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HSV-2: in pursuit of a vaccine
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Herpes simplex virus type 2 (HSV-2) is one of the most prevalent sexually transmitted infections worldwide. In
addition to recurrent genital ulcers, HSV-2 causes neonatal herpes, and it is associated with a 3-fold increased
risk for HIV acquisition. Although many HSV-2 vaccines have been studied in animal models, few have reached
clinical trials, and those that have been tested in humans were not consistently effective. Here, we review HSV-2
pathogenesis, with a focus on novel understanding of mucosal immunobiology of HSV-2, and vaccine efforts to
date, in an attempt to stimulate thinking about future directions for development of effective prophylactic and

therapeutic HSV-2 vaccines.

Introduction

Herpes simplex virus type 2 (HSV-2) is a sexually transmitted
pathogen that infects more than 500 million people worldwide
and causes an estimated 23 million new infections each year (1).
HSV-2 seroprevalence ranges from 16% among 14-49 year olds in
the United States (2) to greater than 80% in some areas of sub-
Saharan Africa (3); seroprevalence in women is up to twice as high
as men, and increases with age (2, 4). Although HSV-2 is the lead-
ing cause of genital ulcer disease worldwide (S, 6), most people are
not aware of the infection (7), and may transmit the virus during
periods of subclinical shedding (8, 9). In contrast to other sexu-
ally transmitted infections (STIs) that may be concentrated among
“core groups,” such as gonorrhea (10), HSV-2 is widespread even
among people with low or moderate levels of sexual activity. For
instance, 18.8% of American women with 2-4 lifetime sexual part-
ners are HSV-2 seropositive (2).

Although incident genital herpes is increasingly caused by HSV
type 1 (HSV-1; ref. 11), and HSV-1 may also cause significant eye
and brain disease, almost all HSV vaccine candidates reaching clini-
cal trials have targeted HSV-2. As HSV-1 and HSV-2 have similar
pathogenesis and host interactions, many of the concepts for devel-
opment of an effective vaccine are likely relevant to both viruses. In
addition, infection with HSV-2 provides partial protection against
HSV-1 (12), although the reverse does not appear to be true (13),
and thus there is potential for generation of cross-reactive immu-
nity (14). The possibility that an HSV-2 vaccine may provide protec-
tion against HSV-1 increases its potential value and may shift the
optimal time for immunization to early childhood, instead of the
more problematic adolescent vaccination series (15).

Transmission of HSV from mother to infant during birth is the
most serious complication of genital herpes, and women who
acquire HSV during pregnancy are at the highest risk of transmit-
ting the infection (16). Neonatal herpes often results in long-term
neurologic sequelae or mortality (17). The estimated incidence of
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neonatal herpes varies widely, from 4 to 31 in 100,000 live births
(12, 18). Although neonatal herpes is too rare to be used as an
endpoint in a clinical vaccine trial, prevention of HSV acquisition
during pregnancy is an important goal of developing an effective
HSV vaccine.

The risk of HIV-1 acquisition is 3-fold higher among HSV-2-
seropositive persons (19); in populations with 80% seroprevalence,
nearly 50% of HIV infections are attributable to prevalent HSV-2
(20). The mechanism of increased risk of HIV acquisition includes
influx of HIV target cells (21) in response to HSV-2 replication in
the genital mucosa. Thus, decreasing either HSV-2 susceptibility
or reactivation through prophylactic vaccination could lead to a
marked decrease in HIV incidence in sub-Saharan Africa (22).

Prevention strategies for sexual transmission of HSV-2 include
condom use (23), disclosure of serostatus (24), and suppressive
antiviral therapy (23). However, these methods are imperfect, as
each reduces transmission by only approximately 50% (25, 26).
Moreover, antiviral therapy does not abrogate the increased risk of
HIV acquisition (27, 28) or transmission (29) in HSV-2-seroposi-
tive persons. The currently available strategies are useful for indi-
vidual patients, but they are unlikely to be of public health benefit.
A prophylactic vaccine would be valuable from both the patient
and public health standpoint, if it were able to meet or exceed the
efficacy of currently available preventive therapies.

New insights into HSV pathogenesis: frequent and
dynamic reactivation

HSV infects epithelial cells at skin and mucosal surfaces during
primary infection, then travels via retrograde transport along
nerve axons to the dorsal root ganglia (DRG), where latency is
established (30). While epithelial cells are destroyed during lytic
HSV replication, neuronal cells are not destroyed and provide a
reservoir for latent virus. During reactivation, the virus travels
from the DRG back to the skin and causes detection of virus from
epithelial surfaces (known as viral shedding). Viral reactivation
may be asymptomatic or may be associated with prodrome (tin-
gling or burning), nonspecific symptoms or lesions, or a classic
genital ulcer.

Studies that measure the frequency of viral shedding and the
quantity of virus detected from the genital tract have provided
insight into the natural history and pathogenesis of HSV-2 infec-
tion. HSV was previously thought to be in the latent state most
of the time during chronic infection, with rare clinically evident
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reactivation episodes, conceptually similar to varicella zoster virus
(VZV). However, shedding studies using anogenital swabs collect-
ed by HSV-2-seropositive persons once or multiple times daily for
viral culture or for quantitative real-time PCR have revealed that
HSV and the host are in constant conflict, with frequent HSV reac-
tivation and rapid clearance (31). This implies host responses that
likely involve cell-intrinsic and -extrinsic mechanisms of innate as
well as acquired immunity. In studies in which HSV-2-infected
persons collect daily genital swabs, HSV is detected on a median of
12%-28% of days (32) and is found on 10% of days even among per-
sons with asymptomatic HSV-2 infection (33). Many of these shed-
ding episodes occur in the absence of lesions or symptoms (known
as subclinical shedding; ref. 34). Mathematical models suggest
that multiple, short, overlapping shedding episodes best simulate
the observed shedding patterns (35) and that a nearly constant low
quantity of HSV is likely to be released from sensory DRG into the
genital tract (36). Recent studies using intensive sampling (every 6
hours) of the genital and oral mucosa have produced results con-
sistent with these models, demonstrating that most HSV detec-
tion episodes are short (median 13 hours), subclinical, and rapidly
cleared (31). In addition, studies using detailed genital mapping to
isolate shedding episodes have demonstrated that simultaneous,
bilateral widespread genital shedding is detected frequently (37).
HSV lesions are associated with persistent infiltrate of CD4* and
CD8" T cells in the mucosa (21, 38) and at nerve endings (38) that
may contribute to a chronic inflammatory state in genital skin
and mucosa. In support of this hypothesis, histopathologic stud-
ies of foreskin in HIV-seronegative men after adult circumcision
have shown a higher concentration of CD4* and CD8" T cells in
HSV-2-seropositive compared with HSV-2-seronegative men (39).
Thus, even persons with established infection and a functional
immune system can experience both subclinical genital HSV shed-
ding and lesional recurrences, which suggests that the virus can
evade even mature host immune responses. These findings indi-
cate that chronic HSV infection involves a dynamic equilibrium
between ganglionic and mucosal compartments.

HSV-2 transmission dynamics

HSV-2 infection rates in heavily exposed populations, such as
commercial sex workers, are nearly 100%, suggestive of near-uni-
versal susceptibility (40). Studies in HSV-2-discordant couples
have shown that most HSV-2 transmissions occur during periods
of subclinical shedding in the source partner (8). The relationship
between the inoculum dose, the presence of local abrasions or
other epithelial variables, and the likelihood of successful trans-
mission has not been established in humans. An increase in the
inoculum dose required to produce disease or establish ganglionic
latency might result from a vaccine, as has been shown with a live
attenuated candidate vaccine in guinea pigs (41), providing partial
protection from infection or disease.

HSV-2 is transmitted between sexual partners fairly quickly in a
new sexual relationship. In a cohort of 199 patients with labora-
tory-documented primary HSV-2 infection and a clearly defined
transmitting partner, the median number of sexual acts between the
couple at the time of HSV-2 acquisition was 40 (24). Obversely, our
group has identified some HSV-2-seronegative persons in long-term
HSV-2-discordant sexual relationships who have T cell responses to
HSV-2 (42), which suggests that not all exposures result in infection.
Preliminary data suggest that these T cell responses may be weight-
ed toward certain HSV-2 proteins (42). If confirmed and extended
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using the whole HSV-2 proteome, this finding could indicate pre-
ferred compositions for future subunit vaccines.

Experts have long considered infection by multiple HSV-2 strains
in a given individual a rare phenomenon (43, 44), raising the poten-
tial for inducing sterilizing immunity. However, recent studies
using more sensitive PCR techniques and newly identified variable
regions in HSV-2 have found multiple-strain genital infection in
15% of healthy adults infected with genital HSV-1 and HSV-2 (45,
46). In a small cohort of HIV/HSV-2 coinfected persons, all 11 har-
bored more than one HSV-2 strain; however, the relative contribu-
tions of high sexual exposure versus immunosuppression to this
observation has not been defined. Sterilizing immunity with other
human herpesvirus infections is variable: wild-type infection with
VZV protects against reinfection, whereas multiple strains of CMV
are detected in more than 90% of CMV-infected women (47). A
more detailed analysis of the prevalence of multistrain HSV-2 infec-
tion is now possible because of increased knowledge of viral SNPs
(48, 49) and can be used to establish how well naturally occurring
HSV-2 infection protects against infection with a second strain in
humans. These data will discern whether immunity better than, or
perhaps fundamentally different from, that provoked by wild-type
infection will be a necessary component of a successful vaccine.

The immune response to HSV-2

HSV-2 induces an immune response that eventually contains the
virus, as suggested by the temporal correlation of the infiltration
of antigen-specific CD4" and CD8" T cells at the site of a lesion and
clearance of virus (50). The importance of the host immune response
is demonstrated by the severe, prolonged ulcerations that can occur
in patients with AIDS (51) or after solid organ (52) or stem cell
transplantation (53). The host and viral determinants of the hetero-
geneous clinical and virological manifestations of genital HSV-2 are
poorly understood. In our opinion, identification of those compo-
nents of the host immune system that result in containment of viral
reactivation from neurons, and viral clearance from the mucosa, will
be essential for development of a successful HSV-2 vaccine. This is
most likely to be gained by detailed immunologic and genetic stud-
ies of persons with well-defined HSV-2 severity.

HSV stimulates the innate immune system to produce IFN-q.,
through interactions with plasmacytoid DCs (pDCs; ref. 54) and
other cells, via TLRs, including TLR9 (55), TLR2 (56), and TLR3
(57). Cytoplasmic DNA sensors, such as stimulator of IFN genes
(STING), mediate production of IFN in response to HSV infec-
tion, as demonstrated in cell culture and in knockout mouse mod-
els (58). Interestingly, most host mutations associated with fatal
HSV in childhood occur at loci classically associated with innate
immunity, such as TLR3 (57) and UNC93B1 (59), although some
mutations associated with severe HSV are in genes involved in
both innate and acquired immune responses (e.g., STAT1), reflect-
ing a complex codependence and interaction between these path-
ways (60). Although innate immune system agonists can lead to
profound, local HSV resistance (61, 62), these interventions are
outside the realm of classic vaccinology. Single nucleotide poly-
morphisms in TLR2 are associated with more frequent HSV shed-
ding and genital lesions (63), which suggests that there may be
a host genetic contribution to the wide heterogeneity of clinical
HSV presentation. Curiously, IFN-a and the characteristic IFN
type I gene signature are not present in biopsies of genital HSV-2
lesions (64), which indicates that despite HSV’s powerful abil-
ity to trigger IFN-o. in pDCs, there may be a defect in local type I
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IEN responses in situ. HSV-1 has also evolved mechanisms to
downregulate IFN expression, for example, via IRF3 degradation
mediated by immediate early infected cell protein 0 (ICP0), which
prevents accumulation of IFN-f (65). In addition, expression of
ICPO alone can prevent TLR2-dependent NF-xB activation in cell
culture, which suggests that the virus downregulates the immune
response at several points in the inflammatory pathway (66).

CD4" T cells are an important source of IFN-y, have cytotoxic
effector activity for HSV-infected cells, and localize to HSV-2 geni-
tal lesions (50). CD4* T cell depletion is statistically associated with
increased HSV-2 shedding in HIV-1 infection (67), albeit in the con-
text of a multifaceted immune deficiency, including a profound
reduction in circulating pDCs (68). In mice, CD4" T cells play key
protective roles after whole virus vaccination, as shown by deple-
tion studies (69, 70). The presence of CD8" T cells is associated
with HSV clearance from the peripheral nervous system (71), and
ganglionic HSV-specific T cells appear to be important in main-
taining HSV-1 latency in the mouse model of infection (72). HSV-
specific CD8"* T cells are chronically localized to HSV-infected DRG
in humans and appear to be activated (73). Mathematical models
predict that the duration and severity of HSV shedding episodes is
strongly associated with alow density of CD8* T cells in the genital
mucosa (74). In studies using a subset of the predicted HSV pro-
teome, HSV-2-seropositive persons generate a broad CD8* T cell
response, reacting to a median of 11 epitopes (75). These cells typi-
cally target immediate-early or early HSV genes and produce IFN-y,
but may be capable of proliferation, IL-2 and TNF-a production,
and cytolytic responses (e.g., increased expression of CD107a). No
acquired cellular immunity correlates of control of HSV reactiva-
tion or shedding have been elucidated in humans.

Neutralizing antibodies to viral envelope glycoproteins, which
are required for viral entry into cells, develop in response to HSV
infection (76) and may provide some type-common protection
against HSV acquisition (77) or reduce the severity of HSV infec-
tion (78, 79). As a result, glycoprotein B (gB) and gD subunit
vaccines have been pursued in human clinical trials. Physiologi-
cally relevant host receptors have been defined (80), and crystallo-
graphic structures of HSV proteins with their ligands and dynamic
structural changes during viral entry are newly available (81-83).
These data may inform the design of a newer generation of gly-
coprotein-based vaccines designed to elicit optimal neutralizing
antibodies, inspired by the success of HPV vaccines, which appear
to work at least in part by eliciting higher titers of neutralizing
antibodies than those induced by natural infection.

Immune evasion
Alphaherpesviruses, such as HSV-2, have coevolved with primate
hosts for millions of years and have developed many strategies to
evade the host immune response. The latency associated transcript
blocks apoptosis and may allow for survival of neurons during
latent infection (84), whereas other viral genes block apoptosis
induced by cytolytic immune effector cells (85). Activated HSV-
specific CD8" T cells are found surrounding trigeminal DRG in
HSV-1-infected persons, but there is no evidence that these cells
kill the neurons, despite the expression of cytolytic proteins such
as granzyme B (73). Several HSV proteins, such as the ubiquitin
ligase ICPO, interact with the IFN pathway. Contact of T cells
with HSV-infected cells inhibits and alters T cell signaling via
intracellular phosphorylation cascades (86), and ICP47 blocks
CD8* T cell responses by interactions with the transporter associ-
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ated with antigen processing (TAP), which moves peptides to MHC
class I (87). With the knowledge of specific HSV immune evasion
mechanisms, it is possible to create replication-competent or
-incompetent virus-based vaccines modified to disable inhibitors of
innate and acquired immunity. Examples include deletion of UL41
(which encodes a protein with complex properties, including DC
downregulation; ref. 88) from candidate vaccine strains (89) and
deletion of multiple immune evasion genes from Immunovex!SV2,
a live attenuated strain currently in phase I clinical trials (90).

Thus, although the components of protective immunity remain
unknown, the tools to perform studies to correlate immunity with
phenotype are now largely in place: immunocompetent subjects
can be phenotyped for shedding frequency, the viral proteome is
manageably sized for comprehensive immune studies, and speci-
mens can include infected tissues as well as blood.

Animal models of HSV vaccination

The mouse and guinea pig models of HSV-2 infection have provided
important insight into the immunobiology of genital herpes. The
mouse model is limited because HSV does not spontaneously reac-
tivate from mice DRG and therefore does not simulate infection in
the human host. Some viral immune evasion mechanisms are also
less active in mice. Although pathogenesis insights into tissue-resi-
dent HSV-specific T cells made in mice appear applicable to human
infection (91, 92), most vaccine studies in mice use lethality as an
endpoint and, due to space constraints, will not be reviewed here.
The guinea pig does reactivate HSV spontaneously for a limited
period of time after vaginal infection (93), but few reagents are avail-
able to parse out the components of an effective immune response
in this model. As an alternative, the cotton rat model, in which HSV
reactivation does occur, should be further exploited (94).

Many prophylactic vaccines have been tested in the guinea pig
model, and most have been successful in preventing clinically
apparent infection (Supplemental Table 1; supplemental mate-
rial available online with this article; doi:10.1172/JCI57148DS1).
In addition, several therapeutic vaccines prevent recurrences in
this model. Approaches have included recombinant glycoprotein
subunit vaccines, DNA-based vaccines using plasmids encoding
glycoproteins, live virus vector vaccines with glycoprotein inserts,
live-attenuated HSV-2, and replication-incompetent virus. These
vaccines resulted in decreased severity of primary disease, rate of
recurrent infection, and quantity of virus shed during primary
infection and recurrent activation.

Studies in the guinea pig have shown the quantity of HSV that
establishes latency in the DRG correlates with frequency of clini-
cal recurrence (95), which suggests that partial protection could
be a valuable endpoint goal in vaccine design. Several candidate
vaccines appear to reduce the quantity of HSV in the guinea pig
DRG. However, once DRG are infected, shedding still occurs ata
rate similar to that of nonimmunized animals (96, 97). These data
suggest that once neuronal infection in the DRG is established,
the pathobiology of frequent reactivation may not be affected by
a therapeutic vaccine, although clinical recurrences and quantity
of virus shed may be diminished. In parallel, long-term studies of
HSV-2-infected persons show that most, if not all, reactivate HSV-2,
albeit with variable frequency (98).

In the HIV vaccine field, a new pipeline for preclinical testing of
T cell-based vaccines in nonhuman primates has been proposed
(99), which requires efficacy for a clinically relevant, predefined
virologic endpoint, followed by examination of immunogenicity
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Figure 1

HSV-2 vaccine development strategies.

prior to use in human volunteers. HSV vaccine researchers should
also consider virologic efficacy criteria when evaluating prophy-
lactic and therapeutic vaccines, such as reduction or elimination
of mucosal shedding or reduction of the establishment of sacral
DRG latency, in addition to immunogenicity, in animal models
prior to initiating human trials.

Human clinical trials

Prophylactic vaccines. Testing prophylactic HSV vaccines for efficacy
requires prospective follow-up of persons at risk for HSV-2 acqui-
sition. Even in high-risk settings, the seroconversion rate is likely
to be only approximately 5% per year, making such trials a costly
endeavor, similar in scope to HIV vaccine efficacy trials. Substantial
efforts have been invested into glycoprotein subunits as vaccine tar-
gets, with more than 20,000 human volunteers studied in clinical
trials (Table 1). A recombinant gB2 and gD2 subunit vaccine formu-
lated with the adjuvant MF59 was safe and induced strong neutral-
izing antibody responses and as well as CD4* T cell responses (100,
101). However, this vaccine was not successful at preventing HSV-2
infection in HSV-2-negative members of discordant heterosexual
couples or STD clinic enrollees (100).

Two parallel studies showed that a recombinant gD2 subunit vac-
cine with an alum/monophospholipid A adjuvant (AS04) was also
safe and induced both neutralizing antibody and CD4* immune
responses (102). The first trials randomized HSV-2-seronegative
persons in a stable HSV-2-discordant sexual relationship, in which
the source partner had clinically evident genital herpes, to receive
vaccine or placebo. Although the vaccine was not efficacious in
men or HSV-1-seropositive women, the vaccine reduced HSV-2
disease by 70% and HSV-2 infection by 40% in a subgroup analy-
sis of HSV-1- and HSV-2-seronegative women (103). To further
evaluate this vaccine, more than 8,000 sexually active HSV-1-
and HSV-2-seronegative women were enrolled in the Herpe-
vac trial, a collaborative study sponsored by the NIH and Glaxo-
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SmithKline. Preliminary results of the Herpevac trial showed no
efficacy against HSV-2 disease or infection (104). These negative
trials, while disappointing, have provided insights into the optimal
study population, design, and endpoints for future investigations.
The fact that different results were found in the two trials raises
questions about whether risks of transmission and/or behavior in
discordant couples in a stable relationship may be fundamentally
different from those with multiple partners (104). Future trials
should enroll members of both discordant monogamous couples
as well as individuals with multiple partners to further evaluate
this. Endpoints of interest in a prophylactic vaccine study include
both acquisition of HSV-2 infection, to measure the ability of the
vaccine to induce sterilizing immunity, and frequency of viral
shedding. Assessment of viral shedding is more precise than iden-
tification and attribution of genital signs and symptoms, and lack
of viral shedding will undoubtedly lead to lack of clinical mani-
festations of genital herpes. In addition, viral shedding frequency
in those who are infected is also of interest to evaluate a potential
effect on dynamics of transmission (Figure 1 and ref. 105).
Therapeutic vaccines. Therapeutic HSV-2 vaccines have been pur-
sued both to improve the clinical course in individual patients and
to potentially decrease HSV shedding, and hence transmission, for a
public health benefit (Table 2). Most have been safe and have induced
a measurable immune response. Although the first study of a recom-
binant gD2 vaccine adjuvanted with alum reduced the rate of viro-
logically confirmed recurrences (106), later studies of glycoprotein
vaccines failed to replicate that effect (107). Unlike the prophylac-
tic vaccine studies, shedding data from our group indicate that the
pivotal therapeutic vaccine studies can be performed efficiently with
fewer than 100 individuals if viral shedding is used as an endpoint
(33), whereas prophylactic vaccination studies require a much larger
sample size. Viral shedding rate and quantity of virus shed could
serve as useful surrogate endpoints for recurrence rate and transmis-
sion likelihood in studies of therapeutic vaccines as well.
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Live-virus vaccines: lessons from VZV. In contrast to HSV, there is
an effective vaccine against VZV, the other human pathogen in
the alphaherpesvirus family. This live-attenuated virus vaccine
prevents primary infection and VZV reactivation (zoster; ref.
108), making it the first example of a successful therapeutic vac-
cine. Whereas antibody titers to VZV do not correlate with risk of
reactivation, a boosted cell-mediated immune response is associ-
ated with a decreased risk of zoster (109). These lessons should
be applied to therapeutic HSV vaccine development in order
to ensure that vaccine candidates induce strong cell-mediated
immune responses.

Only one replication-competent HSV vaccine has been tested as
a therapeutic entity in humans. This virus had a mutation in the
UL39 gene and was associated with a decreased number of self-
reported genital herpes recurrences compared with placebo (110);
unfortunately, there was no virologic assessment of recurrences
(Table 2). A disabled infectious single cycle (DISC) mutant with
a gH deletion was tested in persons with symptomatic HSV-2,
but neither shedding rates nor recurrences rates were affected
(111). In this study, a limited titer of virus was used; therefore,
the potential for this type of candidate vaccine has not yet been
fully explored. However, several novel genetically engineered
replication-incompetent vaccine candidates are in the pipeline.
For example, the HSV-1 construct CJ9-gD, which is engineered
to overexpress gD1 and has a dominant-negative mutation in
the origin of binding protein UL9 (which inhibits viral replica-
tion), was able to protect guinea pigs from HSV-2 intravaginal
challenge, with marked reduction in viral titer and lesion for-
mation as well as amount of challenge virus establishing latency
in immunized animals (112). Another pair of promising repli-
cation-incompetent vaccine constructs, d15-29 and d15-29-41L,
with deletions of essential early genes (and, in the -41 virus, the
gene encoding the vhs protein), has also been effective at prevent-
ing primary infection and decreasing the titer of challenge virus
establishing latency in the guinea pig model (89, 113). Replica-
tion-competent strains of HSV-1 with a deletion in the gE gene,
which is required for neuronal spread and anterograde transport
of viral components (114), or of HSV-2 with a deletion in both
copies of ICPO, which has multiple virulence and immune eva-
sion functions (115), are other innovative vaccine constructs that
will require additional testing in animal models prior to moving
into clinical trials.

Goals of vaccination
One of the key concerns in HSV vaccine development is whether stet-
ilizing immunity will be feasible (116). Ideally, an HSV vaccine will
be better than nature through a combination of the following mech-
anisms: (a) inducing sterilizing immunity in the genital tract, (b)
preventing initial infection of the DRG, (c) stimulating an immune
response that does not allow frequent reactivation of HSV-2 from
sacral DRG, or (d) leading to high concentrations of effector cells
in genital epithelia to minimize replication after virus is delivered
from neurons (92). Mouse models typically require vaginal inocula-
tion with live HSV to produce sterilizing immunity (117), and in the
guinea pig model, most vaccines tested have not prevented infec-
tion of the DRG. HPV vaccines, which use virus-like particles, induce
higher levels of neutralizing antibodies and memory B cells than
seen in natural infection (118) and prevent genital infection with
high efficacy (119), which demonstrates that vaccines that induce
more potent immunity than natural infection are possible.
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An alternative vaccination goal is to alter the natural history
of HSV infection, by decreasing the quantity of virus establish-
ing latency in neurons and minimizing the quantity of virus shed
from genital surfaces (Figure 1). Mathematical modeling analyses
have suggested that even vaccines with relatively low efficacy at
preventing primary infection could have a substantial effect on the
epidemic by decreasing shedding and reducing viral transmission
(105). Such a vaccine would have the highest impact in high-preva-
lence populations (120); it is estimated that a vaccine that only
marginally decreases HSV-2 susceptibility, but reduces shedding
frequency among vaccinated persons who become infected by 75%,
could reduce HSV-2 incidence by 30% over a 10-year period (121).
Therapeutic vaccines that reduce shedding could also have a pow-
erful effect on the HSV-2 epidemic (122).

Future directions

Over the last two decades, the field of HSV pathogenesis has pro-
gressed rapidly. There is a better understanding of the function
of many HSV genes and proteins, as well as the host immune
response. Importantly, we have a better appreciation for how
frequently HSV reactivates from latency and is shed on mucosal
surfaces, allowing for transmission to a new host. These findings
point to viral shedding as an appropriate endpoint for proof-of-
concept studies. Ideally, a prophylactic vaccine would result in
sterilizing immunity, which would not allow HSV to establish
latency in the DRG. However, achievement of such a difficult goal
will likely require additional research to understand both effective
innate and acquired immunity, such that the immune response
generated by the vaccine is more potent than that occurring in
natural infection.

If the goal of a vaccine is to modify natural history in those
already infected, or to alter the course of the infection in those
with newly acquired HSV-2, we believe that vaccines should focus
on changes in HSV shedding frequency and quantity in those
who become infected, in parallel to HIV vaccine studies aimed at
modifying the viral setpoint (123). Additional research should be
devoted to establishing whether a virologic threshold for transmis-
sion exists, and toward a quantitative assessment of the prevalence
of multistrain infections. Modeling studies have provided us with
the ability to see how imperfect vaccines could work on a popula-
tion basis; we should take advantage of such studies to have a lively
debate about what type of vaccine would be attainable and effec-
tive from a personal and public health perspective. A final chal-
lenge will be having buy-in from pharmaceutical companies and
regulatory bodies to pursue the potentially risky strategy of invest-
ing in a vaccine that decreases shedding rather than prevents infec-
tion. Given the reach of the HSV-2 epidemic, and the contribution
of HSV-2 to HIV infection, we must be creative in our approach to
this most challenging chronic viral infection.
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