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Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to
better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21
breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying
unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal
(M), a mesenchymal stem-like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis
allowed us to identify TNBC cell line models representative of these subtypes. Predicted “driver” signaling
pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of dis-
tinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle
and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and
MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and
cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The
LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen recep-
tor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may
be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC

patients to appropriate targeted therapies.

Introduction

Treatment of patients with triple-negative breast cancer (TNBC),
lacking estrogen receptor (ER) and progesterone receptor (PR)
expression as well as human epidermal growth factor receptor 2
(HER2) amplification, has been challenging due to the heterogene-
ity of the disease and the absence of well-defined molecular targets
(1-3). TNBCs constitute 10%-20% of all breast cancers, more fre-
quently affect younger patients, and are more prevalent in African-
American women (4). TNBC tumors are generally larger in size, are
of higher grade, have lymph node involvement at diagnosis, and
are biologically more aggressive (5). Despite having higher rates
of clinical response to presurgical (neoadjuvant) chemotherapy,
TNBC patients have a higher rate of distant recurrence and a poor-
er prognosis than women with other breast cancer subtypes (5, 6).
Less than 30% of women with metastatic TNBC survive 5 years,
and almost all die of their disease despite adjuvant chemotherapy,
which is the mainstay of treatment (6).

One of the first molecular insights into TNBCs was the observa-
tion that they are likely to arise in BRCAI mutation carriers and have
gene expression (GE) profiles similar to those of BRCA1-deficient
tumors (5). BRCA1 plays an important role in DNA double-strand
break repair, contributing to the maintenance of DNA stability (7).
Poly ADP-ribose polymerase (PARP) enzymes are critical for appro-
priate processing and repair of DNA breaks (8). Tumor cell lines lack-
ing functional BRCA1 or BRCA2 are sensitive to PARP inhibitors in
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preclinical studies (9). Clinical trials using both PARP inhibitors
and DNA-damaging agents (e.g., cisplatin) in TNBC are currently
underway and show promise in BRCA1/2-mutant tumors (10). Other
studies identifying molecular markers of TNBC, such as VEGF (11),
EGFR (12), Src (13), and mTOR (14) have been important for the
design of clinical trials investigating targeted treatments.

Clearly, there is a major need to better understand the molecular
basis of TNBC and to develop effective treatments for this aggres-
sive type of breast cancer. More extensive genomic, molecular, and
biological analyses of TNBCs are required to understand the com-
plexity of the disease and to identify molecular drivers that can
be therapeutically targeted. We compiled an extensive number of
TNBC GE profiles with the intent of molecularly subtyping the dis-
ease. We identified 6 TNBC subtypes. Further, using GE signatures
derived from each TNBC subtype, we aligned representative TNBC
cell lines that serve as models for the different subtypes of the dis-
ease. Using the panel of cell lines, we pharmacologically targeted
prominent signaling pathways revealed by GE signatures and found
that the cell lines representing the various subtypes had different
sensitivities to targeted therapies currently under laboratory and
clinical investigation. The identification of diverse TNBC subtypes
and the molecular drivers in corresponding cell line models pro-
vides great insight to the heterogeneity of this disease and provides
preclinical platforms for the development of effective treatment.

Results
Analysis of buman tumor GE profiles identifies TNBC subtypes. GE profiles
were obtained from 21 publicly available data sets that contained
3,247 primary human breast cancers and processed according to
the flow chart in Figure 1A. To allow for robust analysis, these data
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Figure 1

Filtering GE data sets to identify TNBCs. (A) Flow chart of analysis. Human breast cancer GE profiles (training = 2353, validation = 894) were
normalized within individual data sets and a bimodal filter was applied to select ER, PR, and HER2 negative samples by GE, resulting in 386
samples in the training set and 201 samples in the validation set with a triple-negative phenotype. k-means clustering was performed on the
training set, and a GE signature representing the TNBC subtypes from the training set was used to predict the best-fit subtype for each TNBC
profile in an independent validation set. GSE-A was performed on the training and validation sets to identify enriched canonical pathways for each
TNBC subtype. (B) Histograms show the distribution and frequency of tumors using relative ER, PR, and HER2 GE levels (log.) and bimodal fit to
identify TN tumor samples. Dashed line indicates the expression value at the center of the positive expression peak used to select controls for C.
(C) Heat map representation of GE for 386 TNBCs relative to 5 IHC-validated controls for each ER, PR, and HER2.

sets were further divided into training (Table 1; 14 data sets, cases
n=2353) and validation data sets (Table 2; 7 data sets, cases n = 894).
Since the majority of these tumors lacked sufficient molecular analy-
sisof ER, PR, and HER2, we filtered each data set for ER, PR,and HER2
mRNA expression to identify triple-negative status (see Methods
for bimodal filter description and Supplemental Table 1; supple-
mental material available online with this article; doi:10.1172/
JCI45014DS1). Previous studies have shown that ER and HER2
mRNA expression correlates with immunohistochemistry (IHC)
and FISH analyses, respectively (15, 16). Using a bimodal filter on
the GE data (Figure 1B), we identified 386 and 201 TNBC tumor
samples in the training and validation sets, respectively (Supple-
mental Table 2). The 386 TNBC GE profiles of the training set were
robust multiarray average (RMA) normalized, summarized, trans-
formed, and corrected for “batch effect,” resulting in 13,060 identi-
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cal probes representing unique genes across all platforms. The tri-
ple-negative GE pattern is shown compared with 5 positive controls
for each parameter (ER, PR, and HER2) from data sets that were
confirmed IHC positive and expressed mRNA near the center of the
positive bimodal peak (Figure 1C). Of the 14 data sets in the train-
ing set, 4 (GSE-7904, E-TABM-158, MDA133, GSE-22513, GSE-
28821, and GSE-28796) included THC data for all 3 markers, while
others lacked information on ER, PR, or HER2 status (Table 1).
The THC data provided were used to calculate false-positive rates
for each study, defined as tumors that were predicted negative for
ER, PR, or HER2 by bimodal filtering of mRNA expression, but
were positive by IHC. The overall false-positive rates were 1.7%,
1.7%, and 0.9% for ER, PR, and HER2, respectively, demonstrating
that bimodal filtering of data sets by mRNA expression is a reliable
method for identifying TNBC tumors from data sets lacking IHC
Volume 121 2751
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Table 1
Breast cancer GE data sets used to derive the TNBC training set

Data set Country Case definition BC cases IHC n False positive (%) Refs.
(% TN) ER PR HER2
GSE-3494*  Sweden Breast cancers from patients treated in Uppsala 251 ER,PR  25(10) 36 28 66
County, Sweden, between 1987 and 1989
GSE-79047 USA Frozen tissue samples from primary, 43 ER, PR, 17 (40) 00 00 00 67
sporadic and 4 BRCAT-mutant breast obtained HER2
through the Harvard Breast SPORE
GSE-2109~8 USA The international genomics consortium 351 Variable® 60 (17)
collection of breast cancer tissue samples
processed by the expO biospecimen repository,?
obtained from community hospitals
GSE-7390~0  Europe Lymph node—negative breast cancer patients, 198 ER 29 (15) 2.5 68
systemically untreated, performed at the Bordet
Institute and part of the TRANSBIG consortium
E-TABM-158  USA Frozen tumors collected from patients that received 100 ER, PR, 30 (23) 08 23 23 69
adjuvant chemotherapy (typically adriamycin and HER2
CTX) at UC San Francisco and the California
Pacific Medical Center between 1989 and 1997
GSE-2034* Netherlands Lymph node—negative relapse-free patients 286 ER 53 (19) 3.1 70
(80) and lymph node—negative patients that
developed a distant metastasis (106) treated
at Erasmus Medical Center
GSE-2990*  Sweden, Invasive breast cancer from Uppsala, Sweden 189 ER 11 (6) 11 71
United Kingdom (88), of which 64 received tamoxifen only, or from
John Radcliffe, Oxford, United Kingdom (101) of
which all received mixed hormone and chemotherapy
GSE-1456*  Sweden Breast cancer patients receiving surgery at 159 NA 22 (14) 72
Karolinska Hospital between 1994 and 1996
GSE-22513A,  USA Invasive breast cancer pretreatment biopsies taken 112 ER, PR, 25(22) 00 00 0.0
GSE-28821 from patients at the Vanderbilt-Ingram Cancer Center HER2
GSE-28796
GSE-11121~  Germany Lymph node—negative breast cancer patients 200 NA 19 (10) 73
treated at the Johannes Gutenberg University Mainz
between 1988 and 1998. Patients were all treated
with surgery without adjuvant therapy
GSE-2603~ USA Primary breast cancers surgically resected 99 ER,PR  32(32) 00 0.0 74
at the Memorial Sloan-Kettering Cancer Center
MDA133F USA Tumors from preoperative paclitaxel and 5-FU, 133 ER, PR, 21 (16) 00 30 08 25
doxorubicin, and CTX performed at the HER2
University of Texas MD Anderson Cancer Center
GSE-5364*  Singapore Tumors from the National Cancer Centre of Singapore 183 N/A 31 (17) 75
GSE-1561~  Belgium Tumors from patients with invasive or inflammatory 49 ER,PR 16 (33) 00 0.0 29
breast cancers treated with 5-FU, epirubicin, and
CTX obtained by the European Organization for
Research and Treatment, Brussels, Belgium
Total 2353 386 (16) 1.7 17 09

ASource: GEO. BSource: expO (https:/expo.intgen.org/geo/). CInformation on ER, PR, HER2 status varied across samples. PSource: Breast International Group
(http://www.breastinternationalgroup.org/Research/ TRANSBIG.aspx). ESource: Array Express. FSource: MD Anderson Cancer Center (http:/bioinformatics.
mdanderson.org/pubdata.html). BC, breast cancer; TN, triple negative; n, number of samples; 5-FU, 5- fluorouracil; CTX, cyclophosphamide.

information (Table 1). The overall frequency of TNBC across the
training data set was 16% and is consistent with the prevalence of
TNBC previously reported in 2 other large studies performed on
3,744 cases (17%) (17) and 1,726 cases (16%) (18).

k-means and consensus clustering reveal 6 TNBC subtypes. To identify
global differences in GE between TNBC subtypes, we performed
k-means clustering on the most differentially expressed genes
(SD>0.8). Using the silhouette width (s[i]) as a measure of relative
closeness of individual samples to their clusters, k-means cluster-
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ing classified 337 of the 386 TNBC tumors into 6 stable clusters
(s[i] > 0) and 49 tumors into 1 unstable cluster (s[i] > 0) (Figure 2A).
Clustering resulted in a distribution of samples in all 7 clusters
independent of each data set, » = 14, indicating that confound-
ing factors such as batch effect, RNA amplification, and sample
quality did not influence cluster distribution (Supplemental
Figure 1). Sample classification robustness was analyzed by con-
sensus clustering, which involves k-means clustering by resampling
(1,000 iterations) randomly selected tumor profiles. The consen-
Volume 121

Number7  July 2011



Table 2
Breast cancer GE data sets used to derive the TNBC validation set
Case definition

Data set Country

GSE-5327A8  Netherlands

Tumors from patients with lymph node—negative

research article

BCcases IHC False positive (%) Ref.

ER PR HER2

n
(%TN)

58 N/A 17 (30) 74

breast cancer, who did not receive systemic
neoadjuvant or adjuvant therapy (EMC-344) at

Erasmus Medical Center, Rotterdam,

Netherlands treated between 1980 and 1995

GSE-58474 USA

from patients receiving neoadjuvant

Primary breast cancers between 1993 and 2003

95 ER, HER2 17(35) 83 0.0 76

chemotherapy collected at Baltimore hospitals

GSE-12276*  Netherlands Lymph node—-negative breast cancers from

patients with metastatic disease (114)

204 N/A 46 (24) 7

following relapse after chemotherapy (EMC-192)
and patients (48) without adjuvant systemic
therapy (EMC-286) at Erasmus Medical Center,

Rotterdam, Netherlands
GSE-16446~8  Europe

breast cancers treated with single-agent

Tumors from patients with ER-negative primary

120 HER 46 (38) 2.5 78

neoadjuvant epirubicin at European hospitals
and coordinated at the Institut Jules Borde,

Brussels, Belgium

Tumors from patients with stage Il or Il
TNBCs treated with cisplatin at the
Dana-Farber/Harvard Cancer

GSE-18864AC USA

GSE-196154 USA

adjuvant chemotherapy obtained from the

Breast cancers from patients and treated with

24 ER,PR,HER2 24 (100) 78

115 ER,PR,HER2  30(26) 0.0 09 3.5 78

Harvard Breast SPORE, Boston, Massachusetts,

diagnosed between 2000 and 2003
GSE-20194A USA
breast cancers at the University of Texas

M. D. Anderson Cancer Center

Total

Pretreatment tumors obtained from stage I-11

278 ER,PR,HER2  27(23) 26 43 0.0 23

894 201(22) 17 26 17

ASource: GEO. BGSE-5327 and GSE-16446 data sets are derived from ER-negative tumors by IHC. ©GSE-18864 data set includes only ER, PR and HER2

negative tumors by IHC.

sus matrix is a visual representation of the proportion of times in
which 2 samples are clustered together across the resampling itera-
tions (Figure 2B). Groups of samples that frequently cluster with
one another are pictorially represented by darker shades of red. To
determine the number of clusters present in the data, we exam-
ined the area under the curve of the consensus distribution func-
tion (CDF) plot (Figure 2C). The point at which the area under
the curve ceases to show marked increases with additional cluster
number (k) indicates the ideal number of clusters (Figure 2D and
ref. 19). Therefore, the optimal number of clusters is 7, as defined
by the consensus plots consistent with the k-means clustering
(6 stable, 1 unstable). Unsupervised dimension reduction by prin-
cipal component analysis demonstrated fundamental differences
in GE between tumor subtypes identified by k-means and consen-
sus clustering (Figure 2E).

To assess whether similar TNBC subtypes could be generated
from an independent TNBC cohort, 201 TNBC samples were com-
piled from bimodal filtering (Supplemental Table 1) of 7 additional
publicly available data sets (Table 2). A GE signature was derived
from the most differentially expressed genes found in the TNBC
training set (see Methods and Supplemental Table 3) and used to
predict which TNBC subtype was best-fit for each of the tumors in
the validation set (Supplemental Table 4). Each sample from the
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validation set was assigned to 1 of the TNBC subtypes derived from
the training data set based on the highest Pearson correlation and
lowest P value (Supplemental Table 4). Samples with correlations
differing by P < 0.05 were considered unclassifiable. The validation
set resulted in proportioned subtypes similar to those of the initial
k-means clustering of the training set. After the analysis was com-
pleted, we performed an ad hoc analysis by combining the training
and validation data sets (587 tumors), which resulted in 7 subtypes
identified by consensus clustering (Supplemental Figure 2), with
similar enrichment in gene ontologies. This further validates the
stability of the subtypes and shows that increasing sample size does
not change optimal cluster number. Evaluation of GE profiles of
RNA obtained from laser-capture microdissection of tumor cells
from 2 data sets (GSE-22513; GSE-28821; GES-28796, Table 1;
GSE-5847, Table 2) showed a similar pattern of distribution across
all 7 subtypes, suggesting that these subtypes are indeed represen-
tative primarily of GE resulting from epithelial tumor cells rather
than stromal components surrounding the tumor (i.e., inflamma-
tory cells, myofibroblasts, etc.) (Supplemental Figure 3).

Distinct gene ontologies are associated with each TNBC subtype. As an
independent method to analyze TNBC subtypes, Gene Set Enrich-
ment Analysis (GSE-A) (20) was performed on all genes from both
the training (Supplemental Table 5) and validation sets (Supple-
Volume 121 2753
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Identification of TNBC subtypes. (A) Silhouette plot showing the composition (n = number of tumors) and stability (AVG width) of k-means clus-
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The cluster (subtypes) are named as shown.

mental Table 6) to determine the top canonical pathways associ-
ated with each TNBC subtype. The top enriched genes (P < 0.05),
identified from the training set used to predict the validation set,
are displayed in a heat map in Figure 3. The top canonical pathways
substantially overlapped between the training and validation sets
for each subtype, indicating that the subtypes were reproducibly
enriched in unique pathways (Supplemental Table 7). Our 7 TNBC
subtypes were characterized on the basis of gene ontologies and dif-
ferential GE and subsequently labeled as follows: basal-like 1 (BL1);
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basal-like 2 (BL2); immunomodulatory (IM); mesenchymal (M);
mesenchymal stem-like (MSL); luminal androgen receptor (LAR);
and unstable (UNS) (Figure 3). Independent analysis of 5 data sets
based on TNBCs identified by IHC staining (n = 183) resulted in 4
clusters with GE similar to that of basal-like, IM, mesenchymal-like,
and LAR subtypes (Supplemental Figures 4 and 5).

BL1 and BL2 subtypes. The top gene ontologies for the BL1
subtype are heavily enriched in cell cycle and cell division com-
ponents and pathways (cell cycle, DNA replication reactome,
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Figure 3

GE patterns within TNBC subtypes are reproducible. Heat maps showing the relative GE (log,, —3 to 3) of the top differentially expressed genes
(P < 0.05) in each subtype in the training set (left) and the same differentially expressed genes used to predict the best-fit TNBC subtype of the
validation set (right). Overlapping gene ontology (GO) terms for top canonical pathways in both the training and validation sets as determined
by GSE-A are shown to the right of the heat maps.

The Journal of Clinical Investigation  http://www.jci.org  Volume 121 ~ Number7  July 2011 2755



research article

Table 3
Assignment of TNBC cell lines to subtypes

TNBC subtype Cell line Subtype correlation Histology
(Pvalue)
Basal-like
BL1 HCC2157 0.66 (0.00) DC
HCC1599 0.62 (0.00) DC
HCC1937 0.28 (0.00) DC
HCC1143 0.26 (0.00) IDC
HCC3153 0.24 (0.00)
MDA-MB-468 0.19 (0.06) DC
HCC38 0.19 (0.01) DC
BL2 SUM149PT 0.30 (0.00) INF
CAL-851 0.25 (0.00) IGA
HCC70 0.24 (0.04) DC
HCC1806 0.22 (0.00) ASCC
HDQ-P1 0.18 (0.17) IDC
IM HCC1187 0.22 (0.00) DC
DU4475 0.17 (0.00) DC
Mesenchymal-like
M BT-549 0.21 (0.00) IDC
CAL-51 0.17 (0.00) AC
CAL-120 0.09 (0.00) AC
MSL HS578T 0.29 (0.00) CS
MDA-MB-157 0.25 (0.00) MBC
SUM159PT 0.14 (0.00) ANC
MDA-MB-436 0.13 (0.00) IDC
MDA-MB-231 0.12 (0.00) IDC
LAR
LAR MDA-MB-453 0.53 (0.00) AC
SUM185PE 0.39 (0.00) DC
HCC2185 0.34 (0.00)
CAL-148 0.32 (0.00) AC
MFM-223 0.31 (0.00) AC
Unclassified HCC1395 DC
BT20 IDC
SW527

Mutations? Intrinsic Basal
subtype® subtypet
BRCAT; STAT4; UTX Basal Basal A
BRCA2; TP53, CTNNDT; TOP2B, CAMK1G Basal Basal A
BRCAT; TP53; MAPK13; MDC1 HER2 Basal A
TP53 Basal Basal A
BRCA1 Basal Basal A
PTEN; RBT, SMAD4; TP53 Basal Basal A
CDKN2A; TP53 Unclassified Basal B
BRCA1 Unclassified Basal B
RBT; TP53 Basal
PTEN; TP53 Basal Basal A
CDKN2A; TP53, UTX Unclassified Basal A
TP53 Unclassified
TP53; CTNNAT;, DDX18;, HUWET; NFKBIA Basal Basal A
APC, BRAF, MAP2K4; RB1 Unclassified
PTEN; RBT; TP53 Unclassified Basal B
PIK3CA Unclassified
TP53 Luminal B
CDKN2A; HRAS; TP53 Unclassified Basal B
NF1; TP53 Unclassified Basal B
PIK3CA; TP53 HRAS Unclassified Basal B
BRCAT; TP53 Unclassified Basal B
BRAF, CDKN2A; KRAS; NF2; TP53, PDGFRA  Unclassified Basal B
PIK3CA; CDH1; PTEN Luminal A Luminal
PIK3CA Luminal A Luminal
PIK3CA Luminal A Luminal
PIK3CA; RBT; TP53, PTEN Luminal A
PIK3CA; TP53 Luminal A/B
ATR; BRCAZ, CDKNZ2A; PTEN; Basal
FGFRT, PDGFRB, TP53
CDKN2A; PIK3CA; TP53 HER2 Basal A
Luminal B

ASource: mutations taken from COSMIC database (www.sanger.ac.uk/genetics/CGP/cosmic/). BMolecular subtype determined by correlation with UNC/
intrinsic breast centroids (29). °Basal subtype obtained from Neve RM et al. (32). AC, adenocarcinoma; ANC, anaplastic carcinoma; ASCC, acantholytic
squamous cell carcinoma; C, carcinoma; CS, carcinosarcoma; DC, ductal carcinoma; IDC, invasive ductal carcinoma; IGA, invasive galactophoric adeno-
carcinoma; INF, inflammatory ductal carcinoma; MC, metaplastic carcinoma and MBC, medullary breast cancer.

G, cell-cycle pathway, RNA polymerase, and G to S cell cycle)
(Figure 3). The annotations are supported by the expression of
genes associated with proliferation, such as AURKA, AURKB,
CENPA, CENPF, BUB1, TTK, CCNA2, PRC1, MYC, NRAS, PLKI,
and BIRCS (Supplemental Figure 6). Elevated DNA damage
response (ATR/BRCA) pathways accompany the proliferation
pathways in the BL1 subtype (Figure 3). Increased proliferation
and cell-cycle checkpoint loss are consistent with the elevated
expression of the DNA damage response genes observed (CHEKI,
FANCA, FANCG, RADS4BP, RADS1, NBN, EXO1, MSH2, MCM10,
RAD21, and MDC1I) (Supplemental Figure 6).

The highly proliferative nature of this subtype is further sup-
ported by the finding of high Ki-67 mRNA expression (MKI67)
(Supplemental Figure 6) and nuclear Ki-67 staining as assessed by
IHC analysis (BL1 + BL2 = 70% vs. other subtypes = 42%; P < 0.05)
(Supplemental Figure 7). Enrichment of proliferation genes and
increased Ki-67 expression in basal-like TNBC tumors suggest that
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this subtype would preferentially respond to antimitotic agents such
as taxanes (paclitaxel or docetaxel) (21, 22). This is indeed the case
when comparing the percentage of patients achieving a pathologic
complete response (pCR) in 42 TNBC patients treated with neoad-
juvant taxane in 2 studies (22, 23). In these combined studies, TNBC
patients whose tumors correlated to the basal-like (BL1 and BL2)
subtype had a significantly higher pCR (63%; P = 0.042) when treat-
ed with taxane-based therapies as compared with mesenchymal-like
(31%) or LAR (14%) subtypes (Supplemental Figure 8).

The BL2 subtype displays unique gene ontologies involving
growth factor signaling (EGF pathway, NGF pathway, MET path-
way, Wnt/B-catenin, and IGF1R pathway) as well as glycolysis and
gluconeogenesis (Figure 3). Likewise, the BL2 subtype is uniquely
enriched in growth factor receptor GE such as EGFR, MET, and
EPHA2 (Supplemental Figure 6). This subtype has features sugges-
tive of basal/myoepithelial origin as demonstrated by higher expres-
sion levels of TP63 and MME (CD10) (Supplemental Figure 6).
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Figure 4

Basal-like TNBC subtypes have differential sensitivity to DNA-damaging agents. ICso values for TNBC cell lines treated with PARP inhibitors (A)
veliparib, (C) olaparib, or (E) cisplatin for 72 hours. Error bars reflect SEM for 3 independent experiments. Black horizontal lines above various
bars in the plots indicate cell lines that failed to achieve an ICsp at the highest dose of veliparib (30 uM), olaparib (100 uM), or cisplatin (30 uM).
Cell lines that carry BRCA1 or BRCA2 mutations (pink) are displayed below the graph. Dot plot shows the log distribution of drug sensitiv-
ity to PARP inhibitors (B) veliparib, (D) olaparib, or (F) cisplatin in the basal-like subtypes (BL = BL1 + BL2), the mesenchymal-like subtypes
(ML =M + MSL), and the LAR subtype. Black horizontal bars in the dot plot indicate the mean ICs, for each of the subtypes. *Statistically signifi-
cant differences in ICsq values of BL compared with ML (P = 0.017) and LAR (P = 0.032), as determined by Mann-Whitney U test.

IM subtype. The IM subtype is enriched for gene ontologies in
immune cell processes. These processes include immune cell
signaling (TH1/TH2 pathway, NK cell pathway, B cell receptor
[BCR] signaling pathway, DC pathway, and T cell receptor sig-
naling), cytokine signaling (cytokine pathway, IL-12 pathway,
and IL-7 pathway), antigen processing and presentation, and
signaling through core immune signal transduction pathways
(NFKB, TNF, and JAK/STAT signaling) (Figure 3). The IM sig-
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naling is evidenced by immune signal transduction GE (Supple-
mental Figure 6), in addition to immune cell-surface antigens,
cytokine signaling, complement cascade, chemokine receptors
and ligands, and antigen presentation (Supplemental Figure 9).
Since a similar proportion of samples that were microdissected
fell into the IM subtype, it is likely that the IM characteristics
are unique to the tumor cells themselves and not a reflection of
immune cell infilcrate (Supplemental Figure 3). Immune signal-
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Differential sensitivity of the LAR TNBC subtype to AR and Hsp90 inhibitors. ICs, values for each TNBC cell line after treatment with (A) bicalu-
tamide or (C) the Hsp90 inhibitor 17-DMAG for 72 hours. Black bar above bicalutamide indicates cell lines that failed to achieve an ICso. Heat
map displays relative AR expression (logz) across TNBC cell lines. Dot plot shows log distribution of drug sensitivity to (B) bicalutamide or (D)
17-DMAG in the basal-like (BL = BL1 + BL2), mesenchymal-like (ML = M + MSL), and LAR subtypes. Black horizontal bars in the dot plot indicate
the mean ICsq for each of the subtypes. *Statistically significant differences in I1Csq values of LAR versus BL (P = 0.007) or ML (P = 0.038) after
bicalutamide and LAR versus BL and ML (P = 0.05) after 17-DMAG treatments, as determined by Mann-Whitney U test.

ing genes within the IM subtype substantially overlap with a
gene signature for medullary breast cancer, a rare, histologically
distinct form of TNBC that despite its high-grade histology is
associated with a favorable prognosis (24).

M and MSL subtypes. The M subtype displays a variety of unique
gene ontologies that are heavily enriched in components and
pathways involved in cell motility (regulation of actin by Rho),
ECM receptor interaction, and cell differentiation pathways
(Wnt pathway, anaplastic lymphoma kinase [ALK] pathway, and
TGEF-P signaling) (Figure 3). The MSL subtype shares enrich-
ment of genes for similar biological processes with the M sub-
type, including cell motility (Rho pathway), cellular differentia-
tion, and growth pathways (ALK pathway, TGF-f signaling and
Wnt/B-catenin pathway). However, unique to the MSL are genes
representing components and processes linked to growth factor
signaling pathways that include inositol phosphate metabolism,
EGFR, PDGF, calcium signaling, G-protein coupled receptor,
and ERK1/2 signaling as well as ABC transporter and adipocy-
tokine signaling (Figure 3).

The prevalence of cell differentiation and growth factor sig-
naling pathways is illustrated by expression of TGF-f signaling
pathway components (TGFBIL1, BGN SMAD6, SMAD7, NOTCH1,
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TGFBI, TGFB2, TGFB3, TGFBR1, TGFBR2, and TGFBR3), epithe-
lial-mesenchymal transition-associated (EMT-associated) genes
(MMP2, ACTA2, SNAI2, SPARC, TAGLN, TCF4, TWIST1, ZEB1,
COL3A1,COL5A2, GNG11,ZEB2, and decreased E-cadherin [CDHI]|
expression), growth factors (FGF, IGF, and PDGF pathways), and
Wnt/B-catenin signaling (CTNNBI1, DKK2, DKK3, SFRP4, TCF4,
TCF7L2, FZD4, CAV1, CAV2, and CCND2) (Supplemental Figure
6). The MSL subtype is also uniquely enriched in genes involved in
angiogenesis, including VEGFR2 (KDR), TEK, TIE1, and EPASI as
well as immune signaling evidenced by an overlap in GE unique to
the IM subtype (Supplemental Figure 9).

One interesting difference between the M and MSL subtypes is
that the MSL subtype expresses low levels of proliferation genes
(Supplemental Figure 6). This decreased proliferation is accom-
panied by enrichment in the expression of genes associated with
stem cells (ABCA8, PROCR, ENG, ALDHAI, PER1, ABCBI1, TERF2IP
BCL2, BMP2,and THY1), numerous HOX genes (HOXAS, HOXA10,
MEIS1, MEIS2, MEOX1, MEOX2, and MSXI), and mesenchymal
stem cell-specific markers (BMP2, ENG, ITGAV, KDR, NGFR,
NTSE, PDGFRB, THY1, and VCAM1) (Supplemental Figure 6 and
data not shown). The signaling pathway components differentially
expressed in the M and MSL groups share similar features with
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Figure 6

Mesenchymal-like TNBC subtypes are sensitive to dasatinib and NVP-BEZ235. |Cs, values for each TNBC cell lined treated with (A) dasatinib or
(C) NVP-BEZ235 for 72 hours. Cell lines that have PIK3CA mutations (red) or are deficientin PTEN (blue, circle indicates mutated) are displayed
below the NVP-BEZ235 graph. Dot plots show the log distribution of drug sensitivity to (B) dasatinib or (D) NVP-BEZ235 in the basal-like sub-
types (BL = BL1 + BL2), mesenchymal-like subtypes (ML = M + MSL), and LAR. Black horizontal bars in the dot plots indicate the mean ICs, for
each of the subtypes. *Statistically significant differences in ICso values of BL versus ML (P = 0.020) when treated with dasatinib and ML versus
BL (P =0.001) and LAR versus BL (P = 0.01) when treated with NVP-BEZ235, as determined by Mann-Whitney U test.

a highly dedifferentiated type of breast cancer called metaplastic
breast cancer, which is characterized by mesenchymal/sarcoma-
toid or squamous features and is chemoresistant (25).

The MSL subtype also displays low expression of claudins 3, 4,
and 7, consistent with a recently identified claudin-low subtype
of breast cancer (Supplemental Figures 6 and 10, and ref. 26).
Hierarchical clustering of TNBC GE profiles using the claudin-
low gene predictor set (n = 770) segregated a portion of the M and
MSL subtypes with low claudin (3, 4, and 7), cytokeratin (KRT7,
KRTS8, KRT18, and KRT19), and CD24 expression (Supplemental
Figure 10 and ref. 26). This population of claudin-low-expressing
tumors also had high expression of genes associated with EMT
(FBN1, MMP2, PDGERB, THY1, SPARC, TGFBR2, PDGFRA, TWIST,
CAV1, CAV2, and SERPINE]I).

LAR subtype. GE in the LAR group was the most differential
among TNBC subtypes. This subtype is ER negative, but gene
ontologies are heavily enriched in hormonally regulated pathways
including steroid synthesis, porphyrin metabolism, and andro-
gen/estrogen metabolism (Figure 3). We therefore investigated
whether other hormone-regulated pathways such as androgen
receptor (AR) signaling, previously reported in ER-negative breast
cancer (27), could be responsible for the GE patterns in this LAR
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subtype. Indeed, we found that AR mRNA was highly expressed,
on average at 9-fold greater than all other subtypes (Supplemental
Figure 6). Tumors within the LAR group also expressed numerous
downstream AR targets and coactivators (DHCR24, ALCAM, FASN,
FKBPS, APOD, PIP, SPDEF, and CLDNS) (Supplemental Figure 6).
In addition to AR mRNA expression, we investigated AR protein
expression by IHC across all TNBC tumors from the Vanderbilt
cohort (n = 20). The percentage of tumor cells scored with nuclear
AR staining and the intensity of staining were significantly higher
in the LAR subtype (>10-fold; P < 0.004) compared with all other
TNBC subtypes (Supplemental Figure 11). We performed hierar-
chical clustering using an AR-activated gene signature (28) on the
training and validation TNBC tumor data sets. Hierarchical clus-
tering with this signature segregated the majority of LAR tumor
profiles from other subtypes (Supplemental Figure 12). Tumors in
the LAR subtype display luminal GE patterns, with FOXAI, KRT1I8,
and XBPI among the most highly expressed genes (Supplemen-
tal Figure 13A). Others have previously described a breast cancer
subgroup expressing AR termed molecular apocrine (29). While we
do not have detailed pathology reports for all of the LAR tumors
in this study, we used the TNBC subgroup GE centroids to cor-
relate the apocrine samples from GSE-1561 (ref. 29 and Table 1).
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Xenograft tumors established from TNBC subtypes display differential sensitivity to cisplatin, bicalutamide, and NVP-BEZ235. Nude mice
bearing established tumors (25-50 mm?3) from basal-like (HCC1806 and MDA-MB-468), LAR (SUM185PE and CAL-148), or mesenchymal-
like (CAL-51 and SUM159PT) were treated with cisplatin (red), bicalutamide (purple), NVP-BEZ235 (green), or vehicle (blue) for approxi-
mately 3 weeks. Serial tumor volumes (mm3) were measured at the indicated days. Each data point represents the mean tumor volume of

16 tumors; error bars represent SEM.

The GE profiles of all 6 apocrine tumors (GSM26883, GSM26878,
GSM26886, GSM26887, GSM26903, and GSM26910) described
in the study strongly correlate with LAR, suggesting that the LAR
TNBC subtype is composed of AR-driven tumors that include the
molecular apocrine subtype (Supplemental Table 8).

Intrinsic molecular breast cancer subtype classification of TNBC. Breast
cancers can be classified as luminal or basal-like, dependent on their
expression of different cytokeratins. TNBC tumor subtypes dis-
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play differential expression of both basal-like cytokeratins (KRTS,
KRT6A, KRT6B, KRT14, KRT16, KRT17, KRT23, and KRTS81) and
luminal cytokeratins (KRT7, KRTS8, KRT18, and KRT19) across the
subtypes (Supplemental Figure 13). The UNS, BL1, BL2, and M sub-
types expressed higher levels of basal cytokeratin expression, while
tumors within the LAR subtype lacked basal cytokeratin expression
and expressed high levels of luminal cytokeratins and other luminal
markers (FOXAI and XBPI) (Supplemental Figure 13A).
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In addition to cytokeratin expression, breast cancers can be clas-
sified by an “intrinsic/UNC” 306-gene set into 5 major subtypes
(basal-like, HER2-like, normal breast-like, luminal A, and luminal B)
(30). Since TNBCs are largely considered basal-like, we correlated
each of the 386 TNBC tumor profiles to the intrinsic gene set cen-
troids of the 5 molecular subtypes, as previously described (30).
Tumors were assigned to 1 of the molecular subtypes based on the
highest correlation coefficient between each TNBC expression pro-
file and the 5 molecular subtype centroids. This analysis resulted
in 49% (n = 188) of our TNBC training set classified as basal-like,
14% (n = 54) as luminal A, 11% (n = 42) as normal breast-like, 8%
(n=31)asluminal B,5% (n=19) as HER2,and 13% (n = 52) as unclas-
sifiable (Supplemental Figure 13B and Supplemental Table 9).
This confirms that most TNBCs classify to the basal-like molecu-
lar subtype. Both the unstable tumors and BL1 tumors correlated
strongly to the basal-like intrinsic molecular classification (76%
and 85%, respectively). However, the BL2,IM, and M subtypes only
moderately correlated to the basal-like molecular class (31%, 58%,
and 47%, respectively), with a portion of tumors unclassified (22%,
17%, and 18%, respectively) (Supplemental Figure 13B). The M and
MSL subtypes displayed the largest portion of tumors classified
as normal breast-like (25%, and 46%, respectively). The BL2, M,
and MSL subtypes were a mixture of classifications, suggesting the
intrinsic classification system may not be suitable for character-
izing these TNBC subtypes. The majority of TNBC tumors within
the LAR subtype were classified as either luminal A or luminal B
(82%), and none were classified as basal-like, further supporting
the luminal origin of the LAR subtype (Supplemental Figure 13).
While only 49% of the tumors were classified as basal-like accord-
ing to the intrinsic gene set, IHC staining performed on the Van-
derbilt subset of tumors (n = 25) showed that the majority (88%)
of TNBCs stained positive for the basal cytokeratins CKS/6 (Sup-
plemental Table 10). Additionally, 56% of the Vanderbilt tumors
stained positive for EGFR, similar to a previous study that found
56% of n =929 pooled from 34 studies that were positive for EGFR
or CK5/6 (31). There were no statistical differences between CKS/6
and EGFR staining across TNBC subtypes. Thus, the majority of
TNBCs display a basal-like phenotype by IHC, while only approxi-
mately half correlate to the basal-like intrinsic gene set.

Patient relapse-free survival and distant-metastasis—free survival differs
among TNBC subtypes. Relapse-free survival (RFS) between TNBC
subtypes was significantly different (log-rank test; P = 0.0083)
(Supplemental Figure 14A), despite variability of therapy and dura-
tion of treatment. RFS was significantly decreased in the LAR sub-
type compared with the BL1 (hazard ratio [Hr] = 2.9), IM (Hr = 3.2),
and MSL (Hr = 10.5) subtypes (P < 0.05) (Supplemental Figure
14B). RFS was significantly decreased in the M subtype compared
with BL1 (Hr = 2.6) and IM (Hr = 2.9), while the MSL subtype had
higher RFS than the M subtype (Supplemental Figure 14B). Dis-
tant-metastasis-free survival (DMFS) did not vary between TNBC
subtypes (log-rank test; P = 0.2176), but the M subtype had a sig-
nificantly higher Hr compared with the BL1 (Hr = 2.4, P < 0.05)
and IM (Hr = 1.9, P < 0.06) subtypes (Supplemental Figure 14,
C and D). The increased RFS in the absence of increased DMFS
for patients in the LAR subtype suggests that recurrence is due to
local relapse. Tumor size and grade were not significantly differ-
ent among TNBC subtypes, but age at diagnosis was greater in the
LAR subtype (P < 0.0001), potentially contributing to decreased
RFS of this subtype compared with other subtypes (Supplemental
Figure 15 and data not shown).
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TNBC cell line models for TNBC subtypes. Cell line models would
facilitate preclinical experiments to define differential drug sen-
sitivity of the distinct subtypes within this heterogeneous disease.
Using the bimodal filtering approach on ER, PR, and HER2 GE
levels from 2 independent breast cancer cell line data sets (GSE-
10890 and ETABM-157), we identified 24 and 25 triple-nega-
tive cell lines in the GSE-10890 and ETABM-157 GE data sets,
respectively (Supplemental Table 1). Of the cell lines present in
both data sets, nearly all had similar predictions of triple-nega-
tive status by bimodal filtering. Discrepancies in some cell lines
(e.g., HCC1500 and HCC1937) may be the result of differences in
culturing methods and/or loss of hormone receptor expression
over time in culture. Analysis of these 2 data sets identified 30
nonoverlapping TNBC cell lines.

GE profiles from the cell lines were correlated to the centroids
(Supplemental Table 3) for each of the 6 TNBC subtypes (Sup-
plemental Table 11). The majority of cell lines (27 of 30) were
assigned to TNBC subtypes (Table 3), except for BT20, HCC1395,
and SWS527, which had low correlations (<0.1) or were similar
between multiple subtypes (P > 0.05). Of the 7 cell lines that con-
tained known BRCAI and BRCA2 mutations, S correlated with the
BL1 or BL2 subtypes (HCC1937, HCC1599, HCC2157, HCC3153,
and SUM149PT), consistent with this subtype containing tumors
with defects in DNA repair pathways (Table 3) and gene ontolo-
gies enriched for GE involved in cell cycle and DNA repair func-
tions (Supplemental Figure 6). Additionally, cell lines in the BL1
and BL2 subtypes were more genomically unstable, displaying
significantly more chromosomal rearrangements than those in
the mesenchymal subtypes (M and MSL) (average translocations,
inversions, deletions = 34 versus 14, respectively; P < 0.01), as
determined by SKY-FISH (http://www.path.cam.ac.uk/~pawefish/
index.html) (Supplemental Figure 16). All cell lines that correlated
to the basal-like intrinsic molecular subtype were in the BL1, BL2,
or IM subtypes (Table 3). Only 2 cell lines (HCC1187 and DU4475)
were placed into the IM subtype, suggesting that the IM subtype is
underrepresented in cell culture.

Cell lines in the M and MSL subtypes were generated from highly
dedifferentiated tumors derived from unique pathologies (e.g.,
HSS578T, carcinosarcoma; and SUM159PT, anaplastic carcinoma)
and expressed both epithelial and mesenchymal components. All cell
lines assigned to the M and MSL subtype have spindle-like morphol-
ogy in 2D culture (CAL-120, CAL-51, MDA-MB-157, MDA-MB-231,
MDA-MB-436, SUM159PT, HS578T, and BT549) or stellate-like
morphology in 3D (32). Five cell lines matched to the LAR subtype
(MDA-MB-453, SUM185PE, HCC2185, CAL-148, and MFM-223).

Two distinct basal groups (A and B) have been identified by GE
profiling of breast cancer cell lines (33). Basal A cell lines display
epithelial characteristics and are associated with BRCAI gene
signatures, while basal B cell lines are more invasive and display
mesenchymal and stem/progenitor-like characteristics. Our GE
analyses revealed that the majority of basal A cell lines belong to
the BL1 and BL2 subtypes, while the majority of basal B cell lines
fall into the M and MSL subtypes (Table 3). We used hierarchical
clustering analysis on all TNBC cell lines using the most differ-
entially expressed genes from the tumors to determine whether
GE patterns of the cell lines are similar within TNBC subtypes
(Supplemental Figure 17). Three clusters were identified: LAR,
containing all 4 LAR lines; basal-like, containing lines in the BL1
and BL2 subtypes; and mesenchymal-like, containing lines in the
M and MSL subtypes. This clustering analysis indicates that TNBC
Volume 121~ Number 7
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cell lines can be classified into 3 main groups: basal-like (BL1 and
BL2); mesenchymal-like (M and MSL); and LAR. This classifica-
tion will be used in subsequent sections.

TNBC cell lines have differential sensitivity to therapeutic agents. There
are a variety of targeted therapies undergoing clinical investigation
in patients with TNBC including those targeting PARP (9), AR
(34), Src (13), and PI3K/mTOR (35) signaling. We used the panel
of TNBC cell lines to assess differential response to several agents
targeting these pathways. For comparison we also analyzed prima-
ry human mammary epithelial cells (HMECs) in our cell viability
assays. We determined the half-maximal inhibitory concentration
(ICso) values for the following drugs [targets]: veliparib (ABT-888)
[PARP1/2]; olaparib (AZD2281) [PARP1/2]; cisplatin [DNA];
bicalutamide [AR]; 17-DMAG [Hsp90]; dasatinib [Src/ Abl];
and NVP-BEZ235 [PI3K and mTOR].

Cell-cycle and DNA damage response genes are elevated in the
BL1 and BL2 subtypes (Supplemental Figure 6), and 5 of the 7
lines in the cell line panel that carry BRCAI/2-mutations reside
in these subtypes (Table 3). Given the previous clinical trial obser-
vations with PARP inhibitors and cisplatin (36-38), we predicted
that these agents would preferentially decrease viability in cell lines
with DNA repair defects that are representative of the BL1 and
BL2 subtypes. We treated the TNBC cell line panel with the PARP
inhibitors veliparib and olaparib, but found not all cell lines repre-
sentative of the basal-like TNBC subtypes were sensitive to PARP
inhibition (Figure 4, A-D). The BRCAI-null cell line HCC1937
was sensitive to veliparib (ICso = 4 uM) but not olaparib (ICso >
100 uM), while the BRCA1-mutant MDA-MB-436 was sensitive to
both PARP inhibitors (veliparib ICso = 18 uM and olaparib ICso =
14 uM). The BRCA2-mutant cell line HCC1599 lacked sensitivity
to either PARP inhibitor (veliparib ICso > 30 uM and olaparib ICsg
> 100 uM). Thus, in addition to BRCA1/2 status, other proper-
ties of the tumor may dictate sensitivity to a given PARP inhibitor.
Unlike PARP inhibitor sensitivity, basal-like lines were significant-
ly more sensitive to cisplatin than mesenchymal-like lines (aver-
age ICsp = 8 uM vs. ICsp = 16 uM, P = 0.032) or LAR lines (average
ICs0 = 8 uM vs. ICso = 15 uM, P = 0.017) (Figure 4, E and F). The
BRCAI-mutant cells (SUM149PT, HCC1937, and MDA-MB-436)
and BRCA2-mutant cells (HCC1599) were among the most sensi-
tive to cisplatin treatment (Figure 4E).

Since cell lines representative of the LAR subtype (MDA-MB-453,
SUM185PE, CAL-148, and MFM-223) express high levels of AR
mRNA and protein (Supplemental Figure 18A), we compared the
sensitivity of TNBC cell lines to the AR antagonist bicalutamide
(Figure 5, A and B). ICso values for the majority of TNBC cell lines
were not achieved using the highest dose of 500 uM. However, all
LAR cell lines tested (SUM185PE, CAL-148, MDA-MB-453, and
MFM-223) and a subset of mesenchymal-like cell lines that express
low levels of AR (HSS78T, BT549, CAL-51, and MDA-MB-231)
were more sensitive to bicalutamide than basal-like cell lines (aver-
age ICso = 227 uM vs. ICs5 > 600 uM, P = 0.007; and average ICsp =
361 uM vs. ICso > 600 uM, P = 0.038, respectively) (Figure 5A).

Since AR requires the Hsp90 chaperone for proper protein fold-
ing and stability (39), we determined the sensitivity of the cell line
panel to an Hsp90 inhibitor, 17-dimethylaminoethylamino-17-
demethoxy-geldanamycin (17-DMAG). Again, the LAR cell lines
were more sensitive to 17-DMAG compared with the majority of
basal-like (average ICso = 16 nM vs. ICso = 81 nM; P = 0.004) and
mesenchymal-like (average ICso = 16 nM vs. ICso = 117 nM; P = 0.05)
cell lines (Figure 5, C and D), albeit 17-DMAG has many other tar-
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gets. These data strongly suggest that LAR tumors are driven by AR
signaling and AR represents a therapeutic target for this subtype.
Importantly, AR status in TNBC patients represents a molecular
marker for preselection of patients for antiandrogen therapy.

To determine whether the growth of the LAR cell lines was
AR dependent, we transfected MFM-223, MDA-MB-453, and
SUMI18S5PE cell lines with control and AR-targeting siRNA. We
verified knockdown of AR in the experimental samples at the pro-
tein level (Supplemental Figure 18B), performed colony growth
assays, and analyzed the number of colonies formed after 14 days
of siRNA transfection. The ability of all the LAR cell lines to
form colonies was significantly reduced after knockdown of AR
expression as compared with control samples (MFM-223 = 55%,
P=0.031; MDA-MB-453= 51%, P = 0.004; and SUM 185PE= 42.3%,
P =0.002) (Supplemental Figure 18C), indicating that AR expres-
sion is in part responsible for tumor cell viability/survival.

GE analysis of the mesenchymal-like subtypes demonstrated
enrichment in the expression of genes that make up components
and pathways associated with EMT (TGFf, ECM-receptor interac-
tion, ALK, Wnt/fB-catenin, and Rac1) and those associated with cell
motility (focal adhesion, integrin signaling, Rac1, striated muscle
contraction, and regulation of actin by Rho GTPase) (Figure 3).
Since the nonreceptor tyrosine kinase Src plays critical roles in
cell migration and the mesenchymal-like subtypes are enriched in
cell motility pathways, we analyzed the effect of the Src inhibitor
dasatinib on the panel of TNBC lines. Cell lines belonging to the
mesenchymal-like subtypes (M and MSL) were more sensitive to
dasatinib than the LAR cell lines (average ICso = 22 uM vs. ICso =
88 uM, P = 0.024) (Figure 6, A and B).

Since activating mutations in PIK3CA are the most frequent
genetic event in breast cancer (40), we treated the TNBC cell lines
with the dual PI3K/mTOR inhibitor NVP-BEZ235 (41). TNBC cell
lines that have activated PI3K/AKT signaling due to PIK3CA muta-
tions or PTEN deficiency (Table 3) were highly sensitive to NVP-
BEZ235 (Figure 6C). In addition, mesenchymal-like TNBC cell
lines were more sensitive to NVP-BEZ235 compared with basal-
like cell lines (average ICso = 44 nM vs. ICso = 201 nM; P = 0.001)
(Figure 6, C and D), which may suggest that deregulation of the
PI3K pathway is important for this subtype. LAR cell lines were
also more sensitive to NVP-BEZ235 compared with basal-like
cell lines (average ICso = 37 nM vs. 116 nM; P = 0.01) (Figure 6, C
and D). This sensitivity can be explained by PIK3CA mutations,
frequent in the LAR subtype, with all LAR cell lines containing
PIK3CA-activating mutations (HCC2185, MDA-MB-453 CAL-148,
MFM-223, and SUM185PE) (Table 3). While PIK3CA mutations
predicted NVP-BEZ235 sensitivity, PTEN deficiencies (mutation
or loss of protein expression) did not correlate with sensitivity.

Xenograft tumors derived from TNBC cell lines display differential sensitiv-
ity to therapeutic agents in vivo. In order to further analyze the suscep-
tibility or resistance of TNBC subtypes to therapeutic agents in a
more physiological setting than 2D culture, xenograft tumors were
established in nude mice from cell lines representative of the basal-
like (HCC1806 and MDA-MB-468), mesenchymal-like (CAL-51 and
SUM159PT), or LAR (SUM185PE and CAL-148) subtypes. After
tumors reached an approximate volume of 25-50 mm?3, the mice
were treated with cisplatin, NVP-BEZ23S5 or bicalutamide. The sen-
sitivity of the TNBC cell lines to the therapeutic agents when grown
as 3D xenograft tumors in vivo was very similar to that seen with
the cell lines grown in 2D monolayer culture. The xenograft tumors
derived from the 2 cell lines representative of basal-like tumors
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(HCC1806 and MDA-MB-468) were highly and differentially sensi-
tive to cisplatin and were significantly growth inhibited (P < 0.0001)
relative to treatment with vehicle control or the other experimental
treatments (bicalutamide and NVP-BEZ235) (Figure 7). The tumors
derived from the LAR cell lines (SUM185PE and CAL-148) and
the mesenchymal-like cell line that expresses low level AR protein
(CAL-51) (Supplemental Figure 18) displayed significant sensitiv-
ity to bicalutamide (Figure 7). The xenograft tumors derived from
all the cell lines carrying activating PIK3CA mutations (SUM185PE,
CAL-148, CAL-51, and SUM159PT) had partial response or com-
plete compared with NVP-BEZ235 (Figure 7).

In summary, cell lines representative of the 6 TNBC subtypes
display different sensitivities to a variety of agents, and important-
ly, these differences can be attributed to distinct expression of cel-
lular components and presence of mutations in key oncogenes and
tumor suppressors. We propose our results have immediate clini-
cal translation, as they provide a valuable platform and insights
for ongoing and future clinical investigation. Our data suggest
that patients with basal-like TNBC should be treated with agents
that engage DNA damage signaling response pathways; those with
tumors expressing AR should receive bicalutamide alone or in
combination with PI3K inhibitors; and those with mesenchymal-
like TNBC should be considered for trials exploring the activities
of an Src antagonist in combination with a PI3K inhibitor.

Discussion

Through GE analysis of 3247 breast cancers, we demonstrate that
TNBCs can be reliably identified by filtering GE profiles for ER, PR,
and HER2 mRNA levels. We compiled 587 TNBC GE profiles from
21 studies (training set = 386 and validation set = 201). We observed
an 18% incidence rate of TNBC across the 21 independent studies
(training and validation combined), similar to previously reported
TNBC prevalence (17, 18). k-means and consensus clustering of
tumor profiles revealed that TNBC is composed of 6 stable subtypes
enriched in distinct gene ontologies and GE patterns. Furthermore,
using a GE signature derived from TNBC patient tumors, we iden-
tified cell-line models for each of the TNBC subtypes.

Previously, the majority (50%-90%) of TNBCs have been classified
as basal-like either by IHC or by correlation to the intrinsic molec-
ular breast cancer subtypes (17, 18, 42). A previous TNBC study
identified S distinct hierarchical clusters in which 91% (88 of 97) of
TNBCs identified by IHC correlated to the basal-like subtype (42).
However, the study lacked molecular analysis of the tumors and
conclusions were limited to clinical outcomes based on pathologi-
cal markers. The relationship between TNBC and basal-like breast
cancer remains controversial (43). The proportion of TNBCs with
basal-like GE in our study was 47%, resulting in a higher propor-
tion of TNBC:s that correlate with other molecular subtypes: lumi-
nal A (17%), normal breast-like (12%), luminal B (6%), HER2 (6%),
or unclassified (12%). Our study indicates that TNBC is not limited
to tumors with a basal-like phenotype; rather it is a heterogeneous
collection of tumors with distinct phenotypes, as evidenced by the
diverse GE patterns and varying sensitivity of representative cell
lines to the targeted therapies assessed in this study.

The BL1 and BL2 subtypes express high levels of genes involved
in cell proliferation and DNA damage response, suggesting
patients with basal-like tumors would benefit from agents that
preferentially target highly proliferative tumors (e.g., anti-mitot-
ic and DNA-damaging agents). Consistent with this notion,
patients with basal-like tumors had up to a 4-fold higher pCR
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after taxane-based and radiation-based treatment as compared
with patients with tumors that displayed characteristics of the
ML or LAR subtypes (22, 23).

Nearly all of the cell lines with known mutations in BRCAI and
BRCA2 had GE patterns that correlated with the basal-like subtype,
which is in agreement with the current view that BRCA-mutant
tumors display a basal-like phenotype (44). A number of non-BRCA-
mutant cell lines that correlated with the basal-like TNBC subtypes
contained nearly 2-fold the number of chromosome rearrangements
as all other subtypes. These findings suggest that a predominant
characteristic of basal-like TNBC is genomic instability (45). Because
of GE similarities between basal-like TNBC and BRCAI-mutation
carriers, PARP inhibitors are currently being tested in clinical trials
for TNBC (46). Despite success in BRCA-null cells, there is not suffi-
cient evidence for PARP inhibitor efficacy in BRCAI/2-mutant breast
cancer cells (9). PARP sensitivity across a panel of TNBC cell lines
did not correlate with TNBC subtype alignment or BRCAI/2-status
in our study using short-term cell viability assays (72 hours). How-
ever, the synthetic lethal effects of PARP inhibition in homologous
recombination-deficient cells may require multiple cell divisions and
may be more appropriately tested in long-term survival assays. Other
studies show that a subset of BRCAI-mutant tumors lack large-scale
genomic alterations and these tumors represent a distinct disease
entity and may not be susceptible to PARP inhibition (44). Previous
analyses of PARP inhibitors in isogenic BRCA2*/* and BRCA27/- cell
lines suggest that sensitivity to this targeted therapy is dependent on
the molecular context of the DNA repair machinery and that DNA
repair requiring homologous recombination involves multiple redun-
dant pathways (9, 10). BRCAL is a relatively large protein (1863 aa)
that forms numerous complexes that may not be entirely disrupted
when BRCAI and BRCA2 are mutated, as opposed to BRCA-null cells.
Despite an incomplete understanding of the molecular mechanism
of the PARP inhibitors in vivo, these drugs have been proven to be
highly effective in the clinical trial setting (41% objective response
rate; 6.2 month progression-free survival) (47).

We also found that BRCAI-mutant and non-BRCA-mutant basal-
like cell lines had relatively higher sensitivity to cisplatin treatment
compared with all other TNBC subtypes. Our results are consistent
with the observed 21% pCR in a clinical trial investigating neoad-
juvant cisplatin as a single agent in a heterogeneous TNBC patient
population (48, 49). These data collectively suggest that the use of
proliferation biomarkers such as Ki-67 and development of markers
identifying defects in DNA damage response signaling could pro-
vide patient selection and tailored treatments for basal-like TNBC.
Use of cisplatin as a “targeted” agent alone or in combination with
antimitotics (taxanes) and/or radiation may benefit patients with
this subtype and a current trial is underway with these agents (50).

The IM subtype is highly enriched in immune cell signaling. Other
studies have described the presence of immune response gene signa-
tures in ER-negative and medullary breast cancers (24, 51). Similar to
these studies, we found elevated expression of T cell-associated genes,
immune transcription factors, IFN regulatory factors, TNF, comple-
ment pathway, and antigen processing. We cannot rule out that the
possibility that the GE profile of the IM subtype comprises, at least
in part, stromal components including immune cell infiltrate. How-
ever, the finding that the same proportion of microdissected tumors
belongs to this group argues against stromal contamination.

The M and MSL subtypes share similar gene ontologies and
GE profiles involving TGF-f, mTOR, Rac1/Rho, Wnt/B-catenin,
FGFR, PDGFR, and VEGF signaling pathways. These signaling
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pathways are prominent in processes of EMT and stem cell-like
properties of a CD44*CD24- population of normal mammary cells
(52, 53). Similarly, the MSL subtype is made up at least in part by
the recently described claudin-low tumors, which lack luminal dif-
ferentiation markers, high enrichment for EMT markers, immune
response genes, and cancer stem cell-like features (26). Interest-
ingly, the M and MSL subtypes differed clinically, with patients in
the M subtype presenting with shorter RFS. This may be a reflec-
tion of differences in proliferation, as the M subtype displayed
higher expression of proliferation-associated genes, including
Ki-67. Additionally, patients with the M and MSL subtypes had
decreased 5-year DMFS, consistent with enrichment in pathways
associated with metastasis and motility.

Tumors within the mesenchymal-like subtypes have GE profiles
that are similar to those from mesenchymal cells and metaplastic
breast cancers (54). Metaplastic breast cancers have lineage plastic-
ity, including foci of spindle cell, as well as osseous or cartilaginous
differentiation (25). A recent study found that 47% of metaplastic
breast cancers sequenced have PIK3CA mutations and have higher
phosho-AKT expression (54). We found that TNBC mesenchymal-
like cell lines preferentially responded to the dual PI3K/mTOR
inhibitor NVP-BEZ235. This response to NVP-BEZ235 was dem-
onstrated in cell lines that carry PIK3CA mutations in xenografts
in addition to an MSL cell line (SUM159PT) that lacks PIK3CA
mutation or PTEN deficiencies, suggesting that the PI3K/mTOR
pathway is important in the mesenchymal-like subtype.

The mesenchymal-like subtypes were enriched in pathways asso-
ciated with EMT and cell motility. There is evidence of a promi-
nent role for Src in tumor cells that are highly invasive, such as
those that have undergone EMT (S55). Accordingly, we found that
mesenchymal-like TNBC cell lines had differential sensitivity to
dasatinib. Markers of EMT may have clinical value for patient
preselection for trials using dasatinib. In addition, Wnt-signaling
pathways regulate EMT and may contribute to tumor cell inva-
sion (56). Mutations in the Wnt/p-catenin pathway (CTNNBI,
APC, and WISP3) occur frequently (52%) in metaplastic breast
cancer, suggesting that deregulated Wnt/fB-catenin pathway in
these tumors may be a viable therapeutic target (27). Inhibitors of
Wnt/p-catenin are of great interest and currently are in preclinical
development (57). Drugs targeting this pathway could be of value
for treating mesenchymal-like TNBC.

The LAR subtype was readily subclassified by an AR gene signa-
ture and high levels of luminal cytokeratin expression. GE analysis
of the LAR subtype is consistent with a prior report of a subset of
ER-negative tumors expressing AR-regulated genes (58). In addi-
tion, Farmer et al. described an apocrine tumor subtype based on
GE profiling that was characterized by AR expression distinguish-
ing this tumor subtype from other basal-like tumors (29). In our
GE analysis of tumors from 21 studies, the prevalence of the LAR
tumors was 11% (62 of 587) of TNBCs or 2% (62 of 3247) of all breast
cancers. Analysis of clinical data demonstrated that patients in the
LAR subtype had higher RFS but no difference in DMFS compared
with all other TNBC subtypes, suggesting these patients have local
relapse. The higher RFS could imply that this group of patients
received ineffective therapies (standard chemotherapy); however,
patients in the LAR group were significantly older at diagnosis and
the extent of disease or age-associated comorbidities that affect
the ability to deliver treatment as planned may have contributed
to relapse. Older age at diagnosis has previously been reported in
patients with AR-positive TNBC and is associated with postmeno-
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pausal status (34). Whether this AR-driven subtype is arising from
hormone-replacement therapy (HRT) merits further investigation;
however, it is becoming clear that the risk of breast cancer increases
with HRT, and synthetic progestins such as medroxyprogesterone
acetate have been shown to bind and disrupt AR (59). We identified
5 cell lines that represent the LAR subtype and showed that they
are sensitive to bicalutamide and 17-DMAG, suggesting that thera-
pies targeting AR may be effective against tumors that express this
hormone receptor. In fact, there is a clinical trial (NCT00468715)
underway testing the effect of bicalutamide in preselected patients
with ER/PR-negative AR-positive tumors (60). This further sup-
ports using in silico-based approaches to provide leads for trials
with other targeted therapies in TNBC subtypes.

In addition to agents that target AR function, LAR cell lines were
also sensitive to PI3K inhibition. This sensitivity correlated with
PIK3CA mutations. All 5 LAR cells lines have activating PIK3CA
mutations and are sensitive to the PI3K inhibitor NVP-BEZ2335,
similar to ER-positive breast cancer in which PIK3CA mutations
are common (61, 62). These findings suggest simultaneous target-
ing of AR and the PI3K/mTOR pathway may be of clinical benefit
for LAR TNBC patients, as this combination has been shown to be
synergistic in AR-dependent prostate cancer cells (63).

Our GE analysis of TNBC demonstrates that with sufficient
sample size, distinct subtypes of TNBC can be identified with
putative molecular targets. Our analyses may provide biomark-
ers that can be used for patient selection in the design of clinical
trials for TNBC as well as identification of potential markers of
response to treatment. The identification of cell lines representing
TNBC tumor subtypes provides key models for preclinical studies
with newly developed targeted agents. Further molecular charac-
terization of these TNBC subtypes and cell lines through inte-
grated genomic data analyses of DNA copy number, microRNA,
epigenetic, and whole genome sequencing data sets together with
RNA:I loss-of-function screens will identify new components of the
“driver” signaling pathways in each of these subtypes that can be
targeted in future drug discovery efforts for TNBC.

Methods
Laser capture microdissection, RNA extraction, and GE profiling. Invasive tumor
cells from serial sections of primary breast cancers (n = 112) were captured
onto polymeric caps using the PixCell II lasercapture microdissection
system (Arcturus) as previously described (22). Areas of ductal carcino-
ma in situ and normal breast tissue were excluded and areas of inflam-
mation and areas with tumor-associated fibroblasts were avoided. Total
RNA was isolated from captured cells, quantified, and integrity analyzed,
and microarray analyses were done using Affymetrix GeneChip Human
Genome U133 Plus 2.0 arrays as previously described (22).

Data set collection and TNBC identification by bimodal filtering. We compiled
2353 human breast cancer GE profiles from 14 publicly available breast
cancer microarray data sets (GEO, http://www.ncbi.nlm.nih.gov/gds; Array
Express, http://www.ebi.ac.uk/microarray-as/ae/) including 112 primary
breast cancer GE profiles from our institution (Vanderbilt University Medi-
cal Center). All Vanderbilt tissue samples were taken from individuals treat-
ed at Vanderbilt University with institutional review board approval, and all
patients signed a protocol-specific consent. All GE profiles were generated
on Affymetrix microarrays and collected for identification of TNBCs for the
training data set (Table 1). An additional 894 breast cancer GE profiles from
7 data sets were collected for the identification of TNBCs for the validation
data set (Table 2). Raw GE values for each data set (n = 21) were normalized
independently using RMA procedure. The Affymetrix probes 205225_at,
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208305_at and 216836_s_at were chosen to represent ER, PR, and HER2
expression, respectively (64). For each data set, empirical expression distri-
butions of ER, PR, and HER2 were analyzed using a 2-component Gaussian
mixture distribution model and parameters were estimated by maximum
likelihood optimization, using optim function (R statistical software, http://
www.r-project.org). We then estimated the posterior probability of negative
expression status for ER, PR, and HER2. A sample was classified as hav-
ing negative expression if its posterior probability was less than 0.5. Upon
initial hierarchical clustering, it was evident that some samples were from
the same tumors, but in different data sets. These and additional outliers
were removed after PCA. To ensure all ER/PR/HER2-positive tumors were
removed, a secondary filter was performed on the combined samples iden-
tified by bimodal filtering. TNBC tumors were renormalized along with
S positive controls for each parameter (ER, PR, and HER2) from 4 data sets
that were positive by IHC and expressed mRNA near the center of the posi-
tive bimodal peak (Figure 1B). Only tumors that displayed a greater than
10-fold reduction in expression than the positive controls were considered
negative in expression and used for further analysis, resulting in 386 TNBC
tumors (training set) and 201 TNBC tumors (validation set).

Normalization, data reduction, and cross-platform batch effect removal. Training
(n=386) and validation (n = 201) TNBC data sets identified by the 2-com-
ponent Gaussian distribution model were collectively RMA normalized,
summarized and log-transformed using the combined raw GE from each
data set. For genes containing multiple probes, the probe with the largest
interquartile range across the samples was chosen to represent the gene.
Batch effects were removed by fitting each gene to a linear model with 14
and 7 fixed effects for each data set, respectively. The residual genes from
this model (n = 13,060) were used for subsequent clustering analysis.

GE-based identification of TNBC subtypes. k-means clustering and consensus
clustering were used to determine the optimal number of stable TNBC
subtypes. Cluster robustness was assessed by consensus clustering using
agglomerative k-means clustering (1,000 iterations), with average linkage
on the 386 TNBC profiles using the most differentially expressed genes
(SD > 0.8;n = 1510 genes) (Gene Pattern version 3.2.1, GSE-A, http://www.
broadinstitute.org/gsea/) (19). The optimal number of clusters was deter-
mined from the CDF, which plots the corresponding empirical cumulative
distribution, defined over the range [0,1], and from calculation of the pro-
portion increase in the area under the CDF curve. The number of clusters
is decided when any further increase in cluster number (k) does not lead to
a corresponding marked increase in the CDF area. PCA and heat maps were
generated using Genespring GX ver.10 software (Agilent).

Functional annotation. Each TNBC subtype was tested for gene enrich-
ment compared with all other samples using GSE-A software (20). Genes
were tested for enrichment in the C2 curated gene sets of canonical path-
ways. Using the GSE-A algorithm (1,000 permutations), the top signifi-
cantly enriched canonical pathways were selected based on a normalized
enrichment score (NES) greater than 0.4 and false discovery rate (FDR)
q value of less than 0.60. The FDR cutoff of 0.60 was chosen because of the
lack of coherence in the data set collection spanning 21 studies, and more
stringent FDR cutoffs resulted in fewer results, potentially overlooking
significant pathways.

TNBC subtype gene signature derivation. The 20% of genes with the highest
and lowest expression levels in at least 50% of the samples for each sub-
type were chosen for further analysis. Within each cluster, for each selected
gene, we applied the nonparametric Kruskal-Wallis test to identify genes
significantly different from the median GE amongall 6 groups. Significant
genes with a Bonferroni’s adjusted P value of less than 0.05 were included
in the combined gene signature (n = 2188) for the TNBC subtypes and
used to predict an independent validation set as well as to classify TNBC
cell lines. Each sample from the validation set was assigned to a TNBC
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subtype based on highest Pearson correlation and lowest P value to one
of the subtypes derived from the training data set (Supplemental Table 4).
Samples with correlations differing by a P value of less than 0.05 were con-
sidered unclassifiable.

TNBC cell-line classification. GE data for TNBC cell lines (GSE-10890 and
E-TABM-157) were correlated (Spearman) to the centroids of the GE signa-
tures for each TNBC subtype. GE data from both the TNBC tumors and cell
lines were combined so that each gene was standardized to have mean =0
and SD = 1. GE profiles from the cell lines were correlated to the centroids
for each of the 6 TNBC subtypes (Supplemental Table 11). To remove size
effects of the 6 gene signatures, we estimated the empirical P values for the
correlations using a resampling (bootstrap, n = 1000) approach and esti-
mating correlation coefficients for each resample. Cell lines were assigned
to the TNBC subtype with the highest correlation (Table 3), and those
that had low correlations (<0.1) or were similar between multiple subtypes
(P> 0.05) were considered unclassified.

Cell proliferation/viability assays and ICso determinations. All cell lines and cul-
ture conditions used can be found in Supplemental Methods (Supplemen-
tal Table 12). We performed short tandem repeat (STR) DNA fingerprinting
analysis on all TNBC cell lines used in this study (Cell Line Genetics). All
cell lines matched STR databases (ATCC, DSMZ, and Asterand), and their
identity was confirmed by a certified process at Cell Line Genetics. Breast
cancer cell lines and HMECs were seeded (3,000-10,000 cells) in quadrupli-
cate wells in 96-well plates. Cells were incubated in the presence of alamar-
Blue (Invitrogen), and baseline (predrug) fluorescence (Ex/Em: 560/590
nm) measurements were obtained following overnight attachment.
Medium was then replaced with either fresh medium (control) or medi-
um containing half-log serial dilutions of the following drugs: 0.3-30 uM
olaparib (ChemieTek), 0.3-30 uM veliparib (ChemieTek), 1-100 uM bicalu-
tamide (IPR Pharmaceutical), 0.3-30 uM cisplatin (APP Pharmaceutical),
3-300 nM NVP-BEZ235 (Chemdea), 10-1000 nM 17-DMAG (ChemieTek),
and 0.1-10 uM dasatinib (LC Laboratories). Viability was determined from
measuring fluorescent intensity after metabolic reduction of alamarBlue
in the presence/absence of the drug after 72 hours. Viability assays were
performed in triplicate, and replicates were normalized to untreated wells.
Inhibitory concentration (ICso) values were determined after double-log
transformation of dose response curves as previously described (65). For
analysis of cell-line drug assays, data generated from the different cell lines
representative of TNBC subtypes were compared using the nonparamet-
ric Mann-Whitney U test. All analyses and graphic representations were
performed using Prism software (version 4.0c; GraphPad Software), and
values are represented as the mean + SEM.

Kaplan-Meier survival analysis and Hr. Log-rank test was used to determine
survival significance in TNBC subtypes from Kaplan-Meier survival curves,
RFS, and DMFS. Cox proportional hazards model was used to calculate
Hr, demonstrating differences in survival by pairwise comparison between
TNBC subtypes (P < 0.05).

Xenograft tumor studies. Five-week-old female athymic nude-Foxn1™" mice
(Harlan Sprague-Dawley) were injected (s.c.) with either approximately 5 x 10°
(CAL-51, HCC1806, MDA-MB-468, and SUM185PE) or approximately
10 x 10° (CAL-148 and SUM159PT) cells suspended in medium (200 ul) into
each flank using a 22-gauge needle. The protocols describing the process of
xenograft tumor formation in athymic mice were reviewed and approved by
the Vanderbilt Institutional Review Board. Once tumors reached a volume
of 25-50 mm?3, mice were randomly allocated to treatment or vehicle arms.
Treatments included bicalutamide per oral (100 mg/kg/d), cisplatin i.p.
(8 mg/kg/wk), or NVP-BEZ235 per oral (50 mg/kg/d) in 1:9 N-methylpyrol-
idone: PEG300. Tumor diameters were serially measured at the indicated times
with digital calipers, and tumor volumes were calculated as width? x length/2.
Data points reflect the means and SEM for 16 tumors per treatment.
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performed are described in the relevant Methods sections above. Compari-
sons between cell lines representative of TNBC subtypes were performed
using the nonparametric Mann-Whitney U test. Statistical significance of

Statistics. Description of the relevant statistical methods used and analyses

drug effects on tumor growth in athymic mice was determined by 2-tailed

unpaired ¢ test.
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