Supplementary Information

LaBelle et al.

A Stapled BIM BH3 Helix Overcomes the Apoptotic Resistance of Refractory Hematologic Cancers

Supplementary Figure Legends

Supplementary Table 1

Sequence composition of SAHB peptides. 'X' denotes the positions of the non-natural amino acids within the peptide sequences. (M+3)/3 is the triply-charged molecular ion of each peptide detected during LC/MS purification and corresponds to the predicted molecular weight (MW) of the peptides.

Supplementary Figure 1

Circular dichroism of BIM BH3 peptides. BIM SAHB_As exhibited marked enhancement of α -helical structure compared to the corresponding unmodified peptide, as evidenced by the shift in spectral contour from a random coil (single minimum at 195 nm) to an α -helical pattern (double minima at 208 and 222 nm). [θ], mean residue ellipticity, deg cm² dmol⁻¹.

Supplementary Figure 2

BIM SAHB_A-triggered, BAX-mediated liposomal release is inhibited by the addition of recombinant anti-apoptotic proteins (A) BCL-X_L Δ C, (B) MCL-1 Δ N Δ C,

(C) BCL-w Δ C, and (D) BFL-1/A1 Δ C (1:1:1 BAX:BIM SAHB_A:anti-apoptotics, 400 nM). Liposomal release assays were performed in triplicate with similar results.

Supplementary Figure 3

Solubilized BIM SAHB $_A$ peptides elute as monomers by gel filtration chromatography. Aprotinin, 6.5 kD.

Supplementary Figure 4

Uptake of BIM SAHB $_A$ by human and murine fibroblasts. Cultured WS1 and WT and DKO MEFs were exposed to FITC-BIM SAHB $_A$ (1 μ M) for 2 h, followed by PBS washing, trypsinization, repeat PBS washing, lysate preparation, electrophoresis, and fluorescence detection. FITC-BIM SAHB $_A$ is present in the lysates of all three fibroblast cell lines.

Supplementary Figure 5

BIM SAHB_A treatment of fibroblasts at escalated dosing. **(A)** WS1 human fibroblasts treated with 20 μ M BIM SAHB_A, but not vehicle or 20 μ M BIM SAHB_A(R153D), manifest modestly reduced viability at 24 h with caspase 3/7 activation evident at 6 h. Adherent wild-type **(B)** and DKO **(C)** MEFs show no viability response to vehicle, BIM SAHB_A, or BIM SAHB_A(R153D) (20 μ M) treatment, although measurable caspase 3/7 activation is detected in wild-type, but not DKO, MEFs upon treatment with 20 μ M BIM SAHB_A. Data are mean \pm

SEM for experiments performed in at least triplicate. RLU, relative luminescence units

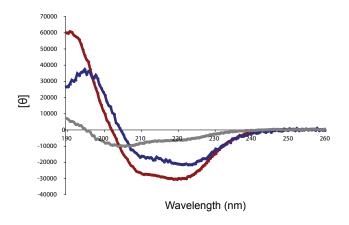
Supplementary Figure 6

Peripheral white blood cell counts from treated cohorts of OCI-AML3 xenograft mice (Figure 7C). Data are mean ± SD (n=8 per arm).

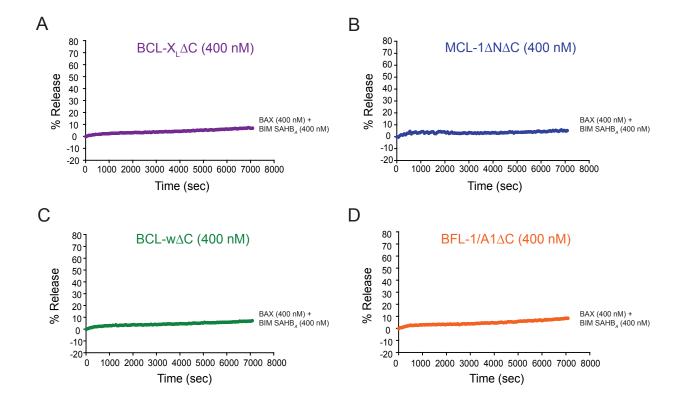
Supplementary Figure 7

B-cell infiltrative disease of $Bim^{-/-}$ -marrow reconstituted $Rag2^{-/-}\gamma c^{-/-}$ mice. (**A**) Like native $Bim^{-/-}$ mice, $Bim^{-/-}$ -marrow reconstituted $Rag2^{-/-}\gamma c^{-/-}$ animals manifest a pervasive hypergammaglobulinemia, as measured by Ig ELISA. (**B**) $Bim^{-/-}$ -marrow reconstituted $Rag2^{-/-}\gamma c^{-/-}$ mice likewise exhibit marked splenomegaly as measured by microultrasound.

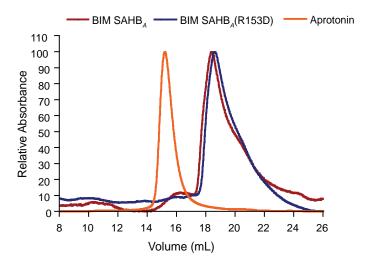
Supplementary Figure 8

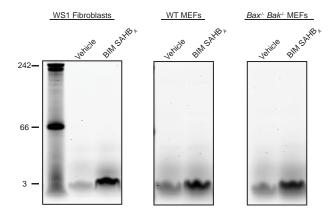

Spleen weights of treated $Bim^{-/-}$ -marrow reconstituted $Rag2^{-/-}\gamma c^{-/-}$ and wild-type B6/129 mice. Mice were treated intravenously for 5 days with vehicle (5% DMSO/D5W), BIM SAHB_A, or BIM SAHB_A(R153D) (10mg/kg/day), and animals and harvested spleens weighed upon sacrifice on day 6. BIM SAHB_A-treated $Bim^{-/-}$ -marrow reconstituted $Rag2^{-/-}\gamma c^{-/-}$ mice manifested a trend toward decreased spleen weight (p=0.06), which was not observed for vehicle- or BIM SAHB_A(R153D)-treated animals (A, B). No differences in spleen weights were

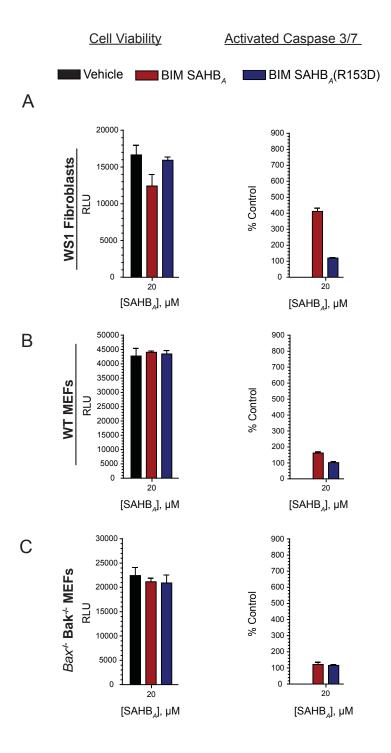
observed among the treatment groups of B6/129 mice (C, D). Data are mean \pm SD (n = 4 per arm).


Supplementary Figure 9

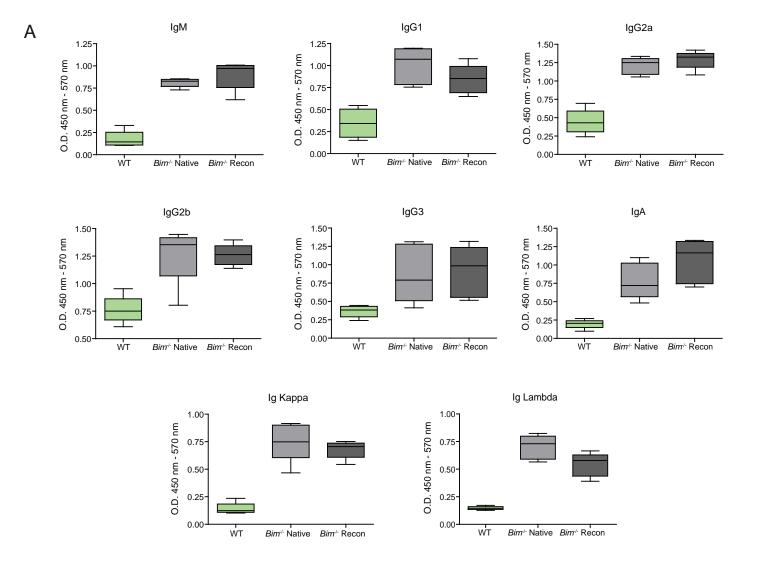
Pre- and post-treatment peripheral white blood cell and splenic lymphocyte counts from treated cohorts of wild-type B6/129 mice. **(A)** Absolute white blood cell counts and differential from wild-type B6/129 mice prior to and after 5 day intravenous treatment with vehicle (5% DMSO/D5W), BIM SAHB_A, or BIM SAHB_A(R153D) (10 mg/kg/day). Post-treatment peripheral **(B)** and splenocyte **(C)** CD4+ CD8+, and B220+ lymphocyte counts from treated wild-type B6/129 mice. Data are mean \pm SD (n =4 per arm).

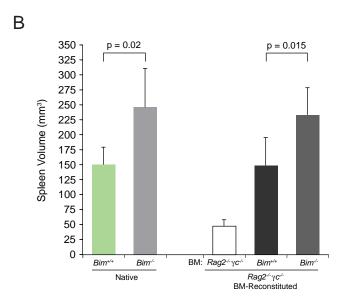

<u>Peptide</u>	<u>Sequence</u>	<u>Species</u>	N-terminus	<u>(MW)</u>	(M+3)/3
BIM BH3	IWIAQELRRIGDEFNAYYARR	Human	FITC-β-Ala-	3098	1034.2
BIM SAHB _A	IWIAQELR X IGD X FNAYYARR	Human	Ac	2645	883.0
BIM SAHB _A	IWIAQELR X IGD X FNAYYARR	Human	FITC-β-Ala-	3063	1022.5
BIM SAHB _A (R153D)	IWIAQELD X IGD X FNAYYARR	Human	Ac	2604	869.3
BIM SAHB _A (R153D)	IWIAQELD X IGD X FNAYYARR	Human	FITC-β-Ala-	3022	1008.8
BIM SAHB _A	IRIAQELR X IGD X FNETYTRR	Murine	Ac	2641	881.7
BIM SAHB _A (R153D)	IRIAQELD X IGD X FNETYTRR	Murine	Ac	2600	868.0
BAX SAHB _A	ASTKKLSESLK X IGD X LDSN	Human	FITC-β-Ala-	2614	872.7
BAK SAHB _A	QVGRQLA X IGD X INRRYD	Human	FITC-β-Ala-	2582	862.0


Supplementary Figure 1 LaBelle et al.

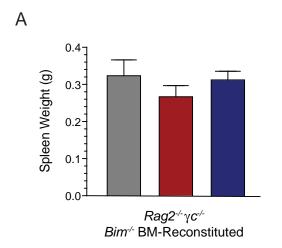

Supplementary Figure 2 LaBelle et al.

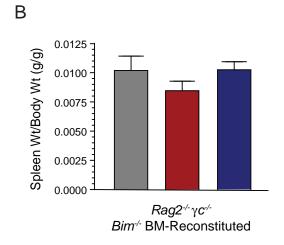
Supplementary Figure 3 LaBelle et al.

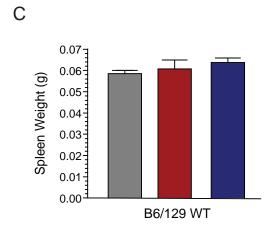

Supplementary Figure 4 LaBelle et al.

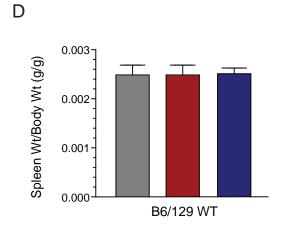


Supplementary Figure 5 LaBelle et al.


<u>Treatment</u>	WBC (x 10³ cells/µL)	% Neutrophils	% Lymphocytes	% Monocytes
Vehicle	5.0 (± 1.8)	30.4 (± 5.8)	41.8 (± 5.0)	25.8 (± 5.7)
BIM SAHB _A	3.7 (± 1.2)	29.1 (± 7.2)	40.8 (± 7.1)	28.8 (± 5.3)
BIM SAHB _A (R153D)	2.8 (± 1.0)	32.5 (± 4.6)	39.6 (± 7.1)	27.1 (± 3.5)
BIM SAHB _A + ABT-263	5.1 (± 4.6)	27.8 (± 10.5)	47.3 (± 13.5)	22.7 (± 8.5)
$BIM SAHB_A(R153D) + ABT-263$	2.7 (± 1.0)	21.7 (± 6.3)	56.2 (± 7.8)	21.6 (± 2.7)


Supplementary Figure 6 LaBelle et. al.





Supplementary Figure 7 LaBelle et. al.

Supplementary Figure 8 LaBelle et al.

- 1	٨
L	7
•	۸

	<u>Treatment</u>	WBC (x 10³ cells/μL)	% Neutrophils	% Lymphocytes	% Monocytes
Pre-Treatment	Vehicle	4.7 (± 0.9)	8.4 (± 1.5)	87.6 (± 0.9)	1.8 (± 0.7)
	$BIM\;SAHB_{_{\mathcal{A}}}$	5.6 (± 1.9)	9.0 (± 2.0)	87.0 (± 2.4)	1.9 (± 0.4)
	BIM SAHB _A (R153D)	5.4 (± 0.6)	9.4 (± 1.6)	86.0 (± 1.7)	1.9 (± 0.2)
		00((1)		1	(0(07)
Post-Treatment	Vehicle	6.2 (± 1.1)	9.8 (± 2.3)	82.5 (± 2.8)	1.6 (± 0.5)
	BIM SAHB _A	7.6 (± 1.1)	10.4 (± 3.0)	80.7 (± 5.4)	2.9 (± 1.5)
	BIM SAHB _A (R153D)	8.1 (± 2.7)	6.4 (± 1.5)	85.4 (± 2.4)	1.2 (± 0.4)

В

Lymphocytes (x 10³ cells/µL)

		<u>CD4+</u>	<u>CD8+</u>	<u>B220+</u>
Peripheral Blood	Vehicle	0.8 (± 0.1)	1.1 (± 0.3)	2.8 (± 0.9)
	$BIM \; SAHB_{\scriptscriptstyle{\mathcal{A}}}$	1.0 (± 0.2)	1.0 (± 0.2)	3.6 (± 0.5)
	BIM SAHB _A (R153D)	1.3 (± 0.3)	1.7 (± 0.4)	5.2 (± 1.9)

С Lymphocytes (%) B220+ <u>CD4+</u> CD8+ 26.1 (± 1.5) Vehicle 11.7 (± 0.3) 62.8 (± 0.8) Spleen BIM SAHB_A 24.3 (± 0.9) 63.1 (± 2.0) 10.4 (± 0.8) BIM SAHB_A(R153D) 11.1 (± 0.5) 60.0 (± 1.4) 28.3 (± 1.5)

Supplementary Figure 9 LaBelle et al.