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Intratumor heterogeneity is a major clinical problem because tumor cell subtypes display variable sensitivity
to therapeutics and may play different roles in progression. We previously characterized 2 cell populations in
human breast tumors with distinct properties: CD44*CD24- cells that have stem cell-like characteristics, and
CD44-CD24" cells that resemble more differentiated breast cancer cells. Here we identified 15 genes required
for cell growth or proliferation in CD44*CD24- human breast cancer cells in a large-scale loss-of-function
screen and found that inhibition of several of these (IL6, PTGIS, HAS1, CXCL3, and PFKFB3) reduced Stat3 acti-
vation. We found that the IL-6/JAK2/Stat3 pathway was preferentially active in CD44*CD24- breast cancer cells
compared with other tumor cell types, and inhibition of JAK2 decreased their number and blocked growth of
xenografts. Our results highlight the differences between distinct breast cancer cell types and identify targets
such as JAK2 and Stat3 that may lead to more specific and effective breast cancer therapies.

Introduction

Breast tumors display a high degree of intratcumor heterogeneity
that drives the tumor evolution responsible for therapeutic resis-
tance, recurrence, and tumor progression (1, 2). Cancer cells with
stem cell-like properties in particular have been proposed to play a
critical role in metastatic progression and resistance to commonly
used cancer treatment (3-5). These cells can be identified by various
functional assays (e.g., tumor spheres and xenograft assays) and
using specific cell-surface markers. For example, the CD44*CD24-
breast cancer cell population has been shown to be enriched for
tumor-initiating (6) and chemotherapy-resistant (7, 8) cells.

We previously characterized the molecular profiles and func-
tional properties of CD44*CD24- stem cell-like and CD44-CD24"
more differentiated luminal breast cancer cells and identified
genes consistently differentially expressed between them (9, 10).
CD44'CD24- cells highly express genes involved in invasion and
angiogenesis and display activated TGF-B-, Hh-, and PLAU-sig-
naling pathways, whereas markers and pathways of luminal epi-
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thelial differentiation are more abundant in CD44-CD24" cells.
The presence of these 2 cell populations within individual tumors
and their dependence on different signaling pathways for growth
and survival pose a challenge for the effective therapeutic eradica-
tion of breast tumors, especially when specific pathway-targeted
approaches are used. As a proof of principle, we demonstrated
that, in a pleural effusion sample, only CD44'CD24- cells respond
to a TGFBR kinase inhibitor (10).

Based on immunohistochemical analyses of a large cohort of inva-
sive and in situ breast carcinomas for markers of CD44*CD24" and
CD44-CD24" breast cancer cells, we also previously found that sig-
nificant diversity both among and within tumors exists for these
cell types. Overall, CD44*CD24- cells are more frequent in basal-like
breast cancer, whereas luminal tumors are enriched in CD44-CD24*
cells (11, 12). Thus, therapies eliminating CD44*CD24- cells may
represent a new approach for the clinical management of basal-like
breast cancer, currently the only major breast tumor subtype with-
out effective targeted treatment strategies and with poor progno-
sis (13). Our subsequent analysis of genetic alterations present in
CD44'CD24" and CD44-CD24" breast cancer cells at the single-cell
level using immuno-FISH revealed extensive genetic diversity both
within and between the 2 cell populations (14). Thus, even though
these 2 cell populations may have consistently distinct gene expres-
sion profiles, they may not be genetically homogeneous, a character-
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Characteristics of genes and cell lines chosen for shRNA screen. (A) Clustering of SAGE data for the genes in the screen. Genes were selected
based on their differential expression between the groups of samples of CD44+CD24- and CD44-CD24+ (primary tumor) cells shown. Red and
green (in A and B) indicate high and low gene expression, respectively. PE, pleural effusion; ASC, ascites; IDC, invasive ductal carcinoma. (B)
Clustering of previously published microarray data (63) for 54 breast cell lines using the genes in the screen. Clusters of basal-like and luminal
cell lines were formed. The 14 cell lines highlighted in bold were chosen for the screen. (C) Expression of CD44 and CD24 in the cell lines
used in the screen. Results of flow cytometry analysis of CD44 and CD24 levels are shown. Flow cytometry profiles and gating are shown in
Supplemental Figure 1. (D) gMSP data for the cell lines included in the screen for genes differentially methylated between CD44+CD24- and
CD44-CD24+ breast cancer cells (as shown at right). Each bar represents the natural log of the ratio of the gMSP reading of either FOXC1,
HOXA10, or PACAP (official gene symbol, MGC29506) to the gMSP reading of SLC9A3R1. Error bars show SD of triplicates (for cell lines) or
3 ER*PR*HER2- tumor samples (for primary tumor cells). Asterisks indicate the cell lines that were chosen for phase 1 of the screen based on

these results and the ease of their growing in culture.

istic that is likely to influence their sensitivity to therapeutic strate-
gies targeting signaling pathways specifically activated in them.

In order to discover new ways to more effectively eliminate
CD44*CD24- and CD44-CD24" breast cancer cells, here we con-
ducted a large-scale shRNA screen to identify genes and pathways
on which each cell type or both cell types depend. The results of our
screen demonstrate that several signaling pathways are preferentially
active in CD44*CD24- breast cancer cells in primary human tumors
and that by inhibiting these it is possible to obtain effective thera-
peutic response accompanied by the elimination of these cells.

Results

shRNA screen for genes required in CD44*CD24~ and CD44-CD24"* breast
cancer cells. We hypothesized that genes differentially expressed
between CD44°CD24- and CD44-CD24" breast cancer cells might
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be enriched for signaling pathways on which these cells specifically
depend. Thus, we identified 1,576 candidate genes to target based
on their differential expression between these 2 cell populations in
primary human breast tumor samples (10) and their representation
in the TRC lentivirally delivered shRNA library (ref. 15, Figure 1A,
and Supplemental Table 1; supplemental material available online
with this article; doi:10.1172/JCI44745DS1). Due to the need to
reliably and consistently grow large numbers of cells that main-
tain their properties, we chose to conduct the screen in a panel of
breast cancer cell lines resembling CD44*CD24- and CD44-CD24*
breast cancer cells instead of using primary cultures (Supplemen-
tal Table 2). Suitable cell lines were selected based on their gene
expression, cell-surface marker, and DNA methylation profiles
(Figure 1, B-D, and Supplemental Figure 1). Specifically, we identi-
fied several basal-like (BT-549, HCC1937, Hs 578T, MDA-MB-231,
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Figure 2

Identification and validation of genes required in basal-like breast cancer cells. (A) Robust z test scores ([average viability — plate median average
viability)/[plate median absolute deviation of average viability]) from shRNA screen, phase 1, for shRNAs with infection efficiencies greater than
0.25 and robust z test score SD below the 99th percentile for both basal-like and luminal cell lines with and without puromycin (puro). Data repre-
senting basal-like and luminal hits, selected based on their 4 basal-like or luminal robust z test scores as described in the text, are red and blue,
respectively. (B) Scoring of shRNAs with infection efficiencies greater than 0.25 for all cell lines and classification of hits in shRNA screen, phase 2.
Shading indicates shRNAs scored based on percentage of control values ([100 x average viability]/[median average viability of plate controls]).
Genes corresponding to hits are listed. (C) Box plots showing viability of breast cell lines treated with siRNAs in triplicate for 3 days. Triangles mark
averages. Circles mark outliers (which were included in P value calculations). *P < 0.05, t test; **P < 0.01, t test. (D) Glso values for inhibitors in
breast cell lines. The maximum percentage of growth inhibition observed is shown when cells were not affected enough for Gls, calculation. Error
bars show SD of triplicates. All percentage growth inhibition data used to prepare these graphs are depicted in Supplemental Figure 2C.

MDA-MB-468, and SUM159PT) and luminal (BT-474, MCF7,
MDA-MB-453, SK-BR-3, T-47D, and ZR-75-1) breast cancer cell
lines that differentially expressed the 1,576 genes distinguishing
CD44*CD24 and CD44-CD24" breast cancer cells included in the

nancy-associated targets. We used a decrease in viable cell numbers
following infection with lentiviral sShRNAs as the read-out in order
to allow the identification of hits that are required either for cell
survival or for proliferation.

screen (Figure 1B), including CD44 and CD24 (Figure 1C), and
showed differential methylation for FOXCI, HOXA10, and PACAP
relative to SLC9A3R1 (Figure 1D), genes we previously identified
as hypo- and hypermethylated, respectively, in CD44*CD24- com-
pared with in CD44-CD24" cells (9). We also included MCF 10A
and MCF-12A basal-like nontumorigenic, immortalized mam-
mary epithelial cell lines as controls to be able to select for malig-
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We performed the shRNA screen in 2 phases. In phase 1, we
tested TRC shRNAs targeting genes more highly expressed in
CD44'CD24- and CD44-CD24" cells in BT-549 and Hs 578T or in
MCEF7 and T-47D cells, respectively, 2 cell lines highly resembling
each corresponding cell type and easy to cultivate in vitro. Based
on their effects on viability in each pair of cell lines (Figure 2A
and Supplemental Table 3), we identified 83 hits targeting 67
Volume 121 2725
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Figure 3

Preferential activation of the IL-6/JAK2/Stat3 pathway in basal-like breast cancer cells. (A) ELISA results. Error bars show SD of triplicates. (B)
Immunoblots. Positive and negative controls were T-47D cells treated or not treated, respectively, with prolactin and oncostatin M. Stat3, pStat1,
pStat5, and tubulin were used as controls. (C) Immunoblots. Two-hour treatment with 2 uM JAK inhibitor reduces pStat3 in basal-like breast cells

containing it. pserStat3 and Stat3 were used as controls.

genes in the basal-like and 80 hits targeting 65 genes in the lumi-
nal cell lines. In phase 2, we tested these shRNAs in all 14 cell lines
and classified them as basal-like-specific, basal-like, luminal,
and nonselective hits based on the cancer cell lines in which they
scored based on percentage of control values (Figure 2B and Sup-
plemental Tables 4 and 5). A detailed description of how phase 1
and 2 shRNA screen hits were defined is in the Supplemental Data.
Briefly, in regard to the final classification of hits, “basal-like-spe-
cific” hits had to score numerous times almost only in basal-like
cell lines, “basal-like” and “luminal” hits had to score in a large
number of basal-like cell lines and fewer luminal cell lines or vice
versa, and “nonselective” hits had to score in a large number of
both basal-like and luminal cell lines. Besides their basal-like or
luminal cell characteristics, each of the cell lines was derived from
a different tumor and had unique genetic and epigenetic profiles.
Thus, likely due to these differences between cell lines, not all hits
that scored in the 4 cell lines used for the primary screen were clas-
sified as hits in the secondary screen conducted in 14 cell lines.
Notably, the nonselective hits targeted genes known to be essential
in cancer cells such as POLR2A and CSNKIE (16), and most hits
did not affect the MCF 10A and MCF-12A cell lines that were used
as controls. Also, none of the S types of negative control shRNAs
included in the screen were hits in either phase 1 or 2. Thus, over-
all, the shRNA screen appeared to have worked successfully.
Validation of shRNA screen results. We further investigated the
15 genes targeted by the basal-like-specific hits, since they rep-
resent promising therapeutic targets for CD44*CD24- breast
cancer cells. We began our follow-up studies by validating the
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shRNA screen results. First, we treated the screened cancer cell
lines with siRNAs specific for genes targeted by hits (IL6, PTGIS,
CXCL3, PFKFB3,and HASI), genes encoding proteins in their sig-
naling pathways (STAT3; JAK2, encoding a kinase downstream
of IL-6 that phosphorylates Stat3; IL6RA, encoding part of the
IL-6 receptor; and CXCR2, encoding the CXCL3 receptor), or no
genes (as control). All siRNAs effectively decreased the viability
of basal-like compared with luminal cell lines, with nontargeting
and PFKFB3 siRNAs only weakly showing this trend (Figure 2C
and Supplemental Figure 2, A and B), lending support to the
shRNA screen results. Second, we treated the screened cell lines
with small molecule inhibitors for proteins encoded by genes
validated by the siRNA experiments (PTGIS, CXCR2, PFKFB3,
and HAS1), a commercial JAK inhibitor called JAK inhibitor I,
which inhibits JAK2 (in addition to JAK1, JAK3, and TYK2), an
inhibitor of NQO1, an enzyme encoded by a gene included in
both phases of the screen but not ultimately classified as a hit (as
a control), or vehicle alone for 3 days and calculated Gl (con-
centration inhibiting cell growth 50%) values. In cell lines where
the Glsg values of inhibitors were higher than all tested treatment
concentrations, we recorded the maximum observed inhibition
levels relative to vehicle-treated controls. Corroborating the
shRNA screen and siRNA results, all inhibitors except the con-
trol NQO1 and PFKFB3 inhibitors effectively and preferentially
decreased the viability of basal-like cell lines relative to vehicle-
treated controls, at least partially by inducing apoptosis, which
was also induced by the IL6 shRNA that was a hit in the shRNA
screen (Figure 2D and Supplemental Figure 2, A-C).
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Importance of the IL-6/JAK2/Stat3 pathway in tumor growth. (A) Representative immunofluorescence staining patterns for CD44, CD24, and
pStat3 in ER-PR-HER2* inflammatory breast carcinoma (IDC31). Scale bar: 10 microns. (B) Representative immunofluorescence staining patterns
for CD44, CD24, and pStat3 in SUM159PT and IDC31 xenografts. Scale bars: 10 microns. (C) Box plots showing percentage of pStat3+ cells in
SUM159PT and IDC31 mouse xenograft-derived (IDC31-X) xenografts by immunofluorescence and immunohistochemistry, respectively (count-
ing 26 fields per sample). (D) Box plots showing xenograft tumor weights 34, 28, 28, 40, or 70 days after injecting SUM159PT, MDA-MB-231,
MDA-MB-468, Hs 578T, or IDC31-X cells, respectively, into 2 fat pads of n mice. Mice were administered daily NVP-BSK805 (2 mg/mouse) or
vehicle only (control) for 14, 16, 16, 24, or 24 days, respectively (after tumors reached palpable size), beginning 21, 13, 13, 17, or 47 days after
injection, respectively. (E) H&E-stained Hs 578T and IDC31-X xenografts. (F) Box plots showing the percentage of area with cells in Hs 578T
and IDC31-X xenografts calculated from whole tumor sections with H&E staining. (G) Kaplan-Meier curves of SUM159PT xenografts expressing
STAT3 shRNAs (shSTAT3 #1 and #2) in n mice. (H) Immunoblots with cells used for xenografts in G. Tubulin was used as a loading control. (I)
pStat3 immunohistochemistry staining for xenografts in G. Scale bars: 50 microns. Triangles in C, D, and F mark averages. *P < 0.05; **P < 0.01;
***P < 0.001, t test (C, D, and F). ***P < 0.001, log-rank test (comparing each STAT3 shRNA group to the shGFP control group) (G).

Importance of the IL-6/JAK2/Stat3 pathway in basal-like breast can-
cer cells and in vivo. Due to the high level of specificity of the IL6
screening hit and JAK inhibitor in decreasing the viability of basal-
like breast cancer cells (a characteristic not shared by any of the
other inhibitors we tested, which each also decreased the growth
of at least some luminal breast cancer cells by at least 50% with the
concentrations used), we further examined the IL-6/JAK2/Stat3
pathway in this cell type. We confirmed that the IL6 screening hit
effectively and specifically targeted IL6 by showing that it decreased
IL6 mRNA and protein levels (Supplemental Figure 3, A and B),
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that its effect on cell viability could be rescued by the addition of
recombinant human IL-6 (Supplemental Figure 3C), and that it
decreased Stat3 activation, specifically the levels of phosphotyro-
sine-705-Stat3 (pStat3) (Supplemental Figure 3D). We also found
that IL-6 was primarily secreted by basal-like breast cancer cell lines
(Figure 3A), and we saw that IL-6 secretion was accompanied by
high pStat3 levels (Figure 3B), suggesting the presence of an auto-
crine growth regulatory loop. This loop appears to be interrupted
by JAK inhibitor, as demonstrated by the reduction of pStat3 levels
upon such treatment (Figure 3C). The importance of other down-
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Figure 5

Network of genes targeted by the basal-like—specific screening hits. The MetaCore software platform was used to construct the diagram shown.
The 15 genes targeted by the basal-like—specific hits from the shRNA screen and links among them based on published findings are included in the
network. Genes targeted by screening hits are marked with red concentric circles. Red and green arrows indicate inhibitory and activating interac-

tions, respectively. Gray arrows indicate interactions between substrate and reaction or reaction and product or indicate unspecified effects.

stream targets activated by JAK2 (e.g., ERK/MAPK and NF-kB)
in basal-like breast cancer cells cannot be excluded. However, the
strong association among IL-6 secretion, basal-like phenotype, and
pStat3 levels implied that Stat3 is the JAK2 target most relevant
in these cells. Furthermore, inhibitors of ERK/MAPK and NF-xB
signaling do not demonstrate the same degree of basal-like breast
cancer cell specificity as we observed for the JAK inhibitor.

To determine whether JAK2 activity is required for breast tumor
growth, we performed xenograft studies using the SUM159PT,
MDA-MB-468, MDA-MB-231, and Hs 578T basal-like breast cancer
cell lines (selected based on their tumorigenicity in mice and in vitro
response to JAK inhibitors) and patient-derived primary human
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breast tumors in NOD/scid and NOD/scid/Il2ry~~ mice. One of the
primary tumors (IDC31) contained pStat3* CD44*CD24- breast
cancer cells, whereas 2 others (PE18 and IDC50) were mainly com-
posed of pStat3- CD24" cells (Figure 4A, Supplemental Figure 4A,
and data not shown), a pattern that was reproduced in the xeno-
grafts derived from them (Figure 4B and Supplemental Figure 4B).
We used the compound NVP-BSK80S5, aJAK2 inhibitor developed by
Novartis (17) that, like the commercial JAK inhibitor we used earlier,
is highly effective against basal-like breast cancer cells (Supplemen-
tal Figure 4, C-E), for these in vivo experiments since the commer-
cial JAK inhibitor is not suitable for this type of study. Xenografts
were allowed to grow to palpable size before starting treatment in
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Figure 6

Regulation of the JAK2/Stat3 pathway in basal-like breast cancer cells and its clinical significance in primary human breast tumors. (A) Immunob-
lots of pStat3 in basal-like breast cancer cell lines (and MCF7, in which pStat3 is undetectable by immunoblot) after 6-hour inhibitor treatments.
Concentrations used were 2 uM JAK, 1 mM PTGIS, 1.5 uM CXCR2, 10 uM PFKFB3, 1 mM HAS1, and 50 uM NQO1 inhibitor. Stat3 was used
as a loading control. (B) Quantitation of basal-like immunoblots in A. pStat3/Stat3 values represent ratios to control (no drug). (C) Luciferase
assay results using Hs 578T and MCF?7 cells treated with inhibitors for 2 days. Error bars show SD of triplicates. **P < 0.01; ***P < 0.001, ¢ test.
(D and F) Fold changes in tag counts for genes in our Hs 578T and MCF7 Stat3 signatures in SAGE-Seq libraries prepared from Hs 578T or
MCF7 cells treated for 2 days with STAT3 siRNAs (versus nontargeting siRNAs) or inhibitors (versus no drug). Red and green indicate high and
low fold changes, respectively. Each gene in the signatures had Ifold changel > 2 with STAT3 siRNAs and in the same direction with at least
4 inhibitors (not NQO1). (E and G) Significant association of the presence of the Hs 578T Stat3 signature with shorter distant metastasis-free
survival in 2 cohorts of breast cancer patients and lack of such an association for the MCF7 Stat3 signature. Kaplan-Meier curves (for n patients
with and without each signature) and their corresponding log-rank test P values are shown.

F, and G) primary tumors. In addition to the reduction of tumor
weights and cellularity, we also observed reduced leukocyte infiltra-
tion and angiogenesis in mice treated with NVP-BSK80S, which may
reflect the inhibition of pStat3 in these cells or that of tumor-pro-
moting paracrine epithelial-stromal and stromal-stromal cell inter-
actions (Supplemental Figure 4H).

To further strengthen the link between JAK2 and Stat3 in basal-
like breast cancer cells, we also transplanted mice with SUM159PT

order to test the efficacy of the inhibitor on established tumors.
This treatment regimen would more closely resemble clinical treat-
ment situations than would starting treatment before tumors are
palpable. We observed a decrease in the number of pStat3* cells in
xenografts with NVP-BSK805 treatment (Figure 4, B and C), and
NVP-BSK805 treatment significantly reduced tumor weights in
most xenografts (Figure 4D). Notably, tumors that did not display
statistically significant reduction in tumor weights (xenografts from

Hs 578T cell line and IDC31 primary tumor) nonetheless responded
with significant reduction in their cellularity (Figure 4, E and F),
corroborating the trend toward smaller tumors with the inhibitor.
Importantly, the effect of NVP-BSK805 treatment was only evident
in xenografts derived from pStat3* (mostly CD44'CD24") (Figure 4,
B-F) but not pStat3- (mostly CD24") (Supplemental Figure 4, B,
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cells in which STAT3 had been knocked down using lentivirally
delivered shRNAs from the TRC library. Tumors derived from cells
with Stat3 knockdown displayed substantial delay in their out-
growth (Figure 4, G and H). Notably, all of the mice in this experi-
ment eventually suffered tumor-related morbidity due to their
outgrowth of pStat3* xenografts (Figure 4I), suggesting strong
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Specific activation of Stat3 in CD44+CD24- cells in primary human breast tumors. (A) Representative immunofluorescence staining patterns
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Triangles mark averages. *P < 0.001. (D) Model of Stat3 activation in breast cancer. CD44+CD24- stem cell-like cancer cells have constitutive
pStat3 due to expression of genes such as /L6, PTGIS, and HAS1. Other cancer cells are sometimes pStat3* due to uptake of IL-6 secreted by

CD44+CD24- cancer cells, fibroblasts, and inflammatory cells.

selective pressure to restore pStat3 activity. Despite these results
demonstrating strong requirements for both pStat3 and JAK2
for tumorigenicity, we cannot exclude the possibility that some
effects of the JAK2 inhibitor are independent of IL-6 and Stat3. For
example, recent data implicate JAK2 in the regulation of histone
modification patterns (18, 19). However, based on our results and
building upon the findings of others (20-23), the IL-6/JAK2/Stat3
pathway appears to actively and preferentially promote the growth
and survival of basal-like breast cancer cells.
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Causes and effects of Stat3 activation and its clinical significance. Because
not all basal-like breast cancer cells depended on IL6 despite their
high pStat3 and JAK inhibitor sensitivity, and since we found
no evidence for the mutational activation of this pathway in
these cells (data not shown), we explored potential links between
the JAK2/Stat3 pathway and the genes targeted by the 15 basal-
like-specific hits by creating a signature network with them using
MetaCore (24). Interestingly, this network includes Stat3 as a key
downstream transcriptional effector, emphasizing its critical role
July 2011
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in CD44*CD24" basal-like breast cancer cells (Figure S). To test
the validity of this network in breast cancer, we treated 3 pStat3*
basal-like breast cancer cell lines with the 4 basal-like-specific hit
inhibitors that we used in earlier experiments in this study (and the
commercial JAK inhibitor, NQO1 inhibitor, and vehicle alone as
controls) and analyzed pStat3 levels at an early time point (6 hours)
after treatment, prior to signs of apoptosis and cell cycle arrest. The
PTGIS and HAS1 inhibitors decreased pStat3 relative to total Stat3
in the 3 basal-like cell lines (Figure 6, A and B), and, along with
the CXCR2 and PFKFB3 inhibitors, decreased Stat3 transcrip-
tional activity in Hs 578T cells in a statistically significant manner
(Figure 6C). Observation of a more significant inhibition of Stat3
transcriptional activity than decrease in pStat3 levels is likely due
to the higher sensitivity of the transcriptional activity assay relative
to immunoblot analysis. The striking lack of effect of the NQO1
inhibitor on pStat3 activity seems to indicate that NQO1 is not
important in the IL-6/JAK2/Stat3 pathway in basal-like breast cells,
a finding consistent with the absence of a strong preference of the
inhibitor on basal-like breast cell viability (Figure 2D). In fact, an
NQO1I-targeting shRNA was a luminal hit in phase 1 of the shRNA
screen, so perhaps this gene affects some pathway more specific to
luminal breast cancer cells.

To further investigate the link between Stat3 transcriptional
activity and other signaling pathways, we determined the gene
expression profiles of Hs 578T basal-like and MCF7 luminal breast
cancer cells treated with the PTGIS, HAS1, CXCR2, PFKFB3, com-
mercial JAK, and NQO1 inhibitors, inhibitor treatment vehicle
alone, STAT3 siRNAs, or nontargeting siRNAs (Supplemental Fig-
ure SA). For each cell line, among genes significantly regulated
by STAT3 siRNAs (| fold change| > 2 and |z test score| > 2.33),
we identified those similarly affected (same direction fold change)
by at least 4 inhibitors but not by the NQO1 inhibitor (Figure 6,
D and F, and Supplemental Tables 6 and 7). We called the 2 sets
of genes identified in this way our Hs 578T and MCF7 Stat3 sig-
natures. The signature definition process was designed to select
genes regulated specifically by activated Stat3 (by requiring genes
to be regulated by STAT3 siRNAs and also by several of the inhibi-
tors that regulate pStat3 levels but not by the NQO1 inhibitor,
which does not affect pStat3 levels). In Hs 578T cells, 968 genes
were significantly regulated by STAT3 siRNAs, and 113 of these
were identified as the Stat3 signature; in MCF7 cells, 556 genes
were significantly regulated by STAT3 siRNAs, and 55 of these
were identified as the Stat3 signature. Interestingly, the Hs 578T
but not the MCF7 Stat3 signature was enriched in genes involved
in development (Supplemental Figure 5B), such as IRX3, HOXAI0,
and FGF1. We repeated the expression profiling experiment in
SUM159PT basal-like breast cancer cells and found some overlap
between the genes regulated by STAT3 siRNAs in this cell line and
in Hs 578T cells but very little overlap between the genes identi-
fied as a SUM159PT Stat3 signature using the same method used
to identify the Hs 578T and MCF7 signatures and the Hs 578T
Stat3 signature (data not shown), a finding consistent with prior
studies demonstrating strong cell-type specificity of STAT3 tran-
scriptional responses (25). Interestingly, we did find less overlap
between the genes significantly regulated by STAT3 siRNAs and
the Stat3 gene signatures identified in MCF7 and in either Hs
S578T or SUM159PT.

To investigate the potential clinical relevance of our Hs 578T
Stat3 gene signature and to determine whether, similar to our
CD44*CD24" cell gene signature (10), it identifies breast cancer
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patients with poor clinical outcome, we compared its presence in 2
independent sets of public gene expression data with correspond-
ing clinical outcome information (26-28). In each data set, tumors
were considered to have the Stat3 signature if they had average
expression values for all genes in the signature downregulated
by STAT3 siRNAs above the 60th percentile and average expres-
sion values for all genes in the signature upregulated by STAT3
siRNAs below the 40th percentile. We found that the activation
of the Stat3 pathway, represented as expression of our Hs 578T
Stat3 gene signature, in primary lymph node-negative invasive
breast tumors was associated with shorter distant metastasis-free
survival at a statistically significant rate (Figure 6E and Supple-
mental Figure 5C). While this signature was not associated with
estrogen receptor (ER) status in a statistically significant way,
we observed a trend toward shorter distant metastasis-free sur-
vival in the presence of the signature among the groups of ER*
tumors only from each data set (but not among both groups of
ER- tumors only, probably due to small sample size) (Supplemen-
tal Figure 5D and Supplemental Table 8), indicating that the Hs
578T Stat3 signature is likely clinically relevant in ER* tumors. We
also found that expression of our MCF7 Stat3 signature in the
same sets of primary tumors is not associated with shorter distant
metastasis-free survival (Figure 6G and Supplemental Figure 5C).
The expression of the set of genes significantly regulated by STAT3
siRNAs in Hs 578T cells in primary tumors (defined as average
expression values for all genes downregulated by STAT3 siRNAs
above the 60th percentile and average expression values for all
genes upregulated by STAT3 siRNAs below the 40th percentile)
was not associated with shorter distant metastasis-free survival
in the 2 public gene expression data sets used (data not shown).
These findings are consistent with the preferential activation of
Stat3 in stem cell-like CD44*CD24- breast cancer cells in primary
tumors, as we previously associated the presence of more of these
cells with increased risk of distant metastasis in the same patient
cohorts (9, 10). Furthermore, the convergence to Stat3 of multiple
other signaling pathways on which these cells depend indicates
that the activation of Stat3 is centrally important for the mainte-
nance of CD44*CD24 stem cell-like breast cancer cells.

Specific activation of Stat3 in CD44*CD24- breast cancer cells in prima-
ry human tumors. To investigate the specificity of Stat3 activation
in primary human breast tumors in further detail, we performed
triple immunofluorescence analysis of CD44, CD24, and pStat3
expression in 170 invasive ductal breast carcinomas (Figure 7A),
most of which were on a tissue microarray. We have previously
analyzed slides from the same tissue microarray for the expression
of multiple CD44'CD24- and CD44-CD24" cell-specific markers
and also for cytokeratins (11); thus, we were able to differentiate
the tumor epithelial and stromal cells with high confidence. CD24
is mainly expressed in tumor epithelial cells and a minor subset of
leukocytes, whereas the expression of CD44 is more promiscuous
and can also be detected in various stromal cells. Based on these
analyses, we found that, statistically, CD44*CD24- breast cancer
cells are significantly more likely than other breast cancer cell
types to contain pStat3, whereas CD44-CD24* breast cancer cells
are the least frequently pStat3* (Figure 7B). This was true within
each breast tumor subtype examined (Figure 7C), even though the
frequency of the 4 cell types defined based on CD44 and CD24
staining patterns varied according to subtype, with basal-like
tumors containing the highest frequency of CD44*CD24- cells
(Supplemental Figure 6).
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Discussion

Breast cancer cells with a CD44*CD24- phenotype and stem cell-
like features have been proposed to be resistant to cancer therapies
(3-5,7, 8), suggesting that their effective elimination may require
the identification of signaling pathways on which they are depen-
dent. Here we demonstrate that using unbiased screening strate-
gies, it is possible to identify such genes and pathways and that
therapeutic inhibition of these can be used for the effective elimi-
nation of these cells.

Technical considerations forced us to conduct the shRNA screen
reported here on breast cancer cell lines resembling CD44*CD24-
and CD44-CD24* primary tumor cells rather than primary tumor
cell cultures. However, the results were validated in primary
human breast tumors as well as in xenografts derived from them.
Although the genetic differences among the breast cancer cell lines
may have influenced the shRNA screen results, as signaling path-
ways may function differently in different contexts, we previously
showed that, even within primary human tumors, CD44*CD24-
and CD44-CD24" breast cancer cells are highly genetically hetero-
geneous despite having consistent gene expression patterns (14).
Thus, our screen demonstrated that it is possible to identify signal-
ing pathways active in CD44'CD24- breast cancer cells, the target-
ing of which can be used for the elimination of these cells despite
their underlying genetic heterogeneity. Therefore, we believe that
our findings are directly applicable to primary patient tumors.

We mainly focused on the 15 genes targeted by the basal-like-
specific hits in our follow-up studies since they represent prom-
ising therapeutic targets for CD44*CD24" breast cancer cells,
which we observed at the highest frequency in basal-like breast
tumors, a tumor subtype with no effective targeted therapy. Inter-
estingly, many of these 15 genes encode secreted and extracellular
matrix-related proteins, suggesting that CD44*CD24- cells may
produce and depend on their own niche. In addition, many of
them have been associated with stem cell maintenance, can-
cer cell survival, or poor breast cancer prognosis. In particular,
and most relevant to the bulk of our follow-up studies, IL6 is
implicated in the maintenance of stem cell-like cancer cells (29)
and progenitor-enriched mammosphere formation (30), and its
downstream effector Stat3 enforces the undifferentiated state in
murine embryonic stem cells (31). Furthermore, high IL-6 levels
have been associated with poor clinical outcome in breast cancer
patients (32). Recent studies have demonstrated a critical role
for IL-6 and Stat3 for the survival of intestinal epithelial cells in
colitis-associated cancer (29, 33, 34), and a similar link between
IL-6-mediated inflammation and cellular transformation was
also observed in mammary epithelial cells (35).

Two other genes encoded by basal-like-specific hits besides IL6
that also appear to be of prime importance in CD44*CD24- breast
cancer cells are PTGIS and HASI. PTGIS, encoding prostacyclin
synthase, is related to PTGES, a gene required for hematopoietic
stem cell maintenance (36). Furthermore, the use of NSAIDs has
been associated with decreased breast cancer risk (37) and with
improved clinical outcome in breast cancer patients largely due
to decreased risk of distant metastasis (38). NSAIDs inhibit the
production of prostaglandins, which is catalyzed by PTGIS and
PTGES. Thus, inhibition of the prostaglandin pathway may be
beneficial in breast cancer treatment by reducing the number
of CD44°CD24" stem cell-like cells. HASI encodes hyaluronan
synthase 1, which catalyzes the production of hyaluronic acid, a
ligand for CD44, and SPPI (encoding osteopontin and targeted
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by a basal-like hit) regulates HASI and also binds CD44 (39), sup-
porting the idea that CD44 promotes the viability of stem cell-like
breast cancer cells in addition to marking them (40). Correlating
with this, CD44 was shown to be required for the survival of leu-
kemia cancer stem cells (41), and hyaluronic acid synthases have
been linked to invasiveness and metastatic behavior in multiple
cancer types (42). Surprisingly, CD44 shRNAs were included in
our shRNA screen but did not show up as hits. There are many
possible explanations for why a HASI shRNA was a hit and CD44
shRNAs were not. One possibility is that CD44 is indeed required
for cell growth or proliferation but was not represented by a hit
due to a technical reason such as inefficient targeting of the gene
by the CD44 shRNAs used in the screen. Another is that HAS1 may
be acting functionally independently of CD44 in its cell viability
role, as there are other receptors for hyaluronic acid.

Additional genes encoded by basal-like-specific hits of interest
include CXCL3,1SG15, PFKFB3, and IGFBP7. CXCRI, a homolog of
the CXCL3 receptor gene CXCR2, is implicated in breast stem cell
survival (43), and CXCL3 expression is higher in more aggressive
breast tumors (44). Similarly, ISG1S is associated with poor prog-
nosis in breast cancer patients (45). PEFKFB3 encodes a glycolytic
enzyme, and its higher expression and specificity for basal-like
breast cancer cells correlate with our findings that basal mam-
mary epithelial cells have higher glycolytic activity than luminal
ones (46). Inhibition of PFKFB3 has been able to reduce tumor
growth in preclinical models (47). Furthermore, PFKFB3 is one of
the genes in the CD44*CD24- cell gene signature we previously
linked to increased risk of distant metastasis and poor clinical
outcome in breast cancer patients (10). IGFBP7 is a target of the
TGF-f pathway (48), which we showed is specifically activated in
CD44*CD24" breast cancer cells (10), and the phenotype of the
Igfbp7~/~ mouse suggests that this gene may be critical in the main-
tenance of mammary epithelial stem cells (A. Burger, personal
communication). Thus, the identity of the basal-like-specific hits
is consistent with CD44*CD24- cells displaying more stem cell-
like features, as several of the signaling pathways targeted by these
hits have been shown to be required for the survival of stem cells in
breast or other organ types and are potential therapeutic targets.

Based on our follow-up studies, we demonstrated that the 15
basal-like-specific hits form a compact network with Stat3 as a
key downstream transcriptional mediator. Inhibition of genes that
encode proteins that regulate Stat3 in this network would be pre-
dicted to downregulate Stat3 activity. For instance, HAS1 is linked
to Stat3 in Figure S via the production of hyaluronic acid, which
then binds to hyaluronic acid receptors (e.g., CD44) and activates
downstream signaling pathways leading to the activation of Stat3.
Experimental validation of this network showed that inhibition
of PTGIS, CXCR2, HAS1, and PFKFB3 decreases pStat3 levels and
transcriptional activity. These findings correlate with prior reports
describing a link between the enzymatic activities of PTGIS and
HAS1 and Stat3 signaling (49, 50). Based on our comprehensive
gene expression profiling of basal-like breast cancer cells treated
with STAT3 siRNAs and the various inhibitors, we also identified
a Stat3 gene signature commonly affected by them and demon-
strated that this is associated with increased risk of distant metas-
tasis in breast cancer patients. These results emphasize the central
importance of Stat3 in CD44*CD24 stem cell-like breast cancer
cells and the clinical relevance of this cell type. This Stat3 signa-
ture is not simply associated with or significant in ER- (basal-like)
tumors, which is in line with our findings that tumors of all differ-
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ent types can contain a proportion of CD44"CD24- cells. We sup-
pose that tumors containing more Stat3 activation, either due to
the presence of many CD44*CD24- cells or to paracrine activation
of other cell types by a few of these cells, are more aggressive.

The JAK2/Stat3 pathway has been intensely investigated in
breast and other cancer types (51). Constitutive activation of
Stat3 signaling due to mutations in JAKI and JAK2 has been
demonstrated in various hematopoietic malignancies (52), and
JAK inhibitors are already in different phases of clinical trials
for the treatment of these diseases (53). Mutations in the gene
encoding gp130, a receptor upstream of JAKs that mediates
the action of several cytokines including IL-6, have also been
reported in inflammatory hepatocellular tumors (54). In breast
cancer, mutations in JAKs have not been described yet, although
a recent whole-genome sequencing study of a basal-like breast
tumor did identify a JAK2 mutation with unknown functional
significance (55). Thus, mutational activation of the JAK2/Stat3
pathway is unlikely to be responsible for its frequent activation in
breast cancer. Instead, we hypothesize that CD44*CD24" and even
CD44"CD24" breast cancer cells have high pStat3 due to their
expression of genes that increase it, such as IL6, PTGIS, and HAS1,
activating an autocrine loop, whereas some CD44-CD24" and
CD44-CD24 breast cancer cells are pStat3* due to their uptake of
IL-6 (or other cytokines) secreted by neighboring CD44" cells and
stromal inflammatory cells and fibroblasts (ref. 56 and Figure 7D).
We were not able to derive xenografts from primary breast tumors
that contain pStat3* CD44-CD24" breast cancer cells; thus, at this
time, we cannot determine if therapeutic responses to JAK2 inhib-
itor treatment correlate with the presence of pStat3 irrespective of
the presence of a CD44" stem cell-like phenotype. Thus, therapeu-
tic inhibition of JAK2/Stat3 signaling might be effective not only
in basal-like breast tumors highly enriched in CD44*CD24- breast
cancer cells, but also in other tumor subtypes that contain pStat3*
breast cancer cells. Furthermore, we observed a more pronounced
effect of the JAK2 inhibitor on tumor cell growth in vivo than
in cell culture, potentially due to its ability to interrupt tumor-
promoting paracrine epithelial-stromal and stromal-stromal cell
interactions important for angiogenesis. Systemic inhibition of
the JAK pathway appears to be nontoxic, as several JAK inhibi-
tors are already in clinical trials and have been well tolerated with
minimal side effects (53).

In summary, we identified multiple signaling pathways that are
specifically required for the viability of CD44*CD24 breast cancer
cells and regulation of Stat3 activation in those cells, which are
highly represented in basal-like breast tumors. Inhibition of these
pathways is a promising strategy for targeting these stem cell-like
breast cancer cells in all tumors that contain them. This type of
therapy may be effective in conjunction with other treatments
designed to eliminate other breast cancer cell types, and such a
combined treatment strategy may also help prevent therapeu-
tic resistance and limit side effects of cancer treatment. Because
inhibitors against the IL-6/JAK2/Stat3 and CXCL3/CXCR2 path-
ways are already in clinical trials for other indications (57, 58), our
findings may be rapidly translated into breast cancer treatments.

Methods

Cells and tissue specimens. Tumor samples were collected using protocols
approved by the Institutional Review Board at Brigham and Women’s Hos-
pital. Cell lines were obtained from ATCC (except for SUM159PT, which was
obtained from S. Ethier, University of Michigan, Ann Arbor, Michigan, USA)
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and cultured according to their recommendations. Cells were always cul-
tured at 37°C with 5% CO; in the medium used for the shRNA screen. Cell
viability was always measured using CellTiter-Glo (Promega).

shRNA screen and validation. For screening, cells were infected in duplicate
with and without puromycin in 8 ug/ml polybrene (H9268; Sigma-Aldrich)
1 day after plating and assessed 6 days later for viability. Specific growth,
infection, and selection conditions were used for each cell line (Supplemen-
tal Table 9). Quantitative methylation-specific PCR (QMSP) was performed
as previously described (9). Inhibitors included JAK inhibitor I (420099;
Calbiochem), tranylcypromine (inhibits PTGIS) (59) (P8511; Sigma-
Aldrich), 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-1 (inhibits PFKFB3)
(47) (provided by J. Chesney, University of Louisville, Louisville, Kentucky,
USA), N-(2-Hydroxy-4-nitrophenyl)-N'-(2-bromophenyl)urea (inhibits
CXCR2) (60) (559405; Calbiochem), 4-methylumbelliferone (inhibits
HAS1) (40) (M1381; Sigma-Aldrich), and 1,4-dimethoxy-2-methylnaphtha-
lene (inhibits NQO1) (61) (provided by D. Criddle, University of Liverpool,
Liverpool, United Kingdom). siGENOME SMARTpools and Non-Target-
ing siRNA #2 were introduced into cells at 0.1 uM using DharmaFECT 1
(Dharmacon). Sequences of the siRNAs in the SMARTpools are listed in
Supplemental Table 10. Cells were assayed for caspase activation using the
Apo-ONE Homogeneous Caspase-3/7 Assay (Promega) and for cell cycle
by PI (propidium iodide) staining. More details on all shRNA screen and
validation procedures are included in the Supplemental Data.

IL6 shRNA validation, Stat3 activity, immunofluorescence, immunohistochemistry,
immunoblots, and flow cytometry. Sequences of the IL6 shRNAs and qRT-PCR
primers used are listed in Supplemental Table 10. qRT-PCR was per-
formed as previously described (9). IL-6 levels measured by ELISA
(EH2IL6S; Thermo Scientific) were adjusted for cell number. Recom-
binant human IL-6 (rhIL-6) (eBioscience 14-8069-62) was added every
24 hours for 3 days. Antibodies for immunoblots, immunohistochemistry,
and immunofluorescence were pStat3 (9131; Cell Signaling), Stat3
(sc-482; Santa Cruz Biotechnology Inc.), pStatl (33-3400; Zymed), pStat5
(9359; Cell Signaling), tubulin (T-5168; Sigma-Aldrich), phosphoserine-
727-Stat3 (pserStat3) (62), CD24 (clone SN3b; Thermo Scientific), and
CD44 (clone 156-3C11; Thermo Scientific). Antibodies for flow cytom-
etry were PE-CD44 (555479; BD Biosciences) and Alexa Fluor 647-CD24
(311110; BioLegend). For Stat3 transcriptional activity assays, the m67-luc
reporter construct (provided by J. Bromberg, Memorial Sloan-Ketter-
ing Cancer Center, New York, New York, USA) and pRL-TK (Promega)
were introduced into cells with Lipofectamine 2000 (Invitrogen). More
details on all IL6 shRNA validation, Stat3 activity, immunofluorescence,
immunohistochemistry, immunoblots, and flow cytometry procedures are
included in the Supplemental Data.

Xenograft assays. For xenograft assays, cells were injected with 50% Matri-
gel (354234; BD Biosciences) in DMEM/F12 or Medium 171 (except for
IDCS50-X cells, which were injected with 3% FBS and 4 mg/ml collagen gel
in Medium 171). Animal experiments were conducted following protocols
no. 04330 and no. 04089 approved by the Harvard Medical School Animal
Care and Use Committee. Sequences of the STAT3 shRNAs used are listed
in Supplemental Table 10. More details on these experiments, including
how primary tumor samples were processed prior to xenograft studies, are
in the Supplemental Data.

Gene expression profiling and computational and statistical data analyses.
Details of SAGE-Seq (serial analysis of gene expression combined with the
Illumina/Solexa 1G platform) implementation and all clustering, clinical
outcome, and gene ontology analyses are included in the Supplemental
Data. Statistics used in our studies included 2-tailed, 2-sample equal-vari-
ance Student’s ¢ tests and generalized linear model score tests adjusted for
multiple comparisons. For ¢ test, log-rank test, and % test, P < 0.05 was
considered statistically significant. For score tests, P < 0.001 was consid-
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ered statistically significant. The SAGE-Seq data reported in this paper
have been deposited in the SAGE Genie database (http://cgap.nci.nih.gov/
SAGE) and in NCBI GEO (accession number GSE22917).
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