-Tgfb1 Cd2ap~~ cells
by shRNA-C6 resulted in CatL activity similar to that observed in
WT cells. Immunofluorescence and Western blot analysis dem-
onstrated that CatL was active in the cytoplasm of high-Tgfb1
Cd2ap~/- cells (Figure 2F). If loss of dynamin and synaptopodin
was indeed the result of identified activity of cytosolic CatL, then
treatment of cells with E64 or downregulation of CatL expression
by shRNA should exhibit a protective effect on the loss of these
proteins. As expected, both treatments resulted in increased levels
of dynamin, synaptopodin, and RhoA (Figure 3, E-G). In agree-
Volume 121 3969
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Figure 3
Cytosolic CatL activity regulates actin cytoskeleton in Cd2ap~- cells.

(A) Ctsl mRNA levels, determined by RT-PCR, in high-Tgfb1 Cd2ap-

podocytes infected with different shRNA constructs (C2, C5, C6) downregulating endogenous CatL. Con, high-Tgfb1 Cd2ap~- podocytes not
infected with lentiviruses; Scr, cells infected with lentiviruses expressing a scrambled oligo. (B) CatL levels in high-Tgfb7 Cd2ap~- podocytes
infected with lentiviruses expressing different shRNA constructs to downregulate CatL at relative volumes as indicated. (C) Time course of CatL
activity in high-Tgfb1 Cd2ap~- podocytes and in high-Tgfb7 Cd2ap~- podocytes infected with lentiviruses to downregulate CatL in the absence

and presence of CA074 at neutral pH. (D) Time course of CatL activity

in the presence of CA074 in high-Tgfb1 Cd2ap~- podocytes, high-Tgfb1

Cd2ap~- podocytes infected with lentiviruses to downregulate CatlL, and WT podocytes at neutral pH. (E and F) Protein levels in WT cells, high-
Tgfb1 Cd2ap- podocytes, and high-Tgfb1 Cd2ap- podocytes treated with E64 or infected with lentiviruses to downregulate CatL (shRNA-C8).
Dyn, dynamin; Synpo, synaptopodin. GAPDH was used as a loading control. (G) Quantitation of protein levels from Western blots in E and F.

ment with increased levels of these proteins in treated high-Tgfb1
Cd2ap~/~ cells, CatL inhibition partially restored the number of
podocyte FAs as well as stress fibers (Figure 4, A and B). Together,
these data demonstrated an increase in cytosolic CatL in high-
Tgfbl Cd2ap~~ podocytes, which in turn drives reorganization of
the actin cytoskeleton through proteolytic processing of a subset
of proteins that regulates the actin cytoskeleton.

Interestingly, downregulation of CatL in WT podocytes, either
by siRNA or by addition of E64 (Supplemental Figure 2, A-D),
resulted in an increase in FA size (Supplemental Figure 2, E-G).
Thus, although the number of FAs per cell was similar, there was
a shift toward more mature FAs. This could be explained by the
increase in levels of dynamin, synaptopodin, and — to some extent
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— RhoA (Supplemental Figure 2H). Together, these data suggest
that endogenous levels of cytosolic CatL regulate turnover of the
FAs in cultured podocytes.

Nuclear dendrin regulates expression of cytosolic CatL. Our data identi-
fied alink between dendrin localization in the nucleus and expres-
sion of cytosolic CatL. To test whether nuclear dendrin (encoded
by Ddn) directly induces expression of cytosolic CatL, dendrin was
downregulated in high-Tgfbl Cd2ap~/~ cells using shRNAs (Figure
5, A and B). This led to partial restoration of FAs and stress fibers
within the cell body — demonstrating that loss of dendrin had a
direct consequence on actin organization in high-Tgfb1 Cd2ap~-
cells — that was also indicated by FAs formed within the cell body
that connected short actin filaments (Figure 5, C and D). Strikingly,
Number 10
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A Paxillin F-actin

downregulation of dendrin resulted in downregulation of Ctsl
mRNA and CatL protein (Figure 5, E and F). Furthermore, down-
regulation of dendrin also partially lowered CatL activity in the
cytoplasm of high-Tgfbl Cd2ap~~ cells (Figure 5G). In agreement
with the decrease in CatL activity, downregulation of dendrin also
increased the levels of dynamin and synaptopodin in high-Tgfb1
Cd2ap~- cells (Figure SF).

As shown previously (18), high-Tgfb1 Cd2ap~~ cells were hyper-
sensitive to proapoptotic signals such as high levels of TGF-f1,
staurosporine, actinomycin D, or angiotensin II (Figure SH). We
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Number of FAs within WT podocytes and high-Tgfb1 Cd2ap-
podocytes with CatL downregulation by diverse treatments.
(A) Organization of the actin cytoskeleton and FAs in podo-
cytes in which CatL was downregulated. FAs and F-actin
were visualized with anti-paxillin and rhodamine-phalloidin,
respectively. (B) Quantitation representing measurements of
>50 cells shown in A. Data are mean =+ standard deviation.
***P < 0.001. Scale bars: 20 um.

thus examined whether downregulation of dendrin and/or CatL
has functional consequences on Cd2ap~~ podocyte survival. Impor-
tantly, downregulation of dendrin in high-Tgfbl Cd2ap~~ cells
resulted in partial protection from TGF-f1-induced apoptosis
(Figure SI). This partial rescue may be due to partial downregula-
tion of cytosolic CatL activity (Figure 5, F and G), and thus only
partial rescue of the actin cytoskeleton, in high-Tgfb1 Cd2ap~- cells
(Figure 5, C-F), or possible additional roles of nuclear dendrin in
addition to regulation of CatL expression. In support of the first
hypothesis, downregulation of CatL or addition of E64 resulted
Number 10 October 2011
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Figure 5

Prolonged CD2AP loss leads to dendrin translocation into the nucle-
us. (A) Ddn mRNA levels, determined by RT-PCR, in high-Tgfb1
Cd2ap~- podocytes infected with different shRNA constructs (D2—-D4)
downregulating endogenous dendrin. Con, uninfected high-Tgfb1
Cd2ap~- podocytes; Scr, high-Tgfb1 Cd2ap~- podocytes infected
with lentiviruses expressing a scrambled oligo. (B) Dendrin levels in
high-Tgfb1 Cd2ap~- podocytes infected with lentiviruses expressing
the 2 most efficient shRNA constructs, D3 and D4. (C) Organization of
the actin cytoskeleton and FAs in high-Tgfb7 Cd2ap~- podocytes with
dendrin downregulation. FAs and F-actin were visualized with anti-pax-
illin and rhodamine-phalloidin, respectively. (D) Number of FAs within
WT and high-Tgfb1 Cd2ap~- podocytes with dendrin downregulation.
Data (mean + standard deviation) represent measurements of >50
cells in C. ***P < 0.001. (E) Ctsl mRNA levels, determined by RT-
PCR, in high-Tgfb1 Cd2ap~- podocytes with dendrin downregulation.
(F) Protein levels of CatL, dynamin, synaptopodin, RhoA, and GAPDH
in high-Tgfb1 Cd2ap~- podocytes and cells infected with lentiviruses.
(G) Time course of CatL activity in high-Tgfb7 Cd2ap~- podocytes,
high-Tgfb1 Cd2ap~- podocytes infected with lentiviruses, and low-
Tgfb1 Cd2ap~- podocytes at neutral pH. (H) Loss of CD2AP rendered
podocytes hypersensitive to proapoptotic signals, as shown by specific
enrichment of mono- and oligonucleosomes released into the cyto-
plasm of WT and high-Tgfb1 Cd2ap~- podocytes treated with different
apoptosis inducers. Stauro, staurosporine; Actino D, actinomycin D;
Angio Il, angiotensin Il. (I) TGF-B1—-induced apoptosis was reversed by
downregulation of CatL or dendrin in high-Tgfb1 Cd2ap~- podocytes.
Scale bars: 20 um.

in complete protection from TGF-B1-induced apoptosis of high-
Tgfbl Cd2ap~~ cells (Figure SI). Downregulation of dendrin or CatL
protected high-Tgfbl Cd2ap~~ cells only from apoptosis induced by
TGF-B1, not from other apoptotic signals (Supplemental Figure 3,
A-C). Taken together, our results demonstrated that the specific
proapoptotic effect of TGF-B1 on high-Tgfb1 Cd2ap~- cells is the
result of dendrin translocation into the nucleus, where it regulates
expression of cytosolic CatL.

Dendrin is a CatL transcription factor. Our results thus far identi-
fied a correlation between the presence of dendrin in the nucleus
of podocytes and the expression of cytosolic CatL. We therefore
examined whether dendrin can directly regulate the expression
of CatL by acting as its transcription factor. First, we examined
whether heterologous expression of dendrin in HEK 293 cells can
enhance transcriptional activity of the CatL promoter. Using triple
transfection experiments in HEK 293 cells, we expressed a plas-
mid encoding for secreted alkaline phosphatase (SEAP) under the
control of the rat CatL promoter, dendrin, and Metridia luciferase
under the control of a constitutively active promoter to normalize
for cell number and transfection efficiency. Compared with the
empty vector, dendrin induced normalized SEAP activity 5-fold
(Figure 6, A and B). The transcriptional activity of dendrin was
completely abolished by mutation of its nuclear localization signal
(Figure 6, A and B), demonstrating that nuclear translocation of
dendrin is essential for mediating its effect on CatL transcription
(20). In contrast, CatB promoter activity was lower at baseline and
was not inducible by dendrin (Figure 6, A and B), demonstrating
specificity of dendrin for CatL. We thus speculated that dendrin
might directly bind to the CatL promoter to act as a transcription
factor. To identify the dendrin-binding site on the CatL promoter,
we studied the effect of dendrin on SEAP transcription from par-
tial deletion constructs of the CatL promoter, containing either bp
-1,224 to -49 or bp -409 to -49 (Figure 6C). Whereas the former
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construct did not significantly differ from the full-length promot-
er, the latter lost baseline activity as well as its inducibility by den-
drin (Figure 6B), thus mapping the putative dendrin binding site
to a region between 1,224 and -409 of the CatL promoter. Using
EMSA with DNA fragments of decreasing length, we detected
direct binding of dendrin to the CatL promoter and fine-mapped
the dendrin binding site to a 24-bp region (Figure 6, D and E).
Introduction of a 3-bp mutation in the 5'-terminal part of this
region, but not in the middle or the 3'-terminal part, completely
abolished dendrin binding (Figure 6C). Together, our analyses
demonstrated that nuclear dendrin directly binds to a specific
region of the CatL promoter and acts as a transcription factor.

Cytosolic CatL proteolytically processes CD2AP. Destruction of the
SD is a common signature event that occurs literally in all pro-
teinuric glomerular diseases (5). Given our observations down-
stream of CD2AP deletion, we sought to determine whether loss
of CD2AP could be the starting point in many renal diseases at the
time the SD is affected. One method of CD2AP destruction could
be through proteolysis, possibly by CatL, closing the regulatory
loop. We therefore tested whether CatL, in addition to dynamin
and synaptopodin, might target CD2AP that contains CatL cleav-
age sites within its AA sequence (data not shown).

To examine whether CatL can proteolyze CD2AP, we generated
N-terminal GFP-tagged and C-terminal FLAG-tagged recom-
binant CD2AP constructs. Incubation of recombinant CD2AP
with purified CatL at pH 4.5 and pH 5.5 led to a complete diges-
tion of the protein (Figure 7A), in accordance with unspecific
proteolytic activity of CatL at lysosomal pH. However, at neutral
pH 7.0, we detected an approximately 55-kDa N-terminal frag-
ment that was detected with anti-GFP or N-terminal anti-CD2AP
antibodies (Figure 7A and Supplemental Figure 4). Although the
prediction of endopeptidase substrates algorithm (25) predicted
11 putative CatL cleavage sites within the CD2AP protein (data
not shown), data from the cleavage assay suggested that CatL
recognizes the QPLGS sequence situated between the second and
third domains of src homology domain 3 (Figure 7B). To further
test the full spectrum of CD2AP cleavage by CatL, additional
proteolytic experiments were performed. A 32-kDa C-terminal
CD2AP fragment (termed p32) was also detected by C-terminal
anti-CD2AP antiserum (Figure 7C, lanes 2-4, and Supplemental
Figure 4), suggestive of cleavage through the site LSAAE (Figure
7D). To better define the relevance of these CD2AP cleavage frag-
ments, we tested generation of CD2AP cleavage fragments in cells.
For these experiments, we used WT Ctsl mRNA (which generates
both lysosomal and cytosolic CatL protein) or a CatL construct
that contains a deletion of the first AUG site and thus encodes
selectively for cytosolic CatL (10). Cytosolic CatL alone was suf-
ficient to yield p32, which could not be detected using anti-FLAG
antibody (Figure 7E). Generation of p32 was prevented by coin-
cubation of transfected HEK 293 cells with E64 (Figure 7E). To
determine which cleavage sites are required for p32 generation, we
expressed a C-terminal FLAG-tagged CD2AP fragment (71 kDa)
as well as a C-terminal FLAG-tagged CD2AP mutant with deleted
LSAAE site (Figure 7, C and D) in HEK 293 cells and immobi-
lized on FLAG beads before digestion with purified CatL enzyme.
Whereas WT CD2AP was proteolyzed to p32, deletion of LSAAE
protected it from CatL cleavage (Figure 7F). Of note, the deletion
of QPLGS did not prevent generation of p32 (data not shown),
which suggests that LSAAE is the more critical site within CD2AP
that is being targeted by cytosolic CatL.
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Figure 6

Dendrin is a transcription factor of CatL. (A and B) Nuclear dendrin induced transcription from the CatL promoter, but not from the CatB promoter.
HEK 293 cells were cotransfected with pSEAP reporter vector containing the promoter of interest, dendrin, and Metridia luciferase to normal-
ize for transfection efficiency. Mutant dendrin lacking its nuclear localization signal (ANLS) was ineffective. Promoter activity and response to
dendrin depended on a region between bp —1,215 and bp —339, as revealed by partial deletion promoter constructs. ***P < 0.001. (C) Strategy
used to identify the dendrin binding site within the CatL promoter. The promoter fragment between bp —1,215 and —339 was divided into 4 parts.
EMSA with these unlabeled DNA fragments, visualized by SYBR green, revealed dendrin binding to fragment F (data not shown), which was
then further divided into overlapping fragments to fine-map the dendrin binding site. (D) EMSA demonstrating specific dendrin binding to one
of the biotin-labeled 60-bp oligonucleotides that were completely abolished by a 200-fold excess of unlabeled oligonucleotide. (E) The 60-bp
oligonucleotide that exhibited dendrin binding was divided into 3 overlapping 24-bp oligonucleotides to further narrow the dendrin binding site.
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To learn about the functional relevance of partially degraded
CD2AP, we analyzed the known interactions that CD2AP under-
goes with synaptopodin (16), the SD protein nephrin (26), and
dendrin (20). We performed coimmunoprecipitation studies with
GFP- and FLAG-tagged protein combinations expressed in HEK
293 cells. Both the N-terminal fragment and p32 were still able
to bind synaptopodin and nephrin, but only N-terminal CD2AP
bound dendrin (Figure 7G). These data suggest that loss of CD2AP
as a result of proteolysis might trigger a cellular cascade similar to
that in Cd2ap~~ podocytes, which is characterized by the dendrin
translocation into the nucleus. In line with the biochemical data,
we detected loss of protein levels for CD2AP in podocytes treated
with LPS (Supplemental Figure SA), which is known to increase
cytosolic CatL activity (6). Downregulation of CD2AP was also
observed in the soluble fraction of isolated glomeruli from mice
treated with LPS (Supplemental Figure 5B). There was a decrease
in staining for CD2AP in glomeruli of LPS-treated mice (Supple-
mental Figure 5, C and D). Finally, in agreement with our data in
cells (Figure 3, C and D), there was an increase in CatL activity in
soluble extracts generated from isolated glomeruli of LPS-treated
mice (Supplemental Figure SE). Together, these data provide fur-
ther evidence that activity of cytosolic CatL underlies podocyte
injury through degradation of CD2AP. The LPS model, in contrast
to the Cd2ap~- model (Figure 1G), was reversible, as CatL induc-
tion was transient (6) and without significant podocyte TGF-f1
induction (data not shown). Thus, time-limited LPS-induced CatL
expression and subsequent downregulation of CD2AP did not lead
to significant dendrin translocation into the nucleus (Supplemen-
tal Figure 5F), which might explain the reversibility of the process.
This is in line with dendrin knockout mice developing proteinuria
after LPS treatment, as the initial CatL increase was dendrin inde-
pendent (Supplemental Figure S, G and H).

Having analyzed the critical role of CD2AP as gatekeeper of the
TGF-B1 response in podocytes, we analyzed CD2AP expression in
the human progressive glomerular disease focal segmental glo-
merulosclerosis (FSGS) and compared it with the nonprogressive
minimal change disease (MCD; Figure 7, H and I). We detected no
reduction in CD2AP staining in glomeruli of patients with MCD
(Figure 7I), which is known to be caused by angiopoietin-like 4
protein (27) or by increased c-mip expression (28). In contrast,
glomeruli in human progressive FSGS, which are known to have
increased CatL expression (6), showed a prominent loss of N-ter-
minal CD2AP (Figure 7I) when using the anti-N-terminal CD2AP
antisera, but not when using the anti-C-terminal CD2AP antisera
(Supplemental Figure 4). Together, these data suggest that loss of
CD2AP (genetic and proteolytic) is a key upstream event in the
development of progressive glomerular diseases such as FSGS.

Discussion

Here we identified a proteolytic program under control of a func-
tional SD. According to this regulatory system, the intact SD
requires full-length CD2AP that keeps transcription factors, such
as dendrin, at the plasma membrane (Figure 8). Injury to the SD
by mutations in CD2AP (29), genetic deletion (30), or enzymatic
destruction allow for translocation of dendrin from the plasma
membrane to the nucleus (Figure 8). Nuclear dendrin binds the
CatL promoter and turns on sustained expression of cytosolic
CatL. CatL-mediated podocyte injury has 2 components: (a) reor-
ganization of the podocyte actin cytoskeleton owed to the proteo-
lytic downregulation of dynamin, synaptopodin, and RhoA (e.g.,
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loss of FAs and stress fibers), which underlies FP effacement, and
(b) decreased podocyte survival caused by decreased TGF-f3 thresh-
old. Thus, the injured podocytes become hypersensitive to TGF-f3
proapoptotic signals, and TGF-B-driven podocyte death promotes
progression of kidney diseases. We showed that cytosolic CatL was
capable of regulating sustained expression of itself by degrading
CD2AP, which explains why restoration of podocyte structure
and function in the clinic is often time-limited with more damage
to occur as the injury persists. Because podocyte injury is directly
linked to proteinuria, it is generally assumed that proteinuria is
the cause for increasing kidney damage. Our data, however, argue
that a main reason for progressive renal disease lies in the cellular
injury mechanism of podocytes, rather than in proteinuria.

Role for TGF-B1 signaling in regulating cytosolic CatL expression in
podocytes. TGF-B1 is a pleotropic cytokine that has been previ-
ously implicated in pathogenesis of renal fibrosis and, ultimately,
end-stage kidney diseases (21). The TGF- isoforms (TGF-f1-
TGF-B3) are widely expressed and act on virtually every cell type
in mammals by engaging a ubiquitous intracellular signaling cas-
cade of Smad family proteins through ligand-induced activation
of heteromeric transmembrane TGF-f receptor kinases. In addi-
tion, TGF-f receptors can activate Smad-independent signaling
mechanisms, including MAPKs and PI3K (31). However, molecu-
lar mechanisms of activation of Smad-independent pathways by
TGF-f receptors are still not fully defined. It has been shown that
loss of the adaptor protein CD2AP leads to increased expression
of TGF-B1 in podocytes, where its autocrine effects lead to activa-
tion of proapoptotic p38MAPK as well as inhibition of the anti-
apoptotic PI3K/AKT pathway (22). Here, progression to end-stage
kidney disease and, ultimately, death in mice lacking CD2AP
were attributed to increased TGF-1-mediated podocyte death.
Expanding on original studies, we showed that loss of CD2AP in
podocytes, and the subsequent increase in TGF-f1 expression,
led to translocation of the SD protein dendrin from the plasma
membrane into the nucleus. Nuclear dendrin then acted as tran-
scription factor for cytosolic CatL. Thus, our study identified yet
another role for TGF-B1 signaling in podocytes: regulation of
CatL expression. Our results suggest that loss of direct interac-
tions between CD2AP and dendrin at the SD facilitated dendrin
translocation in a TGF-B1-dependent manner (Figure 1, D and
H). In agreement with this rationale, high levels of TGF-B1 were
not sufficient to induce significant dendrin translocation into
the nucleus in WT podocytes (Figure 2B), nor did TGF-B1 induce
high levels of Ctsl mRNA expression (Figure 2D). Our data also
showed that the presence of CD2AP protected podocytes from
the effects of high levels of TGF-B1 signaling with respect to den-
drin translocation and, thus, cytosolic CatL expression. Together,
these data suggest that CD2AP plays the role of a gatekeeper
with respect to effects of TGF-f1 signaling on podocytes. This
is particularly interesting given that dose-dependent effects of
TGF-B1 determine podocyte function under various conditions,
and losing a controlled cellular intake ultimately results in podo-
cyte death (22). In line with recently published observations in
podocytes that link Smad-independent prosurvival signaling of
TGF-B1 with CD2AP (32), our data suggest that loss of CD2AP
switches the cellular balance from prosurvival to proapoptotic via
induction of cytosolic CatL. The gatekeeping effect on podocyte
TGF-pB1 by CD2AP was compromised in the face of high intra-
renal TGF-B1 production (Figure 1A), as this was sufficient to
translocate dendrin to the nucleus and increase expression of
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Figure 7

Cytosolic CatL proteolytically processes CD2AP in podocytes. (A)
Immunoblot of cleaved CD2AP fragments tagged with N-terminal GFP.
At pH 7.0, CD2AP cleaved into a stable 55-kDa fragment (squares), as
detected with anti-GFP antibody. We detect the same fragment with the
N-CD2AP antiserum. This antiserum also detected a weak band corre-
sponding to a 44-kDa fragment (triangle). (B) Match of cleavage frag-
ments with predicted CatL cleavage site QPLGS. (C) Deletion of the
CatL cleavage site LSAAE protected CD2AP from limited proteolysis
into p32 (circle). (D) Match of p32 with predicted CatL cleavage site
LSAAE. (E) CatL cleaved CD2AP-FLAG, yielding p32 (circle), detected
by anti-C-CD2AP. (F) WT Ctsl cleaved CD2AP in HEK 293 cells.
Cytosolic CatL (CatL M1) was sufficient to cleave CD2AP, yielding p32
(circle). These cleavage reactions were prevented by incubation of the
cells with E64. (G) Coimmunoprecipitation of nephrin, synaptopodin,
and dendrin from HEK 293 cells transfected with full-length CD2AP,
N-terminal CD2AP, and p32. (H) Structural domains of CD2AP,
together with major CatL cleavage sites, predicted sizes of resulting
fragments from CatL digestion, and recognition sites of the antibodies
used. SH3, src homology domain 3; PR, proline-rich motif; CC, coiled-
coil domain. (I) Immunofluorescent staining of kidney biopsies from
patients with MCD and FSGS. N-terminal CD2AP was reduced only in
progressive disease (i.e., FSGS). Scale bar: 30 um.

CatL. Our data therefore identified a direct link between TGF-f1
signaling in podocytes and cytosolic CatL levels.

Given the diversity of pathways that can injure podocytes (33), it
seems reasonable to suggest that multiple stimuli can affect podo-
cyte cytosolic CatL levels, in addition to the identified TGF-B1-
dependent dendrin translocation mechanism. For example, LPS-
induced expression of cytosolic CatL appeared to be TGF-f1 inde-
pendent. In addition, CD2AP-dependent signaling at the SD is
clearly not the only mechanism that operates in podocytes. Other
main proteins involved in signaling at the SD are nephrin and Neph
proteins (34). Interactions between nephrin and the adaptor protein
Nck have been shown to play a major role in regulation of the actin
cytoskeleton during development as well as in the maintenance of
healthy, functional podocytes (2, 35, 36). Our findings identified a
parallel signaling pathway from the SD to the actin cytoskeleton,
which was mediated by interactions between CD2AP and dendrin.

Role of cytosolic CatL for podocyte apoptosis. We and others have shown
that cytosolic CatL degrades dynamin and synaptopodin (6, 7). Loss
of synaptopodin has been associated with downregulation of RhoA
(7). Downregulation of dynamin and RhoA signaling results in
loss of stress fibers and FAs, the hallmark of effaced podocytes. We
have recently shown that dynamin can regulate actin cytoskeleton
in podocytes independently and in parallel to RhoA signaling (37).
Thus, it seems as if cytosolic CatL specifically targets both pathways
involved in regulating turnover of FAs and stress fibers.

The role of cytosolic CatL in podocyte injury was originally dis-
covered by our laboratories using the LPS injury model (6). Impor-
tantly, LPS-induced proteinuria is reversible, and does not lead to
progressive glomerular injury (24). Based on the LPS model, FP
effacement and proteinuria in itself do not necessarily lead to pro-
gressive kidney injury. Together with our present findings, these
data suggest that downregulation of dynamin, synaptopodin,
RhoA, and CD2AP drives the major reorganization of the actin
cytoskeleton, FP effacement, and proteinuria, but not podocyte
death. Indeed, high-Tgfb1 Cd2ap~~ podocytes did not exhibit sig-
nificantly elevated basal level of apoptosis compared with WT
podocytes (Figure SI). However, these cells did exhibit hypersen-
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sitivity to TGF-f1-induced apoptosis. Together, these data sug-
gest that cytosolic CatL-induced FP effacement and proteinuria
occur before podocyte death and might represent a repair stage,
in which cell structure is given up in order to survive. However,
the repair process is timed, because as shown here, effacement was
associated with a heightened level of susceptibility to TGF-B1-
mediated apoptosis. Thus, the sustained presence of cytosolic
CatL, coupled with increased levels of TGF-B1 in podocytes, drives
podocyte apoptosis and progression to end-stage kidney diseases,
as we observed in TGF-B1 Tg and Cd2ap~~ mice (Figure 1, B-H). In
contrast, if injury signal does not lead to increase in TGF-f1 sig-
naling in podocytes, as in the case of reversible LPS-induced pro-
teinuria, podocytes have the capability to switch off CatL expres-
sion and restore cellular structure and function.

This model was corroborated with the observation of high levels of
Ctsl mRNA and CatL protein, as well as degraded CD2AP (Figure 7,
H and I), in patients with diverse progressive kidney diseases such as
FSGS, diabetic nephropathy, and membranous nephropathy, but not
in those with MCD (6). Our study suggests that progression to CKD
is most likely driven by the sustained presence of cytosolic CatL.

Role of dendrin in progressive kidney diseases. Although the presence
of dendrin in the nucleus has been associated with a proapoptotic
phenotype, its exact role in this process has not yet been identified
(20). Our results argue for a direct correlation between the presence
of nuclear dendrin and the expression of cytosolic CatL. It has pre-
viously been shown that expression of lysosomal and extracellular
CatL is regulated by transcription factors such as ZHX proteins
(38). Our results identified dendrin as a transcription factor spe-
cifically driving expression of cytosolic CatL. The dendrin-depen-
dent increase in Ctsl mRNA in podocytes translated to a dramatic
increase in cytosolic CatL expression, without increased levels of
lysosomal CatL (Figure 2, E and F). The molecular mechanism that
couples increased transcription by dendrin with initiated transla-
tion from the downstream AUG sites has not be identified, but
is clearly operational in podocytes. What mechanism switches
off CatL expression, as in a case of LPS-induced CatL expression,
remains an open question that needs to be pursued in the future.

Regardless of the exact mechanism by which dendrin drives
expression of cytosolic CatL, the surprising discovery that dendrin
was a transcription factor for CatL uncovered the physiological
connection between the SD (i.e., CD2AP) and the regulation of
podocyte cytoskeleton as well as cellular survival. This functional
proteolytic system ties the structure of podocytes with their surviv-
al properties in which the input level of TGF-f1 acts as a modifier.
Together, our data establish the mechanistic base for progressive
podocyte disease and provide a rationale as to why proteinuric kid-
ney diseases are generally more prone to progression and podocyte
depletion (39). Since TGF-B1 not only has deleterious effects on
podocytes, but is also part of physiological responses, one could
assume that at normal levels, it allows some dendrin to activate the
CatL promoter to produce small amount of cytosolic CatL that is
present to help regulate the podocyte physiological dynamic of the
FP cytoskeleton (Supplemental Figure 2 and refs. 6 and 7). However,
persistent high TGF-B1 input into podocytes likely drives aggravat-
ing glomerular injury through dendrin translocation. This notion
is underscored in the recent study by Asanuma and coworkers, in
which they observed dendrin-positive podocyte nuclei in progres-
sive experimental and human glomerular diseases (40).

Our study showed that downregulation of dendrin or CatL was
sufficient to overcome TGF-f1-mediated susceptibility to apopto-
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sis. In agreement with our findings, stabilizing the phenotype in
Cd2ap~~ mice can be achieved by crossing them with mice deficient
in dendrin, resulting in delayed proteinuria onset and improved
survival (41), which suggests that the events of FP effacement and
podocyte apoptosis can be separated by specific interventions. Our
findings allow for the conceptualization of strategies for renal pro-
tection that work in concert with antiproteinuric modalities by
aiming at rescuing podocyte survival. Combining both approaches
will likely result in improved human health.

Methods

Cell culture and transient transfection. Mouse WT and Cd2ap~~ (18) podocytes
were cultured as described previously (42). HEK 293 cells were maintained
and transfected using Lipofectamine 2000 reagent (Invitrogen) as previ-
ously reported (6). Adenoviral infections of cultured podocytes were pre-
formed as described previously (6).

Lentiviral infection. Lentiviral shRNA plasmids for CatL were obtained
from Open Biosystems and were used to generate lentiviral transduction
particles in HEK 293T cells. We used a target set of 3 clones with
pLKO.1<-puro as the parental vector (see Supplemental Table 1 for
sequences). Lentiviral shRNA plasmids for dendrin were obtained from
Sigma Aldrich and were used to generate lentiviral transduction particles
in HEK 293T cells. We used a target set of 2 clones with pLKO.1<-puro
as a parental vector (Supplemental Table 1). Lentiviral knockdown of
mouse CatL and dendrin were performed in differentiated mouse and
high-Tgfb1 Cd2ap~/~ podocytes according to the protocol from the RNAi
Consortium. Cells were harvested to assay for knockdown efficiency
using quantitative PCR and Western blot. In addition, changes in pheno-
type were monitored using immunofluorescence.

Antibodies. The following primary antibodies were used: mouse anti-actin
(Sigma-Aldrich), rhodamine- and FITC-phalloidin (Invitrogen), mouse
anti-dynamin, mouse anti-paxillin (Millipore), rabbit anti-WT1, rabbit
anti-RhoA, goat anti-synaptopodin (Santa Cruz Biotechnology), mouse
anti-GAPDH, rabbit anti-mannosidase II (Abcam), rabbit anti-CD2AP (43),
mouse anti-synaptopodin (44), rabbit anti-dendrin (20), rabbit anti-CatL
(45), rabbit anti-o-actinin-4 (46), rabbit anti-nephrin (47), and rat anti-
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Lamp-2 (Developmental Studies Hybridoma Bank). CatL epitope was gen-
erated in house, and cytosolic CatL antibody production was outsourced
to Picono Rabbit Farm and Laboratory.

Animals and treatments. TGF-B1 Tg mice (48) and Cd2ap~~ mice on a
mixed C57BL6/129] background (12) were described previously. Dendrin
knockout mice were generated by replacing the entire coding region of
2 exons with EGFP lox-Ub1-EM7-Neolox cassette (Regeneron Pharmaceu-
ticals). The elimination of dendrin in knockout mice was confirmed by
immunohistochemistry (49). The mouse model of LPS-induced protein-
uria was as previously described (50). The rat puromycin aminonucleoside-
induced nephrosis model was as previously described (51). Urine microal-
bumin was assessed by densitometric analysis of Bis-Tris gels (Invitrogen)
loaded by standard BSA (Bio-Rad Laboratories) and urine samples. The
urine creatinine measurement was carried out using a colorimetric end-
point assay with a commercial kit (Cayman Chemical). Animal protocols
and procedures were reviewed for ethical and humane standards and
approved by the institutional Animal Care Committees of Massachusetts
General Hospital and University of Miami.

Isolation and processing of glomeruli. Glomeruli were isolated from kidneys
of 8- to 12-week-old LPS- and PBS-treated (control) mice using a sequen-
tial sieve technique with mesh sizes of 180, 100, and 71 um. The fraction
collected from the 71-um sieve was maintained for soup/pellet fraction-
ation as previously described (6). Isolated glomeruli were homogenized in
CHAPS buffer containing 20 mM Tris (pH 7.5), 500 mM NaCl, 0.5 % (w/v)
CHAPS, and protease inhibitors (Roche) using Dounce homogenizer. Sub-
sequently, the extract was centrifuged for 10 minutes at 15,000 g.

Isolation of nuclear fraction. Podocytes were detached, precipitated, and
washed with PBS. Cell pellets were immediately resuspended in 400 ul
chilled buffer A (10 mM HEPES, pH 7.9; 10 mM KCI; 0.1 mM EDTA;
0.1 mM EGTA; 1 mM dithiothreitol [DTT]; and 0.5 mM PMSF). This
resuspension mixture was incubated on ice for 15 minutes without vor-
texing, and then 25 ul of 10% NP-40 was added followed by vigorous vor-
texing for 10 seconds at 4°C. The sample was centrifuged at 1,500 g for
1 minute at 4°C. The resulting supernatant was collected and stored as
the cytosolic fraction. The remaining nuclear pellet was resuspended in
50 ul ice-cold buffer B (20 mM HEPES, pH 7.9; 400 mM NaCl; 1 mM
October 2011
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EDTA; 1 mM EGTA; 1 mM DTT; and 0.5 nM PMSF), rocked vigorously
at 4°C for 2 hours, and then centrifuged at maximum speed for 10 min-
utes at 4°C. The nuclear and cytosolic fractions were separated by 12%
SDS-PAGE, transferred on a PVDF membrane (Bio-Rad Laboratories),
and analyzed by Western blotting.

Immunobistochemistry, immunofluorescence, and immunoblotting. Mouse and
rat kidney tissue was harvested and either immersion-fixed in formaldehyde
(Electron Microscopy Sciences) for paraffin embedding or embedded in OCT
compound (Sakura Finetek) for frozen sections. Sections of paraffin-pro-
cessed kidney were stained with H&E. The protocol to study kidney biopsy
samples from FSGS and MCD patients was reviewed and approved with a
consent waiver by the University of Miami Institutional Review Board. Kid-
ney biopsies were stained with N- and C-terminal CD2AP antibodies accord-
ing to standard protocols (52). Immunofluorescence of cultured podocytes
and Western blotting were performed as described previously (6). Images
were captured using a LSM 5 PASCAL laser scanning microscope (Zeiss) and
a x40 objective. Quantification of stress fibers, FAs, CatL, and hematoxylin
immunostain intensities were performed using ImageJ software.

Coimmunoprecipitation studies. The recombinant mouse FLAG-dendrin
and GFP-tagged CD2AP variants (full-length CD2AP, CD2AP-NH,, and
CD2AP-COOH) were expressed in HEK 293 cells. FLAG fusion proteins
were immunoprecipitated from cell lysates using anti-FLAG-M2 beads
(Sigma-Aldrich), and eluates were analyzed by immunoblotting using anti-
bodies to FLAG (Sigma-Aldrich) or GFP (Invitrogen).

Endopeptidase cleavage site score. To assess the susceptibility of CD2AP for
cleavage by CatL in silico, we used the prediction of endopeptidase sub-
strates (PEPS) bioinformatics tool (25). A score above the threshold of 0.01
estimates protein sequences to be within 100 peptide motifs (of 10,000).

Purification of CD2AP and dendrin. FLAG-CD2AP and FLAG-dendrin were
expressed in HEK 293 cells, immobilized on anti-FLAG M2 agarose (Sigma-
Aldrich), and eluted with FLAG peptide (Sigma-Aldrich).

Proteolytic processing of CD2AP by CatL. CD2AP was diluted in buffer con-
taining 200 mM NaCl, 10 mM HEPES (pH 7.0), 2 mM EGTA, 1 mM MgCl,,
and 1 mM DTT. When indicated, 20 uM CatL inhibitor I (Calbiochem)
was added. The reaction was initiated by addition of 0.5 ul purified CatL
enzyme (Sigma-Aldrich), and samples were placed at 37°C in a water bath
for 10-30 minutes. Total assay volume was 20 ul. The reaction was termi-
nated with addition of x4 sample buffer (Invitrogen).

Deletion of CD2AP cleavage site LSAAE. Deletion of the CatL cleavage site
LSAAE from the CD2AP amino acid sequence was done using the Quick-
Change II Site Directed Mutagenesis kit (Stratagene) according to the
manufacturer’s instructions.

Quantitative PCR. Cells were treated with TRIZoL reagent (Invitrogen) to
allow complete cell lysis, followed by RNA extraction per the manufactur-
er’s protocol. RNA was quantitated and cDNA synthesis was performed
using the Protoscript First strand cDNA synthesis kit (New England Bio-
labs). Quantitative PCR was performed using Brilliant SYBR Green Master
Mix (Stratagene) and specific primers for CatL, dendrin, dynamin, RhoA,
and synaptopodin (Supplemental Table 2) in MX3000P QPCR System
(Agilent Technologies). Normalization across samples was performed
using the average of the constitutive gene Gapdh. Fold expression changes
were determined using the comparative CT method for relative quantifica-
tion with the calculation 2-44¢T and data were graphed using either Excel
(Microsoft) or Prism (Graph-Pad) software.

Kidney total RNA isolation and quantitative RT-PCR. Harvested mouse kid-
neys were homogenized in TRIZOL reagent (Invitrogen) for 40 seconds
using PowerGen125 (Fisher Scientific) at maximum speed. Total RNA was
isolated according to the manufacturer’s protocol. Quality and quantity of
total RNA was checked by Bio-analyzer (Agilent Technologies). 1 ug kidney
total RNA was reversely transcribed into single-strand cDNA. Quantitative
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RT-PCR was performed as described previously (53). Expression of GAPDH
and p-actin was used to normalize the sample amount.

CatL activity assays. Prior to enzyme assays, cytosolic fraction containing
CatL was isolated by subcellular fraction as described previously (54). Activ-
ity assays were performed using the CatL and CatB fluorescent substrate
Z-Phe-Arg-7-amido-4methylcoumarin hydrochloride (Sigma-Aldrich) at
different pHs. S ul supernatant (fixed protein concentration) from each
sample was added in triplicate to a 96-well, all-black flat-bottomed plate,
followed by addition of 175 ul freshly made assay buffer (340 mM sodium
acetate, 60 mM acetic acid, 4 mM disodium EDTA, 8 mM dithiothreitol).
The CatB-specific inhibitor CA074 (Enzo Life Sciences) was added to the
wells to cancel out the contribution of CatB. The cysteine protease inhibitor
E64 (Biomol) was added to the wells designated for negative control. The
mixture was incubated at room temperature for 1 minute to activate the
enzyme, immediately followed by the addition of 25 ul of 20 uM fluorescent
substrate. Fluorescence of free aminomethyl coumarin was determined as
a kinetic interval assay, with readings taken every 5 minutes for 3 hours at
30°C by excitation at 370 nm and emission at 460 nm using a SpectraMax
M2E (Molecular Devices). Data were collected every S minutes.

SEAP reporter assay. HEK 293 cells were triple-transfected using Lipo-
fectamine 2000 reagent (Invitrogen) with the following 3 plasmids: (a)
PSEAP2-Basic, containing either the full-length rat CatL promoter (con-
struct A; Figure 6C), 1 of 2 partial deletion constructs (constructs B and C;
Figure 6C), or the full-length CatB promoter (all gifts of S.S. Chugh, Uni-
versity of Alabama, Birmingham, Alabama, USA; ref. 38); (b) WT rat den-
drin, rat dendrin with a mutated nuclear localization signal (20), or the
empty vector; and (c) pMetLuc-Control for normalization (Clontech). All
transfections were performed in triplicate. Medium was analyzed for SEAP
and luciferase activity according to the manufacturer’s instructions in a
GloMax-96 Microplate Luminometer (Promega).

EMSA. 4 overlapping fragments (fragments D-G; Figure 6C) of the rat
CatL promoter portion between -1,215 and -339 (provided by S.S. Chugh;
ref. 38) were incubated with purified FLAG-dendrin for EMSA using the
Electrophoretic Mobility Shift Assay kit (Molecular Probes) and visualized
with SYBR green. Promoter fragment E, which bound to dendrin, was fur-
ther divided into 4 overlapping 60-bp oligonucleotides (see Supplemental
Table 3 for sequences); oligonucleotide 4, which exhibited dendrin binding,
was divided again into 3 overlapping 24-bp oligonucleotides (Supplemental
Table 3), which were biotinylated at the 5’ end and used for EMSA using the
LightShift Chemiluminescent EMSA kit (Thermo Scientific). Correspond-
ing unlabeled WT oligonucleotides were used for competition in 200-fold
excess. Finally, oligonucleotide 4-1, which exhibited dendrin binding, was
used to design 3 different mutant oligonucleotides (see Figure 6C for
sequences) that were used for competition assays in 200-fold excess.

Statistics. Statistical analysis was performed by 2-tailed Student’s ¢ test.
A Pvalue less than 0.05 was considered significant. Unless otherwise indi-
cated, data are reported as mean + SEM.
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