SCRIB expression is deregulated in human prostate cancer, and its deficiency in mice promotes prostate neoplasia

Helen B. Pearson,1 Pedro A. Perez-Mancera,2 Lukas E. Dow,1,3 Andrew Ryan,4 Pierre Tennstedt,5 Debora Bogani,6 Imogen Elsum,1,7 Andy Greenfield,6 David A. Tuveson,2 Ronald Simon,5 and Patrick O. Humbert1,7,8

1Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia. 2Tumor Modelling and Experimental Medicine (Pancreatic Cancer), Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge, United Kingdom. 3Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA. 4TissuPath, Mount Waverley, Victoria, Australia. 5Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany. 6Mammalian Genetics Unit, Medical Research Council Harwell, Oxford, United Kingdom. 7Department of Molecular Biology and Biochemistry and 8Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.

Loss of cellular polarity is a hallmark of epithelial cancers, raising the possibility that regulators of polarity have a role in suppressing tumorigenesis. The Scribble complex is one of at least three interacting protein complexes that have a critical role in establishing and maintaining epithelial polarity. In human colorectal, breast, and endometrial cancers, expression of the Scribble complex member SCRIB is often mislocalized and deregulated. Here, we report that Scrib is indispensable for prostate homeostasis in mice. Scrib heterozygosity initiated prostate hyperplasia, while targeted biallelic Scrib loss predisposed mice to prostate intraepithelial neoplasia. Mechanistically, Scrib was shown to negatively regulate the MAPK cascade to suppress tumorigenesis. Further analysis revealed that prostate-specific loss of Scrib in mice combined with expression of an oncogenic Kras mutation promoted the progression of prostate cancer that recapitulated the human disease. The clinical significance of the work in mice was highlighted by our observation that SCRIB deregulation strongly correlated with poor survival in human prostate cancer. These data suggest that the polarity network could provide a new avenue for therapeutic intervention.

Introduction

Distinct functional and spatial domains are created within epithelial cells owing to the unequal distribution of cellular constituents, referred to as cellular polarity (1). The spatial asymmetry of polarity regulators permits epithelial cells to respond to extracellular cues and maintains the tissue architecture and cellular polarity required for normal physiological function and tissue homeostasis (2, 3). Loss of cell and tissue polarity is a frequent characteristic of epithelial cancers, suggesting a crucial role for polarity mediators in suppressing tumorigenesis (2, 4).

The mammalian polarity program is established by at least three interacting protein complexes (Scrib, Crumbs, and Par) and mediates a plethora of polarization processes, including apical-basal polarity, migration, asymmetric cell division, and planar cell polarity (2, 3). The apical protein modules termed the Crumbs (Pals, Patj, and Crumbs) and Par (Par3, Par6, and aPKC) complexes act in a mutually antagonistic relationship with the basolateral Scribble module (5). The Scribble module comprises Scrib, Discs large 1–4 (Dlg1–4), and lethal giant larvae 1/2 (Lgl1/2) (5). Together, these complexes mediate a complex series of processes to establish and maintain polarity, including the formation of cell-cell contacts (i.e., adherens and tight junction assembly) (3).

Scrib was originally identified as a neoplastic tumor suppressor in Drosophila (6), whereas human SCRIB was discovered as a target in prostate cancer, and its deficiency in mice (HPV) E6 proteins and E6AP protein ligase (7), which also target human DLG1 (8). Cervical carcinomas are commonly associated with HPV and have been shown to display reduced SCRIB and DLG1 protein expression (9, 10).

Deregulation of Scribble complex members (SCRIB, DLG1, and LLGL2) has been correlated to a number of human epithelial cancers (11–14), although somatic mutations remain to be identified. Human colorectal, breast, and endometrial cancers display mislocalized and deregulated SCRIB expression (14–18), suggesting that SCRIB may be crucial for the homeostatic maintenance of several epithelial tissues. Together, these data highlight the critical function of the Scribble module to maintain epithelial tissue architecture and cellular polarity to prevent tumor onset and progression.

SCRIB has been implicated in the regulation of many cellular processes, including proliferation, differentiation, apoptosis, stem cell maintenance, migration, vesicle trafficking, and apical-basal polarity (5). These events appear to be mediated through several emerging oncogenic signaling cascades, such as the Ras/MAPK, β-catenin/Wnt, planar cell polarity, and Notch pathways, indicating direct mechanisms whereby SCRIB could suppress tumorigenesis (5). SCRIB encodes a large, 220-kDa cytoplasmic scaffolding protein that comprises a large leucine-rich repeat (LRR) region and 4 PDZ domains that regulate protein-protein interactions (5, 7), including SCRIB-LLGL2 (19). Other reported SCRIB binding partners include the tight junction protein ZO-2 (20), the planar cell polarity protein VANGL2 (19), the tumor suppressor adenomatous polyposis coli (APC) (21), and the MAPK signaling molecule ERK (22). In fact, previous in vitro work undertaken in our labora-

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2011;121(11):4257–4267. doi:10.1172/JCI58509.
and exemplifies the tumor-suppressive function of Scrib during prostate cancer initiation and progression. Importantly, we determined that SCRIB is deregulated in human prostate cancer and that aberrant SCRIB localization strongly correlates with poor survival. These studies establish Scrib as a critical barrier to prostate tumorigenesis and present polarity proteins as potential prognostic markers in the clinic.

**Results**

**Generation of Scrib conditional knockout mouse.** To test whether deregulation of Scrib expression predisposes to epithelial cancer in vivo, we engineered mice harboring a conditional knockout allele of the Scrib gene (Figure 1A and Supplemental Figure 1, A and B; supplemental material available online with this article; doi:10.1172/JCI58509DS1). Cre recombinase expression results in the excision of exons 4–13, comprising the majority of the LRR domain, which is required for Scrib function (16, 25, 26). This deletion introduces a nonsense mutation in the nascent Scrib protein fragment (100 aa) with no known functional domains.

To examine the effect of ubiquitous Scrib deficiency, we crossed mice harboring a LoxP-flanked Scrib allele (Scrib<sup>-fl</sup>) to a germline Cre-deleter transgenic line (27), resulting in viable Scrib<sup>-fl</sup>-KO mice. Genotyping of embryos confirmed normal Mendelian ratios, yet Scrib-KO mice died perinatally owing to a severe neural tube closure defect (craniorachischisis) (Figure 1B and Supplemental Figure 1C). All KO embryos displayed a curly tail, eyes open at birth, and gonad morphological abnormalities of both sexes, and 54% (14 of 26) displayed defective abdominal wall closure (gastroschisis) (Supplemental Figure 1, D–F). These characteristics mirror the Circletail (Crt) and runx2 Scrib point mutation models, consistent with specific ablation of Scrib gene function (28, 29). Western blot analysis confirmed that Scrib was efficiently depleted in vivo, indicating the Scrib-KO allele is a true null allele (Figure 1C).

Scrib<sup>-fl</sup>-KO mice display prostate hyperplasia. Loss of polarity has been implicated as a hallmark of epithelial cancers (4); however, it remains to be determined whether deregulation of polarity regulators is a tumor-initiating event or a consequence of transformation. To address whether reduced Scrib expression is sufficient to drive epithelial tumorigenesis, we initially examined epithelial tissues from a cohort of Scrib<sup>-fl</sup>-KO mice at 100 days of age (n = 10). Remarkably, these animals showed striking glandular hyperplasia in the prostate, with a significant increase in the number of glands per area compared with control mice (Figure 2A–D). Scoring of epithelial stroma showed a significant increase in the number of glands per area in the Scrib-depleted mice, consistent with the glandular hyperplasia observed (Figure 2E). These findings strongly suggest that Scrib negatively regulates the Ras/MAPK cascade to suppress this pathway, which is required for hyperplastic growth in the context of prostatic carcinogenesis.
Multifocal prostate hyperplasia was observed (predominantly in the anterior lobe) at 200 and 400 days (100% had not taken place, Supplemental Figure 2A), and to our knowledge, no difference in Scrib intensity between WT mice at all time points (Figure 2, D and E). In WT prostate epithelial cells, E-cadherin was detected on the lateral surface and p-ERM was restricted to the apical surface. Together, these data indicate that Scrib heterozygosity is an initiating event in murine prostate hyperplasia and that Scrib deficiency induces proliferation, reflecting expansion of the luminal cell lineage.

To determine whether Scrib heterozygosity is sufficient to drive neoplastic progression, male cohorts of WT and Scrib−/− littermates were generated and aged to 200 and 400 days (n ≥ 10). Histological analysis revealed normal branched and single-layered prostate epithelium in WT mice at all time points (Figure 2, D and E). In contrast, all Scrib−/− mice displayed multifocal prostate hyperplasia (predominantly in the anterior lobe) at 200 and 400 days (100% incidence). Scrib−/− prostate lesions exhibited lumen overcrowding and a marked increase in mitotic figures (Figure 2D), indicating that Scrib heterozygosity predisposes to prostate hyperplasia. Further investigation of smaller cohorts revealed that multifocal prostate hyperplasia was present in Scrib−/− mice as early as 50 days (50% incidence), while WT mice displayed normal prostate epithelium (n = 6). Aging to 540 days did not cause neoplastic progression. Multifocal prostate hyperplasia was observed in Scrib−/− mice at 540 days, with 100% penetrance (n = 8). Indeed, an average of 17%–42% prostatic ducts displayed hyperplastic foci (50–540 days) that contained a similar packing density of cells, illustrating the general multifocal nature of this phenotype (Supplemental Figure 2 B and C). Noticeably, one 540-day-old Scrib−/− mouse developed a pancreatic preinvasive ductal lesion, and 4 of 8 (50%) were predisposed to lung adenocarcinomas (I. Elsum, unpublished observations). None of these lesions were observed in WT mice at 540 days (n = 5).

Characterization of Scrib−/− prostate hyperplasia. Assessment of the proliferation marker PCNA by IHC revealed a significant, 4.8-fold increase in the number of PCNA-positive cells in Scrib−/− prostate hyperplasia compared with WT prostate at 400 days (Figure 3A). However, no change in apoptosis was detected at this time point, as determined by active caspase-3 IHC (Supplemental Figure 2D). To ascertain which population of cells were proliferating, we analyzed basal (cytokeratin-5) and luminal (cytokeratin-8) lineage markers by IHC (Supplemental Figure 2E). Scrib−/− prostate hyperplastic cells stained positively for cytokeratin-8, whereas the distribution of cytokeratin-5–positive basal cells resembled that in WT prostate tissue. Together, these data indicate that Scrib heterozygosity is an initiating event in murine prostate hyperplastic growth and that Scrib deficiency induces proliferation, reflecting expansion of the luminal cell lineage.

To determine whether epithelial polarity is lost in Scrib−/− prostate lesions, we assessed the localization of markers for the apical (p-ERM) and lateral (E-cadherin) cell surfaces (Figure 3B). In WT prostate epithelial cells, E-cadherin was detected on the lateral surface and p-ERM was restricted to the apical surface. E-cadherin participates in adherens junctions, whereas p-ERM has been shown to play a role in mediating cell shape, adhesion, and motility (30). In contrast, Scrib−/− hyperplastic lesions displayed mislocalized E-cadherin, yet no significant difference in E-cadherin intensity was observed between WT and Scrib−/− prostate epithelium (Supplemental Figure 2F). The enrichment and distribution of p-ERM along the plasma membrane circumference suggest expansion and reorganization of the apical domain (30), consistent with a loss of apical-basal polarity (31). Loss of polarity within Scrib−/− hyperplastic lesions was further exemplified by IF

Figure 2
Scrib heterozygosity predisposes to prostate hyperplasia. (A) PCR analysis of genomic DNA to detect WT (290 bp) and KO (550 bp) Scrib alleles in Scrib−/− and WT prostate. (B) qRT-PCR for Scrib mRNA confirmed a significant, 55% reduction in Scrib−/− compared with WT prostates (P = 0.0065, unpaired t test). Error bars indicate SD. (C) Scrib IF staining of WT and Scrib−/− hyperplastic prostate. (D) Representative H&E images of normal WT and hyperplastic Scrib−/− prostate (400 days). (E) Phenotype incidence in WT and Scrib−/− mice at 100, 200, and 400 days (n ≥ 10). Scale bars: 50 μm (larger panels) and 10 μm (insets).
staining for core apical (Par3) and basolateral (Dlg) components of the polarity program (Figure 3B). In WT prostate epithelium, Par3 localized apically, with prominent accumulation at tight junctions, while pan-Dlg localized to the basolateral membrane. Scrib+/− hyperplastic lesions displayed the mis-distribution of Par3 throughout the cytoplasm andDlg along the circumference of the membrane. These data support previous work showing that loss of Scribble complex members is sufficient to mislocalize key polarity proteins and impair tissue and cellular polarity (6, 32–34).

**Figure 3**

Elevated Ras/MAPK signaling is required for Scrib-deficient prostate hyperplasia. (A) PCNA IHC shows a significant increase in PCNA-positive cells in Scrib+/− lesions (2.26% ± 0.62%, mean ± SD) compared with WT (0.47% ± 0.09%, P = 0.0001, unpaired t test, 400 days). (B) IHC in Scrib+/− hyperplastic foci revealed aberrant E-cadherin and p-ERM compared with WT tissue. Arrows indicate aberrant expression. Right column: IF to detect Par3 (red) and pan-Dlg (green) shows that these polarity regulators are mislocalized in Scrib+/− prostate hyperplasia compared with WT prostate (400 days). N, normal Scrib+/− tissue; Hyp, hyperplastic Scrib+/− tissue. Arrowheads indicate Par3 accumulation at tight junctions. (C) IHC revealed a significant elevation in p-ERK–positive nuclei in Scrib+/− lesions compared with WT (unpaired t test, 400 days). (D) IHC revealed a significant elevation in p-ELK1–positive nuclei in Scrib+/− lesions compared with WT (unpaired t test, 400 days). (E) Representative H&E images of Scrib+/− prostates administered vehicle or PD0325901 (20 mg/kg, 5 days on, 2 days off for 3 weeks at 230–260 days of age), and p-ERK staining showing efficient MEK inhibition. (F) Scrib+/− prostate weight is significantly decreased upon MEK inhibition (0.30 ± 0.04 g, mean ± SD) compared with administration of vehicle (0.45 g ± 0.08, P = 0.0003, Mann-Whitney U non-parametric test), similar to the level in WT prostate (P = 0.4606, Mann-Whitney U non-parametric t test). Scale bar: 50 μm (larger panels) and 10 μm (insets). Error bars indicate SD.

Scrib+/− prostate hyperplasia is dependent on Ras/MAPK signaling. We and others have previously shown that SCRIB loss stimulates Ras/MAPK signaling in vitro, suggesting that SCRIB negatively regulates the Ras/MAPK cascade to suppress tumorigenesis (22, 23). We hypothesized that Scrib loss deregulates the Ras/MAPK pathway to facilitate prostate hyperplastic growth in mice. To test this hypothesis, we analyzed phosphorylation of the MAPK signaling molecule ERK. As determined by IHC, Scrib+/− prostate hyperplasia specifically displayed a significant, 3.7-fold increase in nuclear p-ERK expres-
Figure 4
Biallelic Scrib loss causes prostate neoplasia. (A) Scrib mRNA is decreased in PBCre⁺;Scrib⁺/* (45.2%) and PBCre⁺;Scrib⁻/* (14.5%) compared with PBCre⁺ prostates at 400 days. (B) Scrib IF shows reduced Scrib expression in PBCre⁺;Scrib⁺/* prostate epithelium (400 days). (C) Representative H&E images of PBCre⁺, PBCre⁺;Scrib⁺/*, and PBCre⁺;Scrib⁻/* prostates (400 days). (D) Prostate phenotype incidence at 100, 200, and 400 days (n ≥ 10). (E) PCNA IHC shows a significant increase in the number of PCNA-positive cells in PBCre⁺;Scrib⁻/* mice (4.6% ± 0.24%) compared with PBCre⁺;Scrib⁺/* (2.1% ± 0.82%) and PBCre⁺ mice (0.6% ± 0.38%) at 400 days. (F) p-ERK staining revealed a significant increase in MAPK signaling in PBCre⁺;Scrib⁺/* (7.1% ± 1.64%) and PBCre⁺;Scrib⁻/* mice (13.1% ± 4.18%) compared with PBCre⁺ controls (1.8% ± 0.58%) at 400 days. (G) p-ELK1 staining shows a significant increase in p-ELK1 expression in PBCre⁺;Scrib⁺/* (1.6% ± 0.25%) and PBCre⁺;Scrib⁻/* (4.2% ± 1.67%) compared with WT tissue (0.4% ± 0.13%) at 400 days. Arrows indicate positive nuclei. Scale bars: 50 μm (larger panels) and 10 μm (insets). Data are mean ± SD; n = 3; P values represent unpaired t test. Error bars indicate SD.
Scrib loss and K-ras hyperactivation cooperate to facilitate prostate tumor progression. (A) Kaplan-Meier survival plot shows a significant reduction in \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} mice (\( \chi^2 = 4.20, P = 0.0449 \), log-rank test, \( n \geq 10 \)). (B) Representative H&E images of \textit{PBCre}:\textit{LSL-K-ras}^{G12D/+}, \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+}, and \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} prostates (400 days). (C) Prostate phenotype incidence (400 days, \( n \geq 10 \)). (D) IHC to detect p-ERK reveals that the number of p-ERK–positive nuclei in \textit{PBCre}:\textit{LSL-K-ras}^{G12D/+} (21% \pm 11.24%), \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} (20% \pm 11.41%), and \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} (17% \pm 6.35%) prostate tumors was significantly elevated compared with control prostate (*\( P \leq 0.0496 \)), yet no statistical difference was determined between the double mutants and K-ras activation alone (\( P > 0.6168 \)) at 400 days. (E) IHC to detect p-ELK1 revealed a significant increase in p-ELK1 expression in \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} (36.6% \pm 6.54%), and \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} (50.5% \pm 0.43%) prostate lesions compared with \textit{PBCre}:\textit{LSL-K-ras}^{G12D/+} (17.7% \pm 0.55%, \( P \leq 0.0048 \)) and \textit{PBCre} \textit{(0.4% \pm 0.07, \( P \leq 0.0052 \)) prostate epithelium at 400 days. Scale bars: 50 \( \mu \)m (larger panels) and 10 \( \mu \)m (insets). In D and E, data are mean \pm SD; \( n = 3 \); \( P \) values represent unpaired \( t \) test. Error bars indicate SD.

Figure 5

Scrib loss and K-ras hyperactivation cooperate to facilitate prostate tumor progression. (A) Kaplan-Meier survival plot shows a significant reduction in \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} average survival (372 days) compared with \textit{PBCre}:\textit{LSL-K-ras}^{G12D/+} mice (\( \chi^2 = 4.20, P = 0.0449 \), log-rank test, \( n \geq 10 \)). (B) Representative H&E images of \textit{PBCre}:\textit{LSL-K-ras}^{G12D/+}, \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+}, and \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} prostates (400 days). (C) Prostate phenotype incidence (400 days, \( n \geq 10 \)). (D) IHC to detect p-ERK reveals that the number of p-ERK–positive nuclei in \textit{PBCre}:\textit{LSL-K-ras}^{G12D/+} (21% \pm 11.24%), \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} (20% \pm 11.41%), and \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} (17% \pm 6.35%) prostate tumors was significantly elevated compared with control prostate (*\( P \leq 0.0496 \)), yet no statistical difference was determined between the double mutants and K-ras activation alone (\( P > 0.6168 \)) at 400 days. (E) IHC to detect p-ELK1 revealed a significant increase in p-ELK1 expression in \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} (36.6% \pm 6.54%), and \textit{PBCre}:\textit{Scrib}^{+/−}:\textit{LSL-K-ras}^{G12D/+} (50.5% \pm 0.43%) prostate lesions compared with \textit{PBCre}:\textit{LSL-K-ras}^{G12D/+} (17.7% \pm 0.55%, \( P \leq 0.0048 \)) and \textit{PBCre} \textit{(0.4% \pm 0.07, \( P \leq 0.0052 \)) prostate epithelium at 400 days. Scale bars: 50 \( \mu \)m (larger panels) and 10 \( \mu \)m (insets). In D and E, data are mean \pm SD; \( n = 3 \); \( P \) values represent unpaired \( t \) test. Error bars indicate SD.
5 days on and 2 days off for 3 weeks) at 230–260 days of age (n = 8), when multifocal prostate hyperplasia is usually observed. Histological analysis revealed a marked decrease in hyperplastic foci in Scrib⁻/⁻ mice administered PD0325901 compared with the vehicle (Figure 3E). Effective inhibition of p-ERK expression in response to the MEK inhibitor was confirmed by p-ERK IHC (Figure 3E and Supplemental Figure 3A). PD0325901 administration significantly reduced Scrib⁻/⁻ prostate weight compared with the vehicle, and the level was similar to that in WT littermate controls (Figure 3F). Scrib⁻/⁻ mice receiving PD0325901 also showed a significant, 2.4-fold reduction in PCNA expression compared with those receiving vehicle, indicating that MEK inhibition decreased proliferation in this setting (Supplemental Figure 3B). Notably, no phenotypic difference was detected by H&E analysis in WT littersmates receiving the MEK inhibitor compared with the vehicle, consistent with the lack of a significant difference in prostate weight (P = 0.3429, Mann-Whitney U test, n = 4) (Figure 3F and Supplemental Figure 3C). IHC to detect p-ERK confirmed efficient MEK inhibition in WT epithelium (Supplemental Figure 3D).

Taken together, these data indicate that MEK inhibition is sufficient to rescue prostate hyperplasia in the context of Scrib deficiency and that intact Ras/MAPK signaling is required for prostate hyperplastic growth induced by Scrib depletion. Nevertheless, we cannot rule out the possibility that additional genetic/epigenetic changes may contribute to the Scrib-deficient phenotype in this setting.

**Biallelic Scrib loss promotes neoplastic tumor progression.** We next determined whether complete Scrib inactivation in the prostate could facilitate prostate cancer growth. Given that Scrib-KO mice are neonatal lethal, we employed Cre-LoxP technology to deplete Scrib expression specifically within the prostate epithelium. Scrib floxed mice were crossed to the PBCre transgenic line (36), and male cohorts of PBCre⁻/⁻, PBCre⁻/⁺, and PBCre⁺/⁻ mice were established and aged.

We confirmed PBCre-mediated recombination in the prostate by crossing PBCre⁺ mice to the Rosa26 reporter strain (37) and per-
formed LacZ staining (Supplemental Figure 4A). Scrib loss was verified by means of qRT-PCR (Figure 4A). Scrib mRNA was significantly reduced in PBCre;Scrib+/- and PBCre;Scrib-/- prostate tissues compared with those of PBCre controls. Consistent with mRNA expression data, negligible levels of Scrib were detected by IF in PBCre;Scrib-/- prostate epithelium (Figure 4B).

Histological analysis revealed that PBCre;Scrib+/- mice phenocopied Scrib+/- animals, displaying multifocal prostate hyperplasia at 100, 200, and 400 days (88%, 75%, and 90% incidence respectively; n ≥ 10), indicating that the observed phenotype is intrinsic to the epithelial compartment (Figure 4, C and D). Analysis of PBCre;Scrib+/- prostate tissue revealed that biallelic Scrib loss facilitated neoplastic progression. At 200 and 400 days, PBCre;Scrib+/- mice displayed LG-PIN (14% and 20% incidence, respectively; n ≥ 10) with solid and cribriform intraluminal proliferation of evidently atypical epithelial cells (Figure 4, C and D). Notably, PIN lesions were commonly associated with regions of hyperplasia.

IHC to detect the proliferation marker PCNA demonstrated that PBCre;Scrib+/- prostate lesions display a significant, 1.9- and 6.9-fold increase in PCNA expression compared with PBCre;Scrib+/- and PBCre+/- mice, respectively (Figure 4E). In addition, PBCre;Scrib+/- lesions showed a small increase in the number of cells expressing the apoptotic marker active caspase-3; however, this elevation was not significantly different compared with WT and PBCre;Scrib+/- mice (Supplemental Figure 4B).

Consistent with the Scrib+/- model, we observed activation of the Ras/MAPK cascade in prostate-specific Scrib−/− lesions (Figure 4F). IHC for p-ERK showed a significant, 3.9- and 7.2-fold increase in the number of positive p-ERK nuclei in PBCre;Scrib−/− and PBCre+/- mice, respectively (Figure 4E). These data correlated with a significant increase in the downstream target of p-ERK, p-ELK1 (Figure 4G). These results further illustrate that Scrib loss facilitates prostate tumorigenesis through deregulated Ras/MAPK signaling in prostate epithelial cells.

K-ras activation and Scrib loss cooperate to facilitate prostate tumor progression. Loss of Scrib and oncogenic K-ras cooperate to drive invasive cancer in Drosophila (24, 38). In addition, despite the low frequency of K-ras mutations in human prostate cancer (39), K-RAS deregulation and elevated MAPK signaling are common features (39, 40). To investigate the potential cooperation between Scrib deficiency and oncogenic Ras/MAPK signaling in prostate tumorigenesis, we generated and aged cohorts of male mice in which Scrib loss and hyperactivated K-ras (LSL-K-rasG12D) were specifically induced in the prostate (n ≥ 10). Several PBCre;Scrib+/-, LSL-K-rasG12D/+ mice (3 of 10) displayed signs of illness and were sacrificed prior to the 400 days end point (Figure 5A). Compared with the PBCre;LSL-K-rasG12D/+ cohort, which survived to 400 days, PBCre;Scrib+/-, LSL-K-rasG12D/+ mice displayed a small yet significant reduction in average survival (372 days), suggesting that Scrib depletion and K-ras activation may cooperate to accelerate disease progression. Although 2 mice in the PBCre;Scrib+/-, LSL-K-rasG12D/+ cohort became ill and were sacrificed before 400 days, no statistical difference in average survival was determined compared with single mutant or control cohorts.

PCR analysis of DNA isolated from the prostate revealed that recombination of the LoxP-flanked LSL-K-rasG12D and Scrib alleles occurred in single and double transgensics, respectively, and not in PBCre+/- and Cre-negative controls (Supplemental Figure 4C). qRT-PCR analysis confirmed a reduction in Scrib mRNA in PBCre;Scrib+/-, LSL-K-rasG12D/+ and PBCre;Scrib+/-, LSL-K-rasG12D/+ mice compared with controls (Supplemental Figure 4D).

Histological analysis of PBCre;Scrib+/-, LSL-K-rasG12D/+ and PBCre;Scrib+/-, LSL-K-rasG12D/+ mice established that compound mutants were susceptible to accelerated tumor progression compared with mice with Scrib loss or K-ras activation alone (Figure 5, B and C). PBCre;LSL-K-rasG12D/+ prostate glands displayed hyperplasia, LG-PIN, and high-grade PIN (HG-PIN) lesions (9%, 73%, and 18% incidence, respectively), consistent with a similar model (41). PBCre;Scrib+/-, LSL-K-rasG12D/+ and PBCre;Scrib+/-, LSL-K-rasG12D/+ mice displayed HG-PIN (20% and 33% incidence respectively) and well-differentiated adenocarcinoma (20% and 13% incidence, respectively), and 3 of 15 (20%) PBCre;Scrib+/-, LSL-K-rasG12D/+ mice developed poorly differentiated invasive carcinoma (Figure 5, B and C). HG-PIN lesions displayed solid and occasional cribriform patterns with nuclear enlargement/elongation. Well-differentiated adenocarcinomas displayed well-maintained glandular differentiation, while poorly differentiated carcinoma showed more solid nests of tumor cells. All the aforementioned lesions displayed nuclear atypia, mitotic figures, and extensive overcrowding of the lumen as multicellular disorganized layers formed. In addition, all K-ras-induced prostate tumors (PBCre;LSL-K-rasG12D+/-, PBCre;Scrib+/-, LSL-K-rasG12D+/-, and PBCre;Scrib+/-, LSL-K-rasG12D+/-) were associated with focal intestinal metaplasia, mirroring previous work (42).

To address the molecular mechanism underlying the cooperation between Scrib deficiency and K-ras activation to promote prostate cancer progression, we performed PCNA IHC (Supplemental Figure 4E). Compared with PBCre controls, PBCre;LSL-K-rasG12D+/-, PBCre;Scrib+/-, LSL-K-rasG12D+/-, and PBCre;Scrib+/-, LSL-K-rasG12D+/ mice all showed a significant increase in PCNA-positive cells, although Scrib loss did not result in a significant increase compared with K-ras activation alone. In addition, a significant elevation in the expression of the apoptosis marker active caspase-3 in PBCre;LSL-K-rasG12D+/-, PBCre;Scrib+/-, LSL-K-rasG12D+/-, and PBCre;Scrib+/-, LSL-K-rasG12D+/ prostate tumors compared with control mice was determined by means of IHC; however, no statistical difference was observed between double mutants and K-ras activation alone (Supplemental Figure 4F). IHC confirmed that all mutants displayed aberrant E-cadherin and p-ERM expression, indicating that polarity was lost (Supplemental Figure 4G). Taken together, these data indicate that aberrant proliferation, apoptosis, and loss of polarity in double mutants do not trigger accelerated tumor progression.

To confirm activation of Ras/MAPK signaling in K-ras mutants and to further understand the mechanism whereby Scrib loss and K-ras activation cooperate to accelerate prostate cancer progression, we analyzed the activity of the Ras/MAPK pathway. IHC to detect p-ERK confirmed activation of the Ras/MAPK cascade in all mutants expressing oncogenic K-ras (Figure 5D). Compared with PBCre controls, the PBCre;LSL-K-rasG12D+/-, PBCre;Scrib+/-, LSL-K-rasG12D+/-, and PBCre;Scrib+/-, LSL-K-rasG12D+/- mutants showed a significant increase in p-ERK expression, yet IHC analysis was not sensitive enough to detect a significant increase in p-ERK expression in double mutants compared with PBCre;LSL-K-rasG12D+/- mice. Nonetheless, IHC to detect the p-ERK downstream target p-ELK1 revealed a significant increase in PBCre;Scrib+/-, LSL-K-rasG12D+/- (2.1-fold) and PBCre;Scrib+/-, LSL-K-rasG12D+/- (2.9-fold) mutants compared with PBCre;LSL-K-rasG12D+/- mice (Figure 5E). These data indicate that Scrib loss and oncogenic K-ras cooperate to promote prostate cancer progression via ELK1 activation, which leads to
transcriptional activation of a variety of growth-regulatory genes that include the c-fos proto-oncogene (35). Although p-ELK1 is a direct target of the Ras/MAPK cascade, it is possible that additional pathways that mediate ELK1 activation, including JNK and p38 signaling (43), may also underpin the synergistic relationship between Scrib loss and K-ras activation in this setting.

**SCRIB mislocalization predicts poor survival in human prostate cancer.** To determine whether SCRIB is deregulated in human prostate cancer, we performed IHC to detect SCRIB on a prostate tissue microarray consisting of more than 2,000 hormone-naive patients with full clinical follow-up data (Supplemental Table 1) and assessed the intensity and mislocalization of SCRIB (Figure 6, A and B, Supplemental Tables 2 and 3, and ref. 44). SCRIB expression was observed in 98% (2,086 of 2,122) of all assessable samples. Non-assessable samples were omitted from our analysis (where clinical data were missing or tissue/tumor sections were absent; n = 1,139). SCRIB intensity significantly correlated with tumor stage, Gleason grade, and prostate-specific antigen (PSA) level (Supplemental Table 2). Despite a small, yet significant difference between low (+1) and moderate (+2) SCRIB expression predicting for poor survival (P = 0.0369, log-rank test), there was no association between moderate (+2) and high (+3) SCRIB expression (Figure 6C). Moreover, negative samples did not statistically correlate with PSA recurrence–free survival compared with positive samples and were predominantly atrophic (n = 31).

SCRIB mislocalization was observed in 7.1% (151 of 2,122) of all samples and positively correlated with tumor stage, Gleason grade, and PSA level (Supplemental Table 3). Mislocalization was categorized into 3 subgroups: punctate cell-cell junction clustering (A), accumulation along the circumference of the membrane (B), and a combination of features of both categories (A/B) (Figure 6B). Importantly, all modes of mislocalization significantly predicted for poor PSA recurrence–free survival (Figure 6D and Supplemental Table 3). This association may be attributable to the fact that SCRIB mislocalization has been linked to loss of function (17, 26, 45). Taken together, this evidence suggests that mislocalization of the polarity regulator SCRIB correlates with poor survival in human prostate cancer, highlighting the need for further investigation of polarity regulators in prostate cancer.

**Discussion** We have described what we believe to be a novel model of prostate cancer and have demonstrated that while Scrib deletion alone is a poor initiator of prostate neoplasia, following an oncogenic event, loss of Scrib contributes to tumor progression. These data establish a unique link between prostate cancer and loss of an epithelial polarity regulator and demonstrate that loss of cellular polarity is a tumor-initiating event and not simply a consequence of cellular transformation. Mechanistically, we have established that Ras/MAPK signaling is required for Scrib-deficient prostate hyperplasia in vivo using a MEK inhibitor, validating previous in vitro work (22, 23). Recent studies in human keratinocytes suggest that the mechanism whereby Scrib suppresses Ras/MAPK signaling could result from a direct interaction between SCRIB and ERK, which diminishes ERK activation (22). The emerging complexity of SCRIB-mediated regulation of the Ras/MAPK cascade is further illustrated by SCRIB interactions with RSK2, a negative regulator of the pathway (46), and GIT1, an ARF-GAP that can act as a MEK-ERK scaffold (47, 48).

Furthermore, we demonstrate that Scrib loss and oncogenic K-ras cooperate to accelerate disease progression in mice, illustrating the multistep nature of prostate cancer progression and providing evidence to support published Drosophila in vivo and mammalian in vitro studies (23, 24). Mechanistically, this synergism correlated with elevated p-ELK1 expression, presenting a direct mechanism whereby Scrib loss and oncogenic K-ras synergize to drive prostate cancer progression. While elevated p-ELK1 expression is likely to reflect enhanced Ras/MAPK signaling (35), future work will be necessary to determine whether additional Scrib-mediated pathways, such as JNK, p38, Wnt, and Notch signaling, may also play a role in the cooperative relationship between Scrib loss and K-ras activation to drive murine prostate tumor progression (5). Notably, JNK and p38 signaling have previously been reported to activate ELK1 to mediate transcription of growth regulatory genes (43), and oncogenic Wnt signaling has been shown to cooperate with K-ras activation to accelerate prostate cancer progression in mice (41).

Currently, evidence for the role of SCRIB in human prostate cancer is conflicting. Although SCRIB maps to 8q24, which also harbors c-Myc and prostate stem cell antigen (PSCA) and is frequently amplified in prostate cancer (49), a microarray dataset shows a decrease in Scrib mRNA in human prostate carcinoma (50). Furthermore, integrated genomic profiling has recently shown that 33% (77 of 230, all samples, z-score threshold ± 1.0) of human prostate cancers display deregulated SCRIB expression (39). We have gained key insights into human prostate cancer, where mislocalization rather than loss of SCRIB predicts for poor survival. Given this result, it is tempting to speculate that SCRIB mislocalization reflects aberrant SCRIB function, as suggested by previous studies (17, 25, 26). Functional analysis of LRR SCRIB point mutant proteins shows restriction of SCRIB to the cytoplasm that is associated with loss of function in Caenorhabditis elegans (25), Drosophila (26), mice (29), and a human breast cancer cell line (17). The latter study postulates that the mislocalization of SCRIB disrupts its ability to recruit the β-PIX/GIT1 complex, resulting in Rac activation and tumor growth (17). Consequently, the mislocalization we observe in human prostate cancer is likely to inhibit its tumor-suppressive function. Despite advancements in large-scale sequencing, mutations in SCRIB that could cause its mislocalization remain to be identified in human cancers, suggesting other events may underlie this process.

Consistent with our findings in human prostate cancer, SCRIB is deregulated/mislocalized in human colorectal, breast, and endometrial cancers (14–18). This evidence supports the notion that SCRIB may play a broader role in epithelial tissue homeostasis, and our conditional Scrib-KO mouse model presents a potentially invaluable tool to address this prospect further.

Importantly, we show that Scrib−/− prostate hyperplasia displayed mis-distribution of several polarity regulators and adhesion proteins, correlating with previous work (16, 32, 34) and raising the possibility that human prostate tumors displaying SCRIB mislocalization could exhibit a general polarity defect. However, it is possible that our study underestimates the number of tumors that have lost polarity, as this event may also stem from additional polarity regulator defects not associated with SCRIB deregulation. Our future work will assess the distribution of core polarity proteins in human prostate cancer and the molecular mechanism for codependent localization of polarity regulators to further understand the link between aberrant cellular polarity and prostate cancer.

Taken together, our data indicate that Scrib deficiency is a poor initiator of cancer and that an additional oncogenic or tumor suppressor mutation is required for Scrib deregulation to con-
tribute to tumor progression. Mechanistic insights into how loss of polarity occurs in prostate epithelium and its impact on tumor onset and progression will improve our understanding of prostate cancer etiology and may facilitate the discovery of innovative prognostic factors and chemotherapeutic avenues involving the polarity network.

Methods

Derivation of Scrib-deficient mice. To inactivate Scrib, we constructed a Scrib targeting vector harboring a 5′ LoxP site in intron 3 and a 3′ LoxP site and Flt-flanked PGK-neomycin selection cassette within intron 13 (Supplemental Figure 1A). Excision of the Neo cassette was achieved by crossing Scribfl/fl mice to Actin-FLPe mice, producing the conditional Scrib flxed allele (Scribf). To generate the Scrib-KO allele, we crossed Scrib+/fl mice to the germine Cre-deleter strain (27) and analyzed littermates. Founder mice were validated by Southern blot analysis of genomic DNA from ES cell clones (see Supplemental Figure 1B).

Experimental animals. To generate PBCre+/Scribf FVB/n mice with male ARR2Fbj-Cre (PBCre) FVB/n transgenic mice (36), a gift from Christopher Hovens (Australian Prostate Cancer Research Centre, Epworth Hospital, Melbourne, Victoria, Australia). Male PBCre+/Scribf offspring were crossed to female Scrib+/fl mice to generate PBCre+/Scribf fl mice. Females harboring an LSL-K-nasG12D allele (51) on a B6.129 background were backcrossed at least 6 times to FVB/n mice and crossed to male PBCre+/Scribf FVB/n mice. Male PBCre+/Scribf; LSL-K-nasG12D offspring were then bred to female Scrib+/fl mice to generate PBCre+/Scribf; LSL-K-nasG12D−/− mice.

Genotyping. Mice were genotyped from genomic DNA isolated from toe biopsies. WT and LoxP-flanked Scrib alleles were detected using the primers ScribF, 5′-GCCATGGTGCCAGAGTTGGC-3′ and ScribR1, 5′-TGCCTTCTCCCCAGACTCAGG-3′ (WT, 290 bp; Scribfl, 390 bp). The recombined Scrib allele was detected using ScribF2, 5′-GGAAGATTGGGGCCTCAGTG-3′ and ScribR1 (355 bp). The PCR program employed was 95°C for 2 minutes, followed by 35 cycles of 94°C for 30 seconds, 56°C for 30 seconds, 72°C for 30 seconds, and an elongation step of 72°C for 10 minutes.

Histological analysis. Formalin-fixed, paraffin-embedded (FFPE) tissue sections = 3–7 per animal) as described previously (52). Formalin-fixed, paraffin-embedded (FFPE) tissue sections were stained with H&E, and pathology was determined from multiple step-sections (n = 3–7 per animal) as described previously (52).

PD0325901 administration. PD0325901 was obtained from JS Research Chemicals Trading and delivered via oral gavage at 20 mg/kg. PD0325901 (8 mg/ml, dissolved in 0.5% hydroxypropyl-methylcellulose; 0.2% Tween 80) was delivered for 5 days on and 2 days off for 3 weeks, as previously optimized for murine prostate (53). Littermates were weighted daily for signs of distress; however, no appreciable toxicity was observed (i.e., >10% weight loss). Prostate wet weights were determined at harvest.

IHC and IF. IHC (FFPE samples) and IF (4% PFA-fixed cryosections) were carried out as described previously (54), except antigen retrieval was performed using Tris-EDTA (pH 9) (S237584, Dako) for p-ERM, E-cadherin, and PCNA staining. Primary antibodies included pan-Dlg 1:100 (05-427, Upstate), E-cadherin 1:400 (610181, BD Biosciences – Pharminagen), p-erin (Thr567)/radixin (Thr564)/moesin (Thr558) 1:200 (3141, Cell Signaling Technology), p-ELK1 (Ser383) 1:100 (ab32799, Abcam), p-ERK1/2 (Thr202/Tyr204) 1:150 (4376, Cell Signaling Technology), PAR3 1:100 (NP_062565, Millipore), PCNA 1:200 (610665, BD Biosciences – Pharminagen), and Scrib 1:150 (SC1409, Santa Cruz Biotechnology Inc.). Negative control slides were run without primary antibody, and positive control slides were incorporated. IHC scoring was performed using MetaMorph 6.3 software (Molecular Devices) from 20 images per mouse (×40 magnification, BX-51 Olympus microscope). A minimum of 1,000 cells/mouse were counted. All analysis was carried out on anterior prostate lobes.

Western blot analysis. Western blotting was carried out using embryonic brain homogenates, as previously described (55).

gRT-PCR analysis. Prostate RNA was isolated using TRIzol (Invitrogen), TURBO DNase treated (Ambion), and reverse transcribed with SuperScript III (Invitrogen). Amplification of cDNA was performed by the StepOnePlus Real-Time PCR System (Applied Biosystems). Samples were normalized to Gapdh, and fold change was calculated by the 2−ΔΔCt method (56). Scrib mRNA was detected using mqS-F, 5′-TGTCAAGTGTCACTCAGTTGC-3′ and mqS-R, 5′-CTTCAATGCCCCTCTCTACAT-3′.

Tissue microarray analysis. Hormone-naive radical prostatectomy specimens from 3,261 patients were obtained from the University Medical Center Hamburg-Eppendorf between 1992 and 2005 (Supplemental Table 1) (44). Follow-up data were available for 2,891 patients, ranging from 0.03 to 219 months (mean, 72.1 months). Tumor recurrence (biochemical recurrence) was defined as postoperative levels of total PSA of 0.1 ng/ml or greater and rising after initial undetectable total PSA. TMA FFPE sections were stained using a previously described IHC method (44). See Supplemental Table 4 for raw data.

Tissue microarray construction. One tissue core was punched from a representative tumor area and transferred in a TMA format as described previously (57). Based on 348ΔE12 IHC data from a previous study (58), 892 (27.4%) samples were excluded, as the basal cell marker indicated a lack of tumor cells in these cores.

Statistics. Statistical analysis was performed using GraphPad Prism 5 software. IHC scoring was analyzed statistically for each genotype (n = 3) using a 2-tailed unpaired t test, where a P value less than 0.05 was considered statistically significant. qRT-PCR reactions were performed in triplicate, and significance was calculated using a 2-tailed unpaired t test of the average fold change. The prostate weight for each genotype (n = 4–8) was statistically analyzed using the nonparametric Mann Whitney U test. The relationship between human SCRIB intensity/localization and clinical parameters was analyzed using the χ2 likelihood test. Kaplan-Meier survival curves were compared with the log-rank test.

Study approval. All animal studies were approved by the Peter MacCallum Cancer Centre Experimental Ethics Committee. The use of human tissue and clinical data was according to the Hamburg-Krankenhaus Gesetz (§12 HmbKHG) and approved by the local Ethical Committee (University Medical Centre Hamburg-Eppendorf, Hamburg, Germany).

Acknowledgments

Many thanks go to Michael Durrant, Josh Noske, Olivia Cakebread, Samantha Williams, Ryan Galea, and Lorey Smith at the Peter MacCallum Cancer Centre for their technical assistance. D.A. Tuveson acknowledges the support of the University of Cambridge, Cancer Research UK, and Hutchison Whampoa Limited. P.A. Perez-Mancera received financial support from the Ministerio de Educación y Ciencia of Spain and from Fundación Caja Madrid. This work was supported by the Prostate Cancer Foundation of Australia (PCFA) and the National Health and Medical Research Council (NHMRC). P.O. Humbert is supported by an NHMRC career development fellowship.

Received for publication April 14, 2011, and accepted in revised form August 16, 2011.

Address correspondence to: Patrick O. Humbert, Cell Cycle and Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia. Phone: 61.0.3.96563526; Fax: 61.0.3.96561411; E-mail: Patrick.Humbert@petermac.org.


