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Rapid and sophisticated improvements in molecular analysis have allowed us to sequence whole human genomes
as well as cancer genomes, and the findings suggest that we may be approaching the ability to individualize the
diagnosis and treatment of cancer. This paradigmatic shift in approach will require clinicians and researchers to
overcome several challenges including the huge spectrum of tumor types within a given cancer, as well as the cell-
to-cell variations observed within tumors. This review discusses how next-generation sequencing of breast cancer
genomes already reveals insight into tumor heterogeneity and how it can contribute to future breast cancer clas-

sification and management.

Introduction

Next-generation sequencing. DNA sequencing using dideoxynucle-
otide termination chemistry was first described by Fred Sanger
in the 1970s and subsequently automated by capillary sequenc-
ing by Applied Biosystems in the 1990s. However, this “first-
generation” sequencing method was limited to sequencing tar-
geted regions of DNA spanning approximately 700 nucleotides
at a time. This brute-force method was the workhorse of the
Human Genome Project, which sequenced all 3.2 billion bp at
high coverage over a period of 10 years. Today, advanced sys-
tems such as the Illumina HiSeq 2000 are capable of sequenc-
ing a human genome at 30x coverage in about one week. These
next-generation sequencing (NGS) systems use massively paral-
lel sequencing to generate hundreds of millions of short (36- to
150-bp) DNA reads that can be aligned to the human genome.
In addition to using single-end reads, it is now possible to
sequence both ends of DNA library molecules (paired ends) to
identify discordant pairs that represent deletions, amplifica-
tions, inversions, or translocations (see recent reviews for more
details about the technology; refs. 1, 2). Thus, in addition to
identifying point mutations, this strategy provides a wealth
of information about a range of genetic aberrations that can
occur in a cancer genome, including copy number variation.
Although a number of different highly paralle]l NGS strategies
have been developed, the paired-end strategy from Illumina Inc.
has become the tool of choice for most cancer genome stud-
ies published to date. While most cancer genome studies so far
have focused on single patients, this pattern is likely to change
as a result of ongoing international collaborations (3) and
steep decreases in the cost of sequencing. The hope is that NGS
data will shorten the road to personalized medicine, in which
treatments and therapies are tailored to target the unique spec-
trum of mutations that define individual tumors and tumor
subpopulations (4-8). However, this challenge, which has been
referred to as “the $1,000 genomes, the $100,000 analysis”
problem (9), will only continue to grow.
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Tumor heterogeneity. Variation between patients is often referred
to as intertumor heterogeneity and is classically recognized
through different morphology types, expression subtypes, or
classes of genomic copy number patterns, among other differ-
ences. Variation within a single tumor, intratumor heterogeneity,
has long been observed by histopathologists as sectors of differ-
ent morphology or staining behavior and has more recently been
defined at the molecular level by the genetic differences observed
in tumor subpopulations and even among individual malig-
nant cells. As we begin to enter the era of whole-genome DNA
sequencing, a wealth of data is starting to emerge shedding light
on the evolution of cancer (2, 10). However, high-resolution DNA
sequence data are currently available for only a handful of cases,
and at the present level of technology, incorporation of whole-
genome sequencing into clinical trials is problematic. The chal-
lenge is to make the best use of the great body of knowledge that
has been gained using lower-resolution methods on thousands
of cases to direct the NGS studies to have the greatest impact on
clinical management of the disease.

Intertumor heterogeneity

Subgrouping tumors by phenotype. The reference book from the WHO
groups breast cancer into 17 different types based on their micro-
scopic appearance, but the clinical impact of this classification is
debated and has little impact on clinical decision making (11, 12).
The so-called histological “special” subtypes have distinct molecu-
lar alterations and clinical behavior, but more than 70% of breast
carcinomas are categorized as invasive ductal carcinoma, not oth-
erwise specified (IDC NOS), tumors that do not display sufficient
characteristics of any of the special types (11-13). Still, information
about the microscopic features of the tumor and its cells are very
informative; the histological grading system developed more than
50 years ago, which is used to estimate the level of differentiation,
number of mitoses, and nuclear pleomorphism, is of major impact
in clinical decision making today (6, 14).

Since the introduction of microarray analyses, the rapid advance-
ment in technology and data handling has yielded an enormous
increase in our knowledge about the molecular disruptions in can-
cer cells. As the variations from case to case became evident, two
main approaches were applied to explore the clinical utility of such
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information (Figure 1). Some studies were designed to search for a
taxonomy that could define distinct subtypes of breast carcinomas,
while others were designed to elucidate specific alterations of pre-
dictive or prognostic value. It is important to recognize the differ-
ence in design of these two approaches. The first approach investi-
gates an unsorted population of cases and aims to group tumors by
common alterations (Figure 1A). The latter interrogates predefined
groups of tumors such as clinical trial cohorts and looks for bio-
markers that can predict a given clinical parameter, such as out-
come or response to therapy (Figure 1B). Some of the most highly
cited gene expression microarray studies were aimed at identifying
alterations that predict prognosis (15, 16) or propensity to metas-
tasize (17). While such studies do not reveal fundamental differ-
ences among tumors, others, such as the study by Sorlie et al. (18),
were able to group tumors based on alterations in expression of a
set of predefined “intrinsic genes” (19). In these studies five main
intrinsic subtypes were identified: luminal A, luminal B, basal-like,
human epidermal growth factor receptor 2-related (HER2-related),
and normal-like, each with a different prognosis and distributions
of known or promising targets for therapy. The introduction of this
classification system into clinical use has not been easy, as robust
single-sample predictors are needed (20-23). Identifying molecular
classes in samples from breast cancer patients is dependent on the
composition of the given cohort; the initial study of Perou et al.
was performed on fewer than 40 carcinomas, the majority of which
were of the IDC NOS class (18). Distinct tumor types that were
not included in this study might not be appreciated at all and thus
not recognized in validation studies. With increased knowledge
from thousands of investigated breast carcinomas, combined with
technical advancements including more sophisticated bioinfor-
matics tools, a variety of more or less related classifiers are being
recognized, each developed from different data sets on different
gene expression platforms (24-27). As an example, one of the newer
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variants of the “intrinsic classification,” the PAMS0 assay, derived
its classification algorithm and parameter values from an indepen-
dent training set and was designed for independent single-sample
classification (27, 28). Validation of PAMSO0 as a classifier is ongo-
ing, and a gold standard for molecular classification by gene expres-
sion is not yet available. Other groups have shown that by grouping
breast cancer by the expression of the established markers estrogen
receptor (ER), progesterone receptor (PR), and HER2 (also known
as ERBB2), distinct molecular alterations and outcomes can be
identified (29). The same markers are frequently used as surrogates
for the intrinsic subtypes — luminal A subtype is defined as ER*
and/or PR*, HER2"; luminal B subtype is defined as ER* and/or
PR*, HER2"; HER2-related subtype is defined as ER", PR", HER2",
and Basal-like tumors are defined as ER", PR-, and HER2- (30).
Genomic alterations are linked to phenotype. A few decades ago, cytoge-
netic studies showed that breast cancer had different types of altera-
tions; analysis of near-diploid tumors identified the most common
alteration as a translocation resulting in a der(1;16)(10q;10p) and
formation of isochromosome 1q (31-34). Other tumors had mul-
tiple rearrangements affecting a multitude of chromosomes indi-
cating that the heterogeneity of breast cancer is also present at the
genetic level even in an early phase of tumor progression (33). The
introduction of microarray analyses to assess genomic copy num-
ber variation (array comparative genomic hybridization [aCGH]
and SNP arrays) gave increased resolution and more precise quan-
tification, but physical rearrangements in the genome could not be
assessed by these methods (35-38). Despite this limitation, studies
of aCGH data analyzed without prior knowledge of molecular sub-
type showed that breast cancer could be divided into groups based
on the architecture of the genomic alterations, probably reflecting
different types of genomic instability (35, 37). Three main patterns
were recognized: tumors with few rearrangements (dominated by
gain of chromosome 1q and/or loss of 16q), tumors with complex
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Subtypes of breast cancer. Hypothetically, subtypes of breast cancer can be viewed as a spectrum of more or less related entities. The major-
ity are classified through histopathology as IDC NOS, but some types have defined histopathological traits. Such groups have tumors that are
frequently either ER-/HER2- or ER*/HER2-, which also corresponds to the outer part of a spectrum of intrinsic subtypes, namely the basal-like
and luminal A types of breast cancer. NGS of a basal-like (top), a HER2-related (second from top), a luminal B (third from top), and a luminal A
tumor (bottom) show distinct structural characteristics. The circos plots show intrachromosomal rearrangements in green and interchromosomal
rearrangements in purple (circos plots used with permission from Nature; ref. 43).

alterations, and tumors with tightly packed, high-level amplicons.
Although such patterns of alterations can be objectively quanti-
fied and have prognostic information (39), in analyzing these pat-
terns, knowledge about outcome of rearrangements such as fusion
genes or disrupted genomic elements is lost. Advances in NGS have
enabled researchers to characterize the full spectrum of mutations
in a limited number of breast cancer genomes including the archi-
tectural pattern (40-45). These studies often reveal that tumor
genomes are littered with diverse types of mutations — segmental
duplications, amplifications and deletions, translocations, inver-
sions, small insertion-deletions, and point mutations. One of the
first large-scale sequencing studies of primary breast tumors and
breast cancer cell lines by Stephens and coworkers revealed differ-
ent types of structural alterations consistent with those deduced
from aCGH (43). Three major patterns were seen: (a) few, interchro-
mosomal translocations with copy number alterations involving
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large DNA fragments or whole chromosome arms; (b) complex,
interchromosomal translocations affecting shorter regions with
high-level amplifications; and (c) small, intrachromosomal seg-
mental alterations such as duplications, deletions and/or inver-
sions, termed the “mutator phenotype”. Moreover, the subtypes
exhibited distinctly different microhomologies at translocation
breakpoints, making it a reasonable hypothesis that the structural
rearrangements are caused by subtype-specific mechanisms. Con-
sistent with this notion, analyses of other cancers have shown that
the type and distribution of rearrangement patterns characteristi-
cally vary among diseases (40, 42, 46).

A relationship between these classifications and the gene expres-
sion subtypes has been described. A luminal A tumor was found to
have few chromosomal rearrangements by aCGH and had only one
translocation by paired-end sequencing, in contrast to a basal-like
tumor, which had a complex aCGH profile and a typical mutator
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Hypothetical models explaining intratumor heterogeneity. (A—C) Different models of tumor progression can give rise to distinct types of intratumor
heterogeneity, exemplified here by the clonal evolution (A), the cancer stem cell (B), and the mutator phenotype (C) models. (D) The different

models can result in distinct spatial distributions of subpopulations.

phenotype pattern detected by paired-end sequencing (39). Inter-
estingly, one luminal B and one HER2-enriched tumor were found
to have high-level amplifications, but the latter also had complex
alterations by aCGH analysis (39). Lobular carcinomas are known
to frequently be of the normal-like or luminal A type (47) and may
have no or few structural alterations (43, 45). This is in contrast to a
basal-like tumor analyzed by Ding et al. that, with a corresponding
brain metastasis xenograft, revealed multiple translocations and seg-
mental rearrangements in all three tumors from this patient (44).

Breast cancer subtypes defined by different methods share some
overlapping molecular features. As illustrated in Figure 2, his-
topathological types such as lobular and medullary carcinomas
correlate with ER"/HER2- and ER"/HER2" receptor status respec-
tively as well as with luminal A and basal-like expression subtypes.
Recent NGS studies have revealed that these major expression sub-
types display different classes of mutations, and it will be of con-
siderable interest to determine if NGS data can define additional
subtypes of breast carcinomas.

Nonrecurrent mutations in cancer genomes. Perhaps the biggest sur-
prise of detailed sequencing studies of cancer has been the failure
to identify recurrent mutations in cancer genes when mutational
profiles are compared from patient to patient (1, 43, 48). The pic-
ture emerging is that individual tumors are unique, each harboring
large numbers of “private” mutations that uniquely characterize
its genome. Even when mutations occur in the same cancer genes,
they often occur in different codons or protein domains, reveal-
ing an element of randomness in their genesis. A recent large-scale
study of 50 luminal A breast cancer genomes sequenced at high
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coverage (30x) identified over 1,700 genic mutations, but only 3
of these genes were mutated at frequencies that approached or
exceeded 10%: PIK3CA (43%), TPS3 (15.2%), and MAP3K1 (9.3%)
(49). When stratified by expression subtypes, it was reported
that mutation of TP53 is more frequent in basal-like and HER2-
enriched disease, while mutation of PIK3CA is found to be over-
represented in luminal A tumors (25, 50-52). The spectrum of
mutations found by NGS seems also to differ; even though the
predominant type of point mutations were CG-to-TA transitions
in both the basal-like tumor and the lobular tumor sequenced,
only the former had CG-to-AT transversions (44). This shows the
importance of taking intertumor heterogeneity into account when
designing experiments to detect novel mutations. And, as the vast
majority of somatic mutations occur at very low frequencies in
cancer genomes, it raises the question of whether common sig-
naling pathways, rather than individual genes, are mutated. This
question will become more addressable as we sequence more can-
cer genomes, and large-scale international sequencing projects will
certainly shed light on this question (3, 53).

Intratumor heterogeneity

Subpopulations within tumors. In addition to the vast heterogene-
ity among breast tumors, many studies have reported extensive
genomic diversity within tumors. As early as the 1800s, scien-
tists such as the revered Rudolf Virchow, recorded the morpho-
logical heterogeneity of malignant cells within individual tumors
(reviewed in ref. 54). The development and progress in cell-staining
methods subsequently enabled pathologists to characterize tumor
Volume 121 3813
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A multilevel approach for a dynamic classifica-
tion system. The first level is defined by tumor
and patient characteristics. The second level
includes detailed genomic and translational
analyses of tumor to define molecular type
and selection of appropriate tests. Parallel
to that, tumor-specific serum markers can be
assessed. The third level determines intratu-
mor heterogeneity and is crucial for selection
of appropriate markers for micrometastatic
disease detection in serum, bone marrow, or
lymph nodes. MRD, minimal residual disease.
The fourth level integrates all available infor-
mation to produce a diagnosis, prognostica-
tion, prediction of therapy, and program for
disease monitoring.

Serum

cells using different morphological parameters, including nuclear
pleomorphism, number of mitoses, and differentiated structures,
the basis for the histological grading system. However, this system
is challenging due to the morphological heterogeneity of malig-
nant cells within some tumors (55-58). In fact, pathologists are
well aware of this phenomenon and will examine tissue sections
from different regions of the same tumor, reporting the highest
grade observed (59, 60). Giemsa staining, spectral karyotyping, and
FISH enabled biologists to directly visualize chromosomal aberra-
tions in individual tumor cells. Results from such studies clearly
show that breast tumors commonly exhibit genetic heterogeneity
at preferred loci including duplications, deletions, and distinctive
chromosomal rearrangements (61-69).

Microarray technologies have made it possible to conduct
genome-wide measurements of gene expression and chromosome
copy number in tumors, providing quantitative data that can
be subjected to statistical analysis (70, 71). However, the aCGH
methods used until recently have required larger quantities of
input DNA, and thus their signals were limited to averaging copy
number signal over populations of tumor cells, leukocytes, and
stromal tissue. Efforts have been made to isolate and compare
genetically distinct subpopulations prior to array; we have used
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regional macro-dissection of tumors to show that genetically
defined subpopulations could be found in geographically distinct
sectors of the tumors, and further analyzed subfractions by using
FACS to sort cells by DNA content (72). Others have employed
flow sorting based on surface markers to separate phenotypically
distinct subpopulations for genomic analysis (73, 74).

Intratumor beterogeneity inferred from NGS data. The pioneering NGS
studies of breast cancer patient samples and cell lines have provided an
excellent overview of spectra of mutations, but they cannot resolve the
combinations of mutations present in any given subpopulation from
a heterogeneous tumor. Despite this, deep sequencing of bulk tumors
provides a major advantage over microarray methods for studying
tumor heterogeneity, since sequencing can measure the distribution
of allele frequencies in a population of cells. This feature was particu-
larly useful in the study by Ding et al. in analyzing the metastatic pro-
gression of a basal-like breast cancer to the brain (44). In this study,
roughly the same set of 50 coding mutations was observed in the pri-
mary tumor and the metastasis. Few de novo mutations were seen in
the metastasis; however, gross changes in allelic frequencies of these
mutations were observed, suggesting that minor subpopulations of
cells with metastatic potential were pre-existing in the primary tumor.
In addition, the study by Shah et al. revealed allelic variation, indicat-
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ing intratumor variation at the genomic level (45). Such studies would
benefit greatly by first isolating tumor subpopulations by macro-dis-
section, DNA ploidy, laser capture microdissection, or cell surface
receptors priot to deep sequencing, or — even better — by sequencing
the genomes of single tumor cells.

Genomic heterogeneity at single-cell resolution. Intratumor heterogene-
ity studies profiling or sequencing DNA from individual cumor cells
require whole-genome amplification (WGA). By using commercially
available methods for WGA, it is possible to amplify DNA from a
single cell to a level where it can be profiled by microarrays, but these
studies have been challenged by technical difficulty and limited repro-
ducibility (75-78). Analyzing WGA fragments from single cells using
targeted approaches such as DNA microarrays is problematic because
fragments are randomly amplified from a small fraction (<10%) of
the genome, and thus many fail to hybridize to their target probes.
An alternative approach is to measure the randomly amplified WGA
fragments from single cells using NGS, which has the advantage of
providing a non-targeted approach. In a recent study combining
flow sorting, WGA, and NGS, in an approach called single-nucleus
sequencing (SNS), genomic copy number profiles of single cells were
quantified at high resolution (50 kb) (79). The SNS strategy involves
sparsely sequencing (0.1x coverage) the genome of a single cell and
measuring copy number from sequence read depth. By binning
intervals across the genome, counting the number of sequence reads,
segmenting the data, and sampling copy number states, the authors
showed that genomic copy number profile of a single cell could be
quantified at high resolution (50 kb). By comparing multiple single-
cell copy number profiles, they could provide highly accurate mea-
sures of genomic heterogeneity within solid tumors. Furthermore, by
comparing multiple single-cell profiles, they showed that it was possi-
ble to reconstruct the evolutionary lineage of a tumor and understand
its pattern of progression. In this study, 100 single cells were profiled
from a triple-negative heterogeneous breast tumor, in addition to 100
single cells from a homogeneous primary breast tumor and its paired
liver metastasis. This analysis revealed a punctuated model of clonal
evolution, in which tumors evolve by one or more sequential clonal
expansions with few gradual intermediates, challenging the paradigm
of evolution through the gradual accumulation of mutations over
a long period of time (79). In future studies it will be of significant
interest to correlate tumor heterogeneity, as measured by SNS, with
overall survival of the patient and response to chemotherapy. These
single-cell genomic methods are likely to have additional clinical value
in the early detection of tumor cells or tumor DNA in scarce clinical
samples (urine, blood, fine-needle aspirates) and monitoring of circu-
lating tumor cells after remission.

Causations of intertumor and intratumor heterogeneity
The causations of both inter- and intratumor heterogeneity in
breast cancer is debated (80), partly because knowledge about the
hierarchical relationship between different epithelial cells in the
normal breast is still at the hypothetical stage, but also because
cell-of-origin and tumor progression paths of breast cancers are
not yet defined.

Two hypothetical models explaining intertumor heterogeneity
are frequently proposed (recently reviewed by Visvader; ref. 81).
The genetic model points to the same cell of origin but different
initiating events that will lead to different molecular subtypes. The
other model points to each subtype having different cells of origin.
It is also acknowledged that a combinatory model might be plau-
sible as well, in which not only different cells of origin but also dif-
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ferent initial events can explain the diversity in molecular subtypes
(82). The differences in the genome and the transcriptome between
luminal A and basal-like tumors indicate that these diseases have
very distinct pathogenesis. Several studies have also shown that
genome-wide patterns of DNA methylation differ between luminal
and basal-like tumors, with similarities to CD24" cells (luminal
cells) and CD44* cells (progenitor cells) (83-86). Although it is
tempting to speculate that this is related to cell of origin, recent
work has pointed to luminal progenitors as the cell of origin for
both basal-like and luminal tumors (87, 88).

Tumor progression is an important basis to explain intratumor
heterogeneity, and different models are plausible (89, 90). The
clonal evolution model originally proposed by Nowell in 1976
suggests that tumors evolve by the expansion of one (monoclonal)
or multiple (polyclonal) subpopulations to form the tumor mass
(Figure 3A and ref. 91). In this egalitarian model, all clones have
the potential for continued proliferation and Darwinian selec-
tion. In contrast, the cancer stem cell model suggests a hierarchical
organization in which tumor heterogeneity is explained by several
rare precursor cells, each giving rise to a different subpopulation
within the tumor (Figure 3B). Another model for tumor progres-
sion, the mutator hypothesis, suggests that tumors evolve by the
gradual and random accumulation of mutations as the tumor
grows (Figure 3C), which suggests a vast degree of diversity in the
tumor rather than clonal subpopulations (92). As illustrated in
Figure 3D, different progression models can result in distinct spa-
tial distribution of subpopulations, but whether such patterns are
subtype specific is still unknown.

Clinical decision making in the era of NGS
Prognostication and prediction of drug response. While prognostic mark-
ers aim at identifying patients with a probability of having a better
or worse outcome, markers with predictive potential can also be
used for selection of patients with high probability of response
to a given drug or treatment. Prediction is important both to
spare non-responders from the side effects that come along with
treatment and to minimize the overall cost by only treating those
that have a good chance to respond. Today the most established
markers in breast cancer are ER and HER2 status. Both markers
have prognostic and predictive information and are themselves
the targets for therapy. While these markers have a clear utility, it
is important to acknowledge that tumors display a wide range of
expression of each; for instance, ER" patients can have anywhere
from 1% to 100% of the tumor cells scored positive. Heterogeneity
among ER* tumors is also evident by microarray analyses at the
genomic, transcriptomic, and epigenetic level (19, 37, 84), and this
was addressed by the so-called “recurrence score”/OncotypeDx,
which estimates the expression level of 21 genes (16 tumor genes
and S reference genes) stratifying ER* breast cancer into groups
with high or low risk of distant recurrences (93). The work by
Desmedt and colleagues demonstrated that different clinical vari-
ables had prognostic value only for subsets of the patients, again
illustrating the importance of selecting subgroups of patients to
identify prognostic or predictive markers or profiles (94). Discov-
eries of mutated genes have led to development of several targeted
therapies (95), and future research must further these efforts.
Intratumor heterogeneity adds a second level of complexity; an opti-
mal diagnostic test will need to identify even minor subpopulations
of cells with alterations related to increased aggressiveness or therapy
resistance. Some subtypes seem to have greater intratumoral hetero-
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geneity than others (69), but the clinical importance of each given
subpopulation is not yet clear. Intratumor heterogeneity is likely to
play an important role in responsiveness to chemotherapy (S, 96,
97), and results from adjuvant-treated ovary, cervical, and tongue
cancer suggest that resistant tumor subpopulations pre-exist and
expand after treatment (98-100). The study of Jones et al. illustrates
how such information can be used to determine the next level of
treatment in an adjuvant setting (100). Still more studies using in
situ-based techniques are needed to fully appreciate the intracumor
heterogeneity and its prognostic and predictive impact.

Monitoring disease progression; detection of minimal residual disease.
The detection of circulating tumor cells in blood or of disseminat-
ed tumor cells in bone marrow has a prognostic impact in breast
cancer in general and in luminal disease in particular (101-103).
Two studies have shown how sequencing of breast cancer genomes
and subsequent design of patient-specific probes for nested real-
time PCR can be used to detect tumor DNA in serum at the time
of relapse (104, 105) and to monitor the effect of treatment (104).
NGS has also been used to detect naked DNA in serum in order
to enable early diagnosis of breast cancer; Beck and colleagues were
able to identify the prevalence of tumor DNA in serum from breast
cancer patients compared with controls (106). This study detected
a differential representation of some repetitive DNA elements and
was thus not patient specific. Knowing a patient’s tumor genome
or transcriptome down to single base level at time of diagnosis can
provide tailored markers for follow-up. While still at an early stage,
these results nevertheless show the potential power of exploiting
genomic rearrangements in fluids to measure subclinical disease at
time of diagnosis and after treatment.

Toward an integrated classification? A multi-level classification based
on combining both clinical and molecular information (Figure 4)
could be very useful to tailor therapy and disease monitoring. The
first level will be tumor-specific information revealed by pathology
as well as clinical information about the given patient. At the sec-
ond level, assessment of the molecular subtype by phenotype and/or
genotype will be followed by subtype-specific prognostic and predic-
tive tests. This would be an efficient and practical approach; tests
that have more clinical value for some subtypes than others should
be restricted to validated groups. This second level should indeed be
dynamic; we expect new subtype definitions, development of novel
diagnostic tests, and changes in technology. As most tests today are
only validated for a given platform, a panel of tests might be required
(illustrated in Figure 4), but we envision that NGS might be able to
overcome this obstacle, since information from NGS might reveal the
subtype as well as provide the data for subtype-specific algorithms,
allowing prognosis and prediction of therapy responsiveness.

A separate level will be the assessment of intratumor heterogene-
ity; although in situ techniques are the most usable at the moment,
this might be solved by NGS of subpopulations or single cells in
the future. Finally, observed alterations in the tumor cells (even in
smaller fractions) can be used as individual markers for follow-up
analyses in blood and/or bone marrow.

For such a classification to be meaningful, an approach is needed
in which each patient has a combination of parameters outlined
and uniformed into both a prognostic and a predictive index for a
given therapy; these will direct the clinician to select optimal ther-
apy and design follow-up and provide markers for monitoring the
disease at the molecular level (Figure 4). It is important to acknowl-
edge that prospective studies are always needed, but a combinatory
model could be built over time, including validated parameters.
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Although such a detailed classification system will be challenging
to manage, it seems evident that the minor tumor subgroups will
require such a tailored scheme.

Perspectives

The improvement in sequencing technology that has made possible
even whole-genome sequencing of single cells has already given novel
insight into breast cancer heterogeneity. The technique is still chal-
lenging because deep sequencing requires large numbers of cells or
genome-wide amplification of single cells. Mapping and exclusion
of artifacts is challenging, and the development of methods for data
interpretation is still in an early phase. In spite of this, the first stud-
ies of a handful of breast carcinomas by NGS have revealed exciting
new insights into genomic variability. First, selected tumors known
to belong to different molecular subtypes have different rearrange-
ment patterns and frequencies of mutations (43). Second, alterations
in metastases are present in primary tumors, but the latter show a
wider distribution of additional changes (44, 45). Third, analysis of
single cells from the same tumor reveal different clonal relationships,
supporting the notion that tumor progression can follow distinctly
different pathways (79). From these few studies it is tempting to con-
clude that the detailed genomic knowledge allowed by NGS can pro-
vide markers for individualized disease monitoring.

From a clinical point of view, the insight from sequencing of
more tumor genomes will provide a step toward defining more
robust subsets of breast cancer types. Another step will be more
detailed knowledge about aberrant translation that alters the
tumor proteome or introduces dysfunctions in the epigenome.
Taken together this can be the fundament of dynamic molecular
classification guiding therapy choices and disease monitoring as
well as being adjustable for prediction of novel therapies.

Many questions remain unresolved. The challenges in analyzing
such huge amounts of data are not yet overcome; we do not have a
nomenclature suitable for classifying all types of genomic altera-
tions revealed and integrative approaches needed for robust clas-
sification are still in an early phase. Exploring intratumor hetero-
geneity is challenging, but microdissection or sampling of tumors
as viable tumor cells will enable analysis of subpopulations or
cells. This, together with sequencing of circulating or disseminat-
ing cells, is needed to elucidate the impact of intratumor hetero-
geneity and micrometastatic disease on clinical outcome. Still,
the fast pace in technical advancements in NGS combined with
reduced costs and increased availability should be encouraging
for projects focusing on these issues.
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