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Dyslipidemia	is	an	independent	risk	factor	for	type	2	diabetes,	although	exactly	which	of	the	many	plasma	lip-
ids	contribute	to	this	remains	unclear.	We	therefore	investigated	whether	lipid	profiling	can	inform	diabetes	
prediction	by	performing	liquid	chromatography/mass	spectrometry–based	lipid	profiling	in	189	individu-
als	who	developed	type	2	diabetes	and	189	matched	disease-free	individuals,	with	over	12	years	of	follow	up	in	
the	Framingham	Heart	Study.	We	found	that	lipids	of	lower	carbon	number	and	double	bond	content	were	
associated	with	an	increased	risk	of	diabetes,	whereas	lipids	of	higher	carbon	number	and	double	bond	con-
tent	were	associated	with	decreased	risk.	This	pattern	was	strongest	for	triacylglycerols	(TAGs)	and	persisted	
after	multivariable	adjustment	for	age,	sex,	BMI,	fasting	glucose,	fasting	insulin,	total	triglycerides,	and	HDL	
cholesterol.	A	combination	of	2	TAGs	further	improved	diabetes	prediction.	To	explore	potential	mechanisms	
that	modulate	the	distribution	of	plasma	lipids,	we	performed	lipid	profiling	during	oral	glucose	tolerance	
testing,	pharmacologic	interventions,	and	acute	exercise	testing.	Levels	of	TAGs	associated	with	increased	
risk	for	diabetes	decreased	in	response	to	insulin	action	and	were	elevated	in	the	setting	of	insulin	resistance.	
Conversely,	levels	of	TAGs	associated	with	decreased	diabetes	risk	rose	in	response	to	insulin	and	were	poorly	
correlated	with	insulin	resistance.	These	studies	identify	a	relationship	between	lipid	acyl	chain	content	and	
diabetes	risk	and	demonstrate	how	lipid	profiling	could	aid	in	clinical	risk	assessment.

Introduction
Several prospective studies have identified dyslipidemia, particu-
larly hypertriglyceridemia, as an independent predictor of incident 
type 2 diabetes mellitus (1–5). However, in contrast to a discrete 
metabolite such as glucose, plasma lipids are composed of doz-
ens of distinct molecules. For example, combinations of various 
acyl chains esterified to a glycerol backbone generate numerous 
unique triacylglycerols (TAGs). Standard clinical measurement of 
TAGs relies on the measurement of total glycerol following acyl 
chain hydrolysis (6), thus obscuring this underlying diversity.

We have developed a liquid chromatography/mass spectrom-
etry–based (LC/MS-based) lipid profiling platform that measures 
intact lipids across a variety of lipid classes: TAGs, cholesterol 
esters (CEs), lysophosphatidylcholines (LPCs), phosphatidylcho-
lines (PCs), lysophosphatidylethanolamines (LPEs), diacylglycer-
ols (DAGs), and sphingomyelins (SMs). Within each lipid class, 
this method further distinguishes analytes on the basis of total 
acyl chain carbon number and double bond content. These factors 
define each lipid’s molecular weight, which in turn determines the 

lipid’s detection in the mass spectrometer. We have applied this 
platform to the study of human plasma and are able to reproduc-
ibly detect and quantify more than 100 lipid analytes in 10 μl of 
starting volume. Because TAGs are composed of 3 acyl chains, this 
class of lipids has a particularly broad range of molecular weights; 
our platform monitors 42 distinct TAGs. Discriminating plasma 
lipids at this level of detail has the potential to improve diabetes 
prediction and shed insight on the intersection between dyslipid-
emia and metabolic risk. To our knowledge, however, this hypoth-
esis has not been examined in a prospective study.

Here, we report the application of lipid profiling to plasma 
obtained from participants in the community-based Framing-
ham Heart Study cohort (FHS). Prior investigations in this well-
established cohort have highlighted the differential risk of athero-
sclerosis attributable to distinct components of total cholesterol, 
i.e., LDL cholesterol versus HDL cholesterol (7). With access to 
archived plasma samples, detailed phenotyping, and longitudi-
nal follow up, this sample provides an ideal opportunity to test 
whether lipid profiling can improve diabetes prediction beyond 
available metrics of dyslipidemia. To explore the mechanisms by 
which lipid analytes might contribute to diabetes risk prediction 
in humans, we also performed lipid profiling in the context of oral 
glucose tolerance testing (OGTT) in FHS and following pharma-
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cologic manipulation of insulin levels (glipizide and metformin 
administration) and modulation of insulin sensitivity with acute 
exercise in independent cohorts. Finally, we used tandem MS, col-
lision-induced dissociation analyses to identify the acyl chain con-
stituents of disease predictors identified in FHS. Taken together, 
these experiments generate a more granular view of dyslipidemia 
and type 2 diabetes risk prediction in humans.

Results
Establishing a nested case-control study to enable identification of lipid pre-
dictors of type 2 diabetes. The Offspring Cohort of the FHS is a lon-
gitudinal, community-based cohort initiated in 1971 (8). Between 
1991–1995, designated as the “baseline” examination period for 
the present investigation, 2,422 individuals from this cohort 
underwent OGTT and were eligible for analyses. Since that time, a 
total of 193 individuals developed new-onset type 2 diabetes over 

a 12-year follow up period. These individuals were designated as 
cases. We selected sex-matched controls, using propensity score 
matching with a logistic model that included age, BMI, fasting 
glucose, and hypertension status. Using this approach, a matched 
control was identified for all but 4 cases, yielding a final study 
sample of 189 cases and 189 controls. Characteristics of the FHS 
study sample are shown in Table 1, and subject selection is fur-
ther detailed in the Methods. As expected, there were no statisti-
cally significant baseline differences between cases and controls 
with respect to variables incorporated into the matching process. 
However, there were significant differences in total triglycerides 
(P < 0.0001) and HDL cholesterol (P = 0.0007) between cases and 
controls, establishing a unique opportunity to explore the role of 
dyslipidemia in type 2 diabetes prediction.

Lipid profiling identifies a lipid pattern of diabetes risk. Lipid profiling 
was performed on fasting pre-OGTT and 2-hour post-OGTT plas-
ma samples obtained from the baseline examination for all 378 FHS 
study participants. Figure 1A shows the ratio of each lipid analyte 
in fasting pre-OGTT plasma in those who went on to develop dia-
betes (cases) versus those who did not (controls). Figure 1B shows 
the differences in OGTT-triggered lipid changes between cases and 
controls — as demonstrated in these figures, analyte levels in pre-
OGTT plasma appeared to be more discriminating of case status 
than analyte responses to OGTT. While many lipids analytes were 
higher in cases than controls, some had the reverse association. The 
largest differences, regarding both the magnitude and significance 
of the association (as reflected by the P value), were noted among 
TAGs. This result was not surprising given the imbalance in total 
triglycerides between cases and controls. However, we also identi-
fied a striking, downsloping pattern in which TAGs of relatively 
lower carbon number and double bond content were most signifi-
cantly elevated in cases relative to controls (Figure 2A). When the 
comparison was restricted to the most insulin-sensitive individuals, 
by focusing on the bottom quartiles of homeostasis model assess-
ment of insulin resistance (HOMA-IR), the pattern was unchanged 
between cases versus controls (Figure 2B); mean HOMA-IR was 
1.03 for cases and 1.01 for controls (P = 0.36) in this subset. Figure 3 
shows that the downsloping relationship between diabetes risk and 
carbon number and double bond content was also present among 
CEs, LPCs, PCs, and LPEs but not SMs.

Diabetes risk pattern persists after adjustment in multivariable analysis. 
Given the imbalance in total triglycerides and HDL cholesterol 
between cases and controls at the baseline examination (Table 1), 
we tested whether the relationship between diabetes risk and lipid 

Table 1
Baseline characteristics of the FHS study sample

	 Individuals	who		 Individuals	who		
	 developed	diabetes		 did	not	develop		
	 (n	=	189)	 diabetes		
	 	 (n	=	189)

Clinical	characteristics	 	
Age (yr) 56 ± 9 57 ± 8
Women (%) 42% 42%
BMI (kg/m2) 30.5 ± 5.0 30.0 ± 5.5
Waist circumference (cm) 40.3 ± 4.8 39.2 ± 5.3
Hypertension (%) 53% 53%
Parental history of diabetesA (%) 28% 15%
Physical activity index 35 ± 6.2 35 ± 7.3

Other	laboratory	tests	 	
Fasting glucose (mg/dl) 105 ± 9 105 ± 9
2-h glucose (OGTT) (mg/dl) 126 ± 32 118 ± 30
Fasting insulin (μIU/ml) 13.7 ± 9.9 11.9 ± 8.8
HOMA-IR 3.5 ± 2.6 3.1 ± 2.3
Serum triglyceridesB (mg/dl) 192 ± 114 151 ± 90
Total cholesterol (mg/dl) 212 ± 36 209 ± 36
HDL cholesterolB (mg/dl) 43 ± 12 47 ± 14
Serum creatinine (mg/dl) 0.83 ± 0.24 0.88 ± 0.23

Values are mean ± SD or percentage. AParental history information miss-
ing in 57 participants. BP < 0.05 for difference between cases and controls.

Figure 1
Case-control comparison for all lipid analytes 
in FHS. (A) The geometric mean ratio of each 
lipid analyte level for cases versus that for con-
trols in fasting pre-OGTT plasma. (B) The mean 
difference in percentage of change 2 hours  
after an oral glucose challenge in cases versus 
that in controls (percentage of change [chg] 
in cases minus percentage of change in con-
trols). For both plots, P values are plotted on 
the y axis, and each data point represents a 
distinct lipid analyte.
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carbon number and double bond content persisted after multi-
variable adjustment. Conditional logistic regression models were 
fitted to assess the association between baseline lipid levels and 
future diabetes, adjusting for age, sex, BMI, fasting glucose, fasting 
insulin, total triglycerides, and HDL cholesterol. Figure 4 depicts 
the odds ratio (OR) of diabetes per SD increment in TAG level, as 
a function of carbon number and double bond content, and shows 

that TAGs of lower carbon number and double bond content were 
associated with an OR of more than 1 for diabetes, while TAGs of 
higher carbon number and double bond content were associated 
with an OR of less than 1 for diabetes. The 9 TAGs that reached 
nominal significance (P < 0.05) after multivariable adjustment, 
depicted as solid circles, were distributed at the extremes of satura-
tion. Box and whisker plots for each of these TAGs in cases versus 
controls is depicted in Supplemental Figure 1. The heterogeneous 
correlation between these TAGs and total triglyceride measure-
ments is shown in Supplemental Table 1. The downsloping rela-
tionship between diabetes risk and carbon number and double 
bond content persisted after multivariable adjustment for LPCs, 
PCs, and possibly LPEs but not for CEs (Supplemental Figure 2).

Figure 2
TAG pattern of diabetes risk in FHS. (A) The geometric mean ratio 
of TAG levels in cases versus that in controls in fasting pre-OGTT 
plasma. Each circle represents a distinct TAG, organized along the 
x axis based on total acyl chain carbon number (left) or double bond 
content (right). The size of each circle is proportional to the SD of the 
case/control ratios for each TAG; therefore, smaller circles indicate 
greater precision, whereas larger circles indicate lesser precision. 
Note, the 2 panels display the same data, simply arranged along the  
x axis by a different variable. (B) The geometric mean ratio of TAG 
levels in the subset of cases and controls in the bottom quartile of 
HOMA-IR (mean HOMA-IR, 1.03 for cases and 1.01 for controls;  
P = 0.36), organized along the x axis based on total acyl chain carbon 
number (left) or double bond content (right).

Figure 3
Relationship between diabetes risk and acyl chain content in non-TAG lipid analytes. The geometric mean ratio of lipid levels in cases versus 
that in controls in fasting pre-OGTT plasma for (A) CEs, (B) LPCs, (C) PCs, (D) LPEs, and (E) SMs. Each data point represents a distinct lipid 
analyte, organized along the x axis based on total acyl chain carbon number (left) or double bond content (right). The size of each circle is pro-
portional to the SD of the case/control ratios for each lipid; therefore, smaller circles indicate greater precision, whereas larger circles indicate 
lesser precision. Note, the 2 panels display the same data points, simply arranged along the x axis by a different variable.
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Improving diabetes prediction over standard clinical measures. Follow-
ing multivariable adjustment for age, sex, BMI, fasting glucose, 
fasting insulin, total triglycerides, and HDL cholesterol, a total of 
15 lipid analytes (Table 2) reached nominal significance (P < 0.05), 
including the 9 TAGs depicted in Figure 4. These findings were 
largely unchanged when the model was further adjusted for paren-
tal history of diabetes (Supplemental Table 2). For the 10 lipids 
associated with increased diabetes risk, each SD increment in log 
marker was associated with a 1.35-fold to 1.94-fold increased odds 
of future diabetes. Individuals in the top quartile of these lipid 
analytes had a 1.35- to 4.19-fold odds of developing diabetes over 
the 12-year follow up period, compared with that of individuals in 
the bottom quartile of these lipids. For the 5 negative predictors, 
each SD increment in log marker was associated with a 0.67-fold 

to 0.78-fold decreased odds of future diabetes. Individuals in the 
top quartile of these lipid analytes had a 0.30- to 0.56-fold odds of 
developing diabetes over the 12-year follow up period, compared 
with that of individuals in the bottom quartile of these lipids. The 
combination of the most significant positive and negative predic-
tors, TAG 50:0 and TAG 58:10, was associated with an OR of 2.72 
per SD increment in biomarker level. Individuals in the top quar-
tile of this combination had a 4.30-fold risk of developing diabetes, 
compared with that of individuals in the lowest quartile (P = 0.001 
for trend), in models adjusting for age, sex, BMI, fasting glucose, 
fasting insulin, total triglycerides, and HDL cholesterol.

Lipid profiling demonstrates a heterogeneous TAG response to OGTT. To 
explore potential mechanisms for the differential risk attributable 
to distinct TAGs, we examined the TAG response to OGTT across 
all 378 FHS study participants. Much of the biochemical response 
to glucose ingestion can be attributed to an endogenous rise in 
insulin (9). Interestingly, in response to OGTT, we found that 
TAGs of lower carbon number and double bond content decreased 
and TAGs of relatively higher carbon number and double bond 
content increased (Figure 5A). The fall in TAGs of lower carbon 
number and double bond content was more pronounced in indi-
viduals in the lowest quartile of HOMA-IR relative to that of indi-
viduals in the highest quartile of HOMA-IR (Figure 5B).

Lipid profiling demonstrates a heterogeneous relationship between plas-
ma TAGs and insulin resistance. Given the heterogeneous dynamic 
response of different TAGs to stimulation of the insulin axis, we 
next examined the relationship between TAG levels in fasting 
pre-OGTT plasma and HOMA-IR in the FHS sample (cases and 
controls). Across the TAGs, the Spearman correlation coefficient 
between individual TAGs and HOMA-IR ranged from –0.07 to 
0.37 (Supplemental Table 1). We noted a pattern in which TAGs 
of relatively lower carbon number and double bond content were 
significantly and positively correlated with HOMA-IR and TAGs of 
higher carbon number and double bond content were not correlat-
ed with HOMA-IR (Figure 5C). That is, TAGs that fell in response 

Figure 4
TAG diabetes risk pattern following multivariable adjustment. Condi-
tional logistic regression models were fitted to assess the association 
between baseline TAG levels and future diabetes risk, adjusting for 
age, sex, BMI, fasting glucose, fasting insulin, total triglycerides, and 
HDL cholesterol. The OR for future diabetes risk per SD increment of 
TAG level is plotted for each TAG, organized along the x axis based 
on total acyl chain carbon number (left) or double bond content (right). 
Solid circles indicate ORs that were significant for relating diabetes to 
TAG (P < 0.05).

Table 2
Relationship of individual baseline lipid levels to risk of future diabetes

Lipid	 OR		 P	value	 OR	1st		 OR	2nd		 OR	3rd		 OR	4th		 P	value		
	 per	SD	 	 quartile	 quartile	 quartile	 quartile	 for	trend
TAG 52:1 1.94 (1.18–3.20) 0.009 1.0 2.21 (1.01–4.83) 1.74 (0.72–4.21) 4.19 (1.39–12.62) 0.032
TAG 50:0 1.74 (1.19–2.57) 0.005 1.0 2.02 (0.95–4.29) 1.95 (0.87–4.37) 3.86 (1.43–10.41) 0.016
PC 34:2 1.47 (1.06–2.04) 0.021 1.0 2.12 (1.00–4.49) 2.45 (1.07–5.58) 2.89 (1.16–7.20) 0.035
TAG 48:1 1.47 (1.05–2.05) 0.026 1.0 1.34 (0.63–2.84) 1.32 (0.65–2.67) 2.91 (1.23–6.91) 0.023
TAG 46:1 1.44 (1.01–2.06) 0.043 1.0 1.10 (0.53–2.30) 1.32 (0.63–2.76) 2.23 (0.95–5.22) 0.054
TAG 48:0 1.41 (1.01–1.95) 0.042 1.0 0.79 (0.39–1.59) 1.04 (0.52–2.10) 2.15 (0.96–4.78) 0.051
TAG 44:1 1.41 (1.02–1.94) 0.036 1.0 0.94 (0.47–1.85) 1.35 (0.66–2.77) 1.61 (0.74–3.48) 0.17
LPE 18:2 1.39 (1.07–1.81) 0.016 1.0 1.73 (0.86–3.51) 1.86 (0.90–3.88) 2.67 (1.30–5.46) 0.001
SM 22:0 1.38 (1.05–1.81) 0.022 1.0 1.09 (0.54–2.20) 1.62 (0.85–3.10) 2.56 (1.18–5.56) 0.015
PC 36:2 1.35 (1.02–1.80) 0.039 1.0 1.18 (0.61–2.30) 1.72 (0.83–3.53) 1.35 (0.61–2.99) 0.35
TAG 58:10 0.67 (0.50–0.89) 0.006 1.0 0.56 (0.30–1.07) 0.49 (0.26–0.95) 0.30 (0.14–0.67) 0.003
LPC 22:6 0.69 (0.53–0.90) 0.006 1.0 0.76 (0.42–1.36) 0.57 (0.30–1.09) 0.38 (0.18–0.79) 0.008
TAG 56:9 0.70 (0.52–0.94) 0.017 1.0 0.89 (0.46–1.69) 0.57 (0.29–1.10) 0.46 (0.21–1.01) 0.019
TAG 60:12 0.74 (0.58–0.96) 0.022 1.0 0.51 (0.27–0.97) 0.74 (0.41–1.35) 0.56 (0.28–1.11) 0.17
PC 38:6 0.78 (0.61–1.00) 0.049 1.0 0.78 (0.43–1.40) 0.63 (0.34–1.20) 0.51 (0.26–1.00) 0.041
TAG 50:0+TAG 58:10 2.72 (1.55–4.76) 0.001 1.0 2.50 (1.04–6.01) 4.64 (1.96–11.01) 4.30 (1.75–10.58) 0.001

Values are ORs (95% confidence intervals) for diabetes, from conditional logistic regressions. All models adjusted for age, sex, BMI, fasting glucose, fast-
ing insulin, triglycerides, and HDL cholesterol. Analytes are ordered by OR per SD values. The trend test used integers for quartile values. Each individual 
was assigned to a quartile based on the cut-off point values calculated in the control sample. For the combination of TAGs 50:0 and 58:10, values repre-
sent results for a weighted score comprised of coefficients for each TAG that were estimated from individually fitted models.
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to insulin stimulation were elevated in the context of insulin resis-
tance. The results were unchanged if HOMA-IR was replaced by 
fasting insulin (data not shown). The risk of diabetes attributable 
to each TAG, as determined by conditional logistic regression, was 
related to the TAG’s correlation with HOMA-IR (Figure 5D).

Pharmacological manipulation of insulin release highlights the role of 
insulin action on plasma TAGs. OGTT causes an acute rise in plasma 
glucose, which then triggers a rise in insulin. In order to formally 
exclude the possibility that TAGs respond differentially to the 
rise in glucose rather than insulin, we performed lipid profiling 
on plasma from 20 nondiabetic individuals (Table 3), before,  
60 minutes after, and 120 minutes after oral ingestion of an 
insulin secretagogue (glipizide 5 mg). As expected, we found 
that glipizide administration led to an increase in mean plas-
ma insulin (9.6 μIU/ml [baseline] → 23.5 μIU/ml [60 minutes,  
P = 0.0009 versus baseline] → 17.8 μIU/ml [120 minutes, P = 0.094  
versus baseline]) and a decrease in mean plasma glucose (95 mg/dl  
[baseline] → 79 mg/dl [60 minutes, P < 0.0001 versus baseline] → 
65 mg/dl [120 minutes, P < 0.0001 versus baseline]). As shown in 
Figure 6A (60 minutes versus baseline) and Figure 6B (120 minutes  
versus baseline), glipizide administration recapitulated the TAG 
response to OGTT, suggesting that insulin rather than glucose 
mediates the observed changes.

After a washout period of 6 days, these 20 individuals were then 
administered 4 doses of metformin (500 mg) over 2 days. Although 
chronic metformin use decreases insulin resistance, its acute effect 
is to decrease hepatic glucose output and, as a result, lower plasma 
insulin (10). Consistent with these effects, we noted a decrease 
in mean plasma glucose (95 mg/dl → 86 mg/dl, P = 0.022) and 
insulin (9.6 μIU/ml → 6.8 μIU/ml, P = 0.00037) after metformin 
intake. With this fall in plasma insulin, we noted an increase in 
TAGs of lower carbon number and double bond content and a 

decrease in TAGs of higher carbon number and double bond con-
tent, i.e., the inverse response compared with that for OGTT and 
glipizide administration (Figure 6C).

The diabetes risk pattern in TAGs persists in established disease and is 
ameliorated by acute exercise. We also performed lipid profiling on 50 
individuals undergoing treadmill stress testing (Table 3), includ-
ing 10 individuals with type 2 diabetes. In this cohort, participants 
with diabetes had similar total triglycerides (125 mg/dl versus  
141 mg/dl, P = 0.71) and BMIs (29.8 versus 28.9, P = 0.54) as com-
pared with those of the 40 participants without diabetes. Figure 6D  
depicts the ratio of TAGs in individuals with diabetes (n = 10) ver-
sus nondiabetic individuals (n = 40) and demonstrates the same 
downsloping pattern of TAGs identified in the prediabetic state. 
Figure 6E shows the change in TAGs that occurred with exercise 
treadmill testing across all 50 individuals, demonstrating a similar 
pattern to those of OGTT and glipizide administration. Exercise 
is known to acutely improve insulin sensitivity at the tissue level  
(11, 12), as demonstrated by the fall in plasma insulin (13.6 μIU/ml  
before exercise → 9.7 μIU/ml after exercise, P = 0.049), in the face 
of constant glycemia (118 mg/dl before exercise → 118 mg/dl after 
exercise, P = 0.76), with exercise in this cohort.

Tandem MS identifies the acyl chain constituents of diabetes predictors. 
Operating the mass spectrometer in “full scan” mode, our lipid 
profiling platform distinguished analytes on the basis of total acyl 
chain carbon number and double bond content. This method, 
however, is unable to unambiguously characterize the fatty acid 
constituents of TAGs, PCs, and DAGs (in contrast, the molecular 
weight of each LPC, LPE, CE, and SM analyte identifies a specific 
acyl chain length and saturation). Therefore, we performed addi-
tional plasma MS/MS analyses to systematically fragment each 
TAG, PC, and DAG, in order to identify each analyte’s acyl chain 
composition. Figure 7 depicts the identified acyl chain constitu-

Figure 5
TAGs and insulin action in FHS. (A) The mean percentage of change of each TAG in response to OGTT. (B) The mean percentage of change 
of each TAG in response to OGTT for individuals in the lowest (black diamonds) and highest (white diamonds) quartiles of HOMA-IR. (C) Spear-
man correlation coefficient for each TAG with HOMA-IR. For A–C, each data point represents a distinct TAG, organized along the x axis based 
on total acyl chain carbon number (left) or double bond content (right). (D) The risk of diabetes for each TAG following multivariable adjustment 
and correlation with HOMA-IR.
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ents of lipid analytes that predict diabetes in FHS after multivari-
able adjustment. Lipids associated with ORs of more than 1 for 
diabetes are primarily composed of saturated or monounsaturated 
fatty acids, whereas lipids associated with ORs of less than 1 for 
diabetes are primarily composed of polyunsaturated fatty acids.

Dietary intake does not explain the diabetes risk lipid pattern. Because 
dietary habits among FHS participants are captured through 
administration of a food frequency questionnaire, we were able 
to test whether the diabetes risk pattern we observed was attrib-
utable to dietary differences. We found no correlation between 
the percentage of total fat intake from saturated fats (37.4% cases 
versus 38.0% controls, P = 0.15) or polyunsaturated fats (21.4% 
cases versus 21.4% controls, P = 0.81) and case status. There was 
a trend for higher overall saturated fat intake (23.4 g cases versus 
21.4 g controls, P = 0.054) and significantly higher polyunsatu-
rated fat intake (13.3 g cases versus 11.8 g controls, P = 0.011) 
among cases versus controls.

Discussion
Current technologies enable high-throughput “snapshots” of the 
lipidome (13–15). Here, we have applied LC/MS-based lipid profil-
ing to the FHS to identify a plasma signature of diabetes risk. We 
show that TAGs of lower carbon number and double bond content 
were associated with an increased risk of type 2 diabetes, whereas 
TAGs of higher carbon number and double bond content were 
associated with a decreased risk of type 2 diabetes. A similar pat-
tern was noted for other lipid classes, including LPCs, LPEs, and 
PCs. The results of physiologic and pharmacologic experiments 
suggest that the divergent risk embedded in plasma triglycerides is 
due in part to the heterogeneous relationship between individual 
TAGs and insulin action. Nevertheless, select TAGs and other lipid 
analytes remained significant disease predictors, after adjusting for 
insulin (as well as other biochemical and clinical risk factors) and 
among the subset of subjects in the lowest quartile of HOMA-IR.

Several lines of evidence demonstrate that lipid profiling helps 
clarify the relationship between plasma TAGs and insulin action. 
In the acute setting, we showed that TAGs of lower carbon num-

ber and double bond content decreased 
with OGTT, whereas TAGs of relatively 
higher carbon number and double bond 
content increased. These findings were 
not appreciated during recent metabo-
lomic surveys of oral glucose ingestion  
(9, 16, 17). Glipizide administration 
resulted in the same dynamic TAG pat-
tern, highlighting insulin rather than 
glucose as the proximate cause of the 
observed changes. The inverse pattern was 
elicited by acute metformin intake, which 
decreased plasma glucose and insulin lev-
els. Exercise, which is known to acutely 
improve insulin sensitivity at the tissue 
level (11, 12), demonstrated the same TAG 
response as OGTT and glipizide adminis-
tration. In a small study of 19 individu-
als, Schwab et al. have shown that the 
sustained increase in insulin sensitivity 
associated with diet-induced weight loss 
over 33 weeks is also associated with this 
pattern of TAG changes (18).

These observations are further corroborated by the relationship 
between plasma TAGs and insulin resistance. In fasting pre-OGTT 
FHS samples, we showed that TAGs of lower carbon number and 
double bond content — i.e., TAGs that fall in response to insulin 
action — were elevated in the setting of insulin resistance. Further, 
insulin-resistant individuals had a blunted decrease in these TAGs 
during OGTT. TAGs of higher carbon number and double bond 
content, which increase in response to insulin action, had the 
weakest correlation with insulin resistance. Taken together, these 
data show that individual TAGs respond differentially to insulin 
activity and sensitivity, both acutely and over time.

We demonstrated a positive relationship between each TAG’s cor-
relation with insulin resistance and its ability to predict type 2 dia-
betes in FHS (Figure 5D). Contrary to the prevailing view of bulk 
triglycerides as an adverse risk factor, we identified specific TAGs 
that are associated with either an increased or decreased risk of dia-
betes. Further, these risk markers were altered up to 12 years prior 
to disease onset. Integrating the positive and negative risk captured 
by a TAG of relatively lower carbon number and double bond con-
tent (TAG 50:0) and a TAG of relatively higher carbon number 
and double bond content (TAG 58:10) further improved diabetes 
prediction. Finally, lipid profiling applied to individuals with and 
without type 2 diabetes demonstrated that the TAG risk pattern 
identified in FHS persists in established disease (Figure 6C).

The results of MS/MS analyses demonstrate that the lipid ana-
lytes associated with increased diabetes risk are predominantly 
composed of saturated and monounsaturated fatty acids, where-
as lipids associated with decreased diabetes risk are composed of 
polyunsaturated fatty acids (Figure 7). These data are consistent 
with prior studies of diabetes prediction, which have relied on the 
measurement of derivatized fatty acids, following hydrolysis of 
plasma lipids (19–22). By contrast, our approach is able to view 
acyl chains in their natural context, across distinct macromolecular 
species. For instance, dynamic changes after glucose ingestion were 
notable among TAGs but not SMs, PCs, or CEs (data not shown). 
This finding directs attention toward TAG-specific mechanisms of 
acute insulin action. As an example, the increasing proportion of 

Table 3
Baseline characteristics of pharmacologic and acute exercise cohorts

	 Pharmacologic	studies	 	 Acute	exercise	testing	
	 	 Combined		 Type	2	diabetes		 No	diabetes		
	 (n	=	20)	 (n	=	50)	 (n	=	10)	 (n	=	40)

Clinical	characteristics	 	 	 	
Age (yr) 55 ± 18 63 ± 11 64 ± 4 63 ± 12
Women (%) 50% 12% 10% 13%
BMI (kg/m2) 31.7 ± 7.5 29.1 ± 4.0 29.8 ± 4.3 28.9 ± 3.9
Hypertension (%) 20% 76% 100% 70%

Other	laboratory	tests	 	 	 	
Fasting glucose (mg/dl) 95 ± 13 118 ± 37 170 ± 54 105 ± 14
Fasting insulin (μIU/ml) 9.6 ± 6.7 13.6 ± 16.4 22.2 ± 17.0 11.4 ± 15.7
HOMA-IR 2.3 ± 1.8 4.5 ± 6.0 N/AA 3.1 ± 4.6
Serum triglycerides (mg/dl) ND 138 ± 111 125 ± 51 141 ± 122
Total cholesterol (mg/dl) ND 178 ± 51 163 ± 46 181 ± 52
HDL cholesterol (mg/dl) ND 53 ± 15 45 ± 16 55 ± 15

Values are mean ± SD or percentage. AInterpretation of HOMA-IR was limited in individuals with type 
2 diabetes, due to intake of antidiabetes medications.
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polyunsaturated fatty acids in TAGs during OGTT has been attrib-
uted to insulin-mediated inhibition of hormone sensitive lipase: 
the subsequent decrease in saturated and monounsaturated free 
fatty acid release from adipose tissue increases the relative amount 
of polyunsaturated free fatty acids available to the liver for TAG 
assembly (17, 23). In contrast to the TAG-predominant response to 
OGTT, the relationship between diabetes risk and acyl chain com-
position in fasting pre-OGTT plasma was identified across several 
lipid classes. The breadth of this finding draws attention to general 
pathways of lipoprotein assembly. For example, insulin is known 
to increase the hepatic expression of various fatty acid desaturases, 
including SCD1, D5D, and D6D (24–27), in animals. Whether 
decreased desaturase activity due to insulin resistance contributes 
to the lipid risk pattern observed in humans remains unclear.

Although we highlight the upstream significance of insulin action, 
we note that our conditional logistic regression model adjusts for 
baseline differences in fasting insulin as well as age, sex, BMI, fast-
ing glucose, total triglycerides, and HDL cholesterol. Further, the 
downsloping TAG risk pattern persisted in the comparison between 
cases and controls in the lowest quartile of HOMA-IR (Figure 2B).  
Finally, dietary differences, as culled from a detailed questionnaire, 
do not account for differences in lipid profiles between cases and 
controls. These findings raise the possibility that select lipid predic-
tors not only convey very subtle metabolic disturbances but could 
also play a causal role in disease pathogenesis.

Several technical limitations warrant mention. First, we 
acknowledge that our platform does not provide comprehen-
sive coverage of the plasma lipidome. However, by focusing on 
abundant plasma lipids, we were able to measure more than 100 
analytes, while using only 10 μl of valuable archived samples; 
this feature may facilitate its clinical implementation. Second, 
Kotronen et al. (28) have shown that lipid profiling of distinct 
lipoprotein fractions can also inform the relationship between 
individual lipids and insulin resistance. Although such an 
approach can provide valuable biologic insights, lipoprotein 
fractionation is impractical for high-throughput biomarker 
applications. Finally, our platform does not provide absolute 
quantitation of lipid analytes. We note, however, that the major 
thrust of the present findings involves a pattern of diabetes risk 
and the effect of insulin action on this pattern, as opposed to 
the absolute quantitation of any specific analyte. The design 
of assays for specific lipids (e.g., incorporating isotope-labeled 
standards and using chromatography specifically designed for 
TAG separation) will permit absolute quantitation and improve 
the precision of select measurements.

More work is required to extend and validate our findings. 
The case-control design of our study resulted in the selection of 
high-risk controls, i.e., individuals with similar baseline meta-
bolic risk factors as cases but who did not later develop type 
2 diabetes. As a result, our study is unable to provide formal 

Figure 6
TAG responses to pharmacologic and physiologic perturbations in alternative cohorts. The mean percentage of change of each TAG (A) 60 minutes  
and (B) 120 minutes after glipizide administration in 20 nondiabetic individuals. (C) The mean percentage of change of each TAG after 4 doses 
of metformin in 20 nondiabetic individuals. (D) The geometric mean ratio of TAG levels in 10 individuals with type 2 diabetes (DM2) versus those 
in 40 nondiabetic controls. (E) The mean percentage of change of each TAG after exercise treadmill testing in 50 individuals. For A–E, each data 
point represents a distinct TAG, organized along the x axis based on total acyl chain carbon number (left) or double bond content (right).
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estimation of the predictive ability of specific lipids in the gen-
eral population, in which there is a wide spectrum of disease 
risk. In addition, our study samples included middle-aged to 
older individuals of predominantly European ancestry, which 
may limit the generalizability of our findings to younger indi-
viduals or other racial/ethnic groups. Although TAG profiling 
alone may not be sufficiently specific to identify individuals 
who go on to develop type 2 diabetes, it may contribute to clini-
cal models of diabetes prediction that contain other variables. 
Thus, future efforts will be directed at measuring specific TAGs 
in more diverse cohorts and adjudicating to what extent these 
biomarkers add to established risk predictors at a population 
level. Finally, further study on how medications, diet, and exer-
cise modulate the lipidome over time may provide insight into 
their salutary effects on metabolic risk.

In summary, we have applied LC/MS-based profiling to 
identify a lipidomic signature of diabetes risk. This pattern is 
most notable among TAGs and is at least in part attributable 
to the graded relationship between specific TAGs and insulin 
resistance. These findings, however, do not merely recapitulate 
available metrics of metabolic risk: select TAGs at each end of 
the risk signature identify individuals at either an increased or 
decreased risk of diabetes, above and beyond information pro-
vided by age, sex, BMI, fasting glucose, fasting insulin, total 
triglycerides, and HDL cholesterol. Combining the positive- and 
negative-risk information in select TAGs further improves risk 
prediction. Future work will be required to more precisely assess 
the predictive findings in additional cohorts and to determine 
whether our findings represent an early marker, effector, or 
both, of nascent metabolic disease.

Methods
FHS. The Framingham Offspring Study was initiated in 1971, when 5,124 
individuals were enrolled into a longitudinal cohort study (8). Participants 
in this cohort are examined approximately every 4 years. The fifth exami-
nation of this cohort took place from 1991 through 1995. Subjects were 
excluded from the study if they had diabetes at this baseline exam, defined 
as a fasting glucose of more than 126 mg/dl and/or the use of glucose-low-
ering medications (n = 46), or a glucose of more than 200 mg/dl after a 
standard 2-hour/75-g OGTT after a 12-hour overnight fast (n = 149). Addi-
tional exclusion criteria included cardiovascular disease (n = 125), an age of 
34 years or younger (n = 56), missing diabetes status at follow up (n = 284), 
nonfasting status (n = 46), missing covariates (n = 14), and pre-OGTT or 
post-OGTT plasma sample that was not available (n = 657). Therefore, of 
3,799 attendees at the fifth examination, 2,422 were eligible for the present 
investigation. Information on dietary intake was systematically obtained 
from a detailed, validated food frequency questionnaire (29). At this and 
subsequent quadrennial visits, participants underwent a physician-admin-
istered physical examination and medical history and routine laboratory 
tests. The presence of diabetes was ascertained at each visit and defined by 
a fasting glucose of more than 126 mg/dl or the use of glucose-lowering 
medications, including insulin (30). The homeostasis model assessment was 
used as a measure of relative insulin resistance, as in Matthews et al. (31).

Nested case-control design. During follow up over 3 examinations (up to  
12 years), 193 individuals developed new-onset type 2 diabetes in FHS. 
Logistic regression models were used to generate propensity scores for 
these 193 cases, using age, BMI, fasting glucose, and hypertension (defined 
as blood pressure ≥140/90 mmHg or use of antihypertensive therapy); a 
separate model was estimated for each follow-up examination of each sex. 
Each case was matched to the control with the closest exam- and sex-spe-
cific propensity score (within 0.10 on a scale of 0.0 to 1.0). A propensity-
matched control was identified for all but 4 cases, yielding a final study 
sample of 189 cases and 189 controls.

Pharmacologic studies. Nondiabetic individuals of more than 18 years of 
age were enrolled in the ongoing Study to Understand the Genetics of the 
Acute Response to Metformin and Glipizide in Humans at the MGH. At 
their first visit, participants received a single dose of 5 mg glipizide while 
fasting, plasma was collected, and glucose and insulin levels were mea-
sured at time 0, 60 minutes, and 120 minutes. After a washout period of  
6 days, subjects received 500 mg metformin twice daily for 2 days in order 
to reduce hepatic gluconeogenesis and then underwent a 75-g OGTT in the 
presence of metformin. Post-metformin samples at time 0 were compared 
with plasma drawn at the baseline visit prior to glipizide administration. 
From the first 164 subjects completing the protocol, 20 participants were 
selected who represented both high and low ends of the HOMA-IR range.

Acute exercise testing. We recruited outpatients referred to the MGH Exer-
cise Laboratory for diagnostic treadmill testing (n = 50). In order to study 
the normal metabolic response to exercise, we selected subjects who met 
the following inclusion criteria: (a) normal exercise tolerance as defined 
by estimated peak VO2 greater than 70% predicted; (b) evident maximum 
effort on the basis of heart rate response greater than 85% predicted in the 
absence of beta-blockade; and (c) preexercise fasting for at least 4 hours. 
Exclusion criteria included cessation of exercise by the test supervisor, 
reversible perfusion defects or electrocardiographic evidence of exercise-
induced ischemia, mechanical limitation to exercise, or left ventricular 
ejection fraction of less than 50%. The 10 individuals with type 2 diabetes 
all carried a diagnosis of type 2 diabetes in the electronic medical record 
and were also receiving at least 1 antidiabetes medication.

The study protocols were approved by the Institutional Review Boards 
of BU Medical Center and MGH, and all participants provided written 
informed consent. All plasma was collected in EDTA.

Figure 7
Fatty acyl chain constituents of diabetes risk predictors. Individual 
fatty acids are listed in the gray column. Lipid analytes associated with 
an increased risk of diabetes (DM) following multivariable adjustment 
(except SM 22:0) are listed on the left, and lipid analytes associated 
with a decreased risk of diabetes following multivariable adjustment 
are listed on the right. Lines connect individual lipids with their fatty 
acid constituents.
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Lipid profiling. Plasma lipid profiles were obtained using a 4000 QTRAP 
Triple Quadrupole Mass Spectrometer (Applied Biosystems/Sciex), 
coupled to a 1200 Series Pump (Agilent Technologies) and an HTS PAL 
Autosampler (Leap Technologies). MultiQuant software (version 1.1; 
Applied Biosystems/Sciex) was used for automated peak integration, 
and peaks were manually reviewed for quality of integration. Ammoni-
um acetate, acetic acid, and LC/MS grade solvents were purchased from 
Sigma-Aldrich. 10 μl of plasma were extracted with 190 μl of isopropanol, 
containing an internal standard, 1-dodecanoyl-2-tridecanoyl-sn-glycero-
3-phosphocholine (Avanti Polar Lipids). After centrifugation, superna-
tants were injected directly, followed by reverse-phase chromatography, 
using a 150 × 3.0 mm Prosphere HP C4 column (Grace); mobile phase 
A was 95:5:0.1 (v/v/v) 10 mM ammonium acetate/methanol/acetic acid; 
mobile phase B was 99.9:0.1 (v/v) methanol/acetic acid. The column was 
eluted isocratically with 80% mobile phase A for 2 minutes, followed by 
a linear gradient to 20% mobile phase A over 1 minute, a linear gradient 
to 0% mobile phase A over 12 minutes, and then 10 minutes at 0% mobile 
phase A. MS analyses were carried out using electrospray ionization and 
Q1 scans in the positive-ion mode. Ion spray voltage was 5.0 kV, and 
source temperature was 400°C.

Internal standard peak areas were monitored for quality control and 
used to normalize analyte peak areas. In addition, we performed lipid pro-
filing on pooled plasma samples, spaced every 30 experimental samples in 
the overall sample queue, enabling detection of temporal drift in instru-
ment performance. Each of these injections into the mass spectrometer 
was generated from a distinct 10-μl aliquot of pooled plasma, extracted, 
and processed individually. The CVs for each lipid analyte across a total of 
29 pooled plasma samples are shown in Supplemental Figure 3. Forty-six 
percent of the analytes had CVs of less than or equal to 10%, and 85% of the 
analytes had CVs of less than or equal to 20%. For each lipid analyte, the 
first number denotes the total number of carbons in the lipid acyl chain(s), 
and the second number (after the colon) denotes the total number of dou-
ble bonds in the lipid acyl chain(s).

Tandem MS/MS analyses. MS/MS analyses of pooled plasma were 
obtained on a 4000 QTRAP Triple Quadrupole Mass Spectrometer. 
Sample extraction and chromatography were performed as above. After 
electrospray ionization, enhanced product ion scans were performed in 
the positive-ion mode for each TAG, PC, and DAG monitored by our lipid 
profiling platform as well as for LPC 22:6, SM 22:0, and LPE 18:2. We 
fragmented the Na+ adduct of each TAG, and product ion scans were ana-
lyzed for the neutral loss of individual acyl chains as either a R-COOH 
or R-COONa fragment. The H+ adduct of each PC was fragmented, and 
product ion scans were monitored for the neutral loss of acyl chains as a 
R-COOH fragment and for the neutral loss of phosphocholine. Product 
ion scans for LPC 22:6, SM 22:0, and LPE 18:2 were monitored for the 

neutral loss of phosphocholine (LPC 22:6 and SM 22:0) or phosphoetha-
nolamine (LPE 18:2). Ion spray voltage was 5.0 kV, source temperature was 
450°C, and collision energies were set between 33 and 70.

Statistics. Lipid levels were log transformed, because raw data were highly 
skewed. Lipid levels and the percentage change in lipid levels after OGTT 
were compared in the FHS matched–pair sample using paired t tests  
(2 tailed). We also performed conditional (matched pairs) logistic regres-
sion analyses to estimate the relative risk of diabetes at different lipid val-
ues. For these analyses, the lipid analytes were analyzed as continuous 
variables (log transformed and scaled to SD of 1) and also as categorical 
variables (values 1, 2, 3, 4 were assigned, using as cut-off points the sex-spe-
cific quartiles of the lipids in controls). Regression analyses were adjusted 
for age, sex, BMI, fasting glucose, fasting insulin, total triglycerides, and 
HDL cholesterol. However, case-control pairs were broken for the com-
parison of cases in the bottom quartile of HOMA-IR versus controls in 
the bottom quartile of HOMA-IR. Spearman correlation coefficients were 
calculated between lipid levels and HOMA-IR. A P value for trend was 
obtained by entering the quartile score into the model as variable, where 
the lowest quartile was considered the referent. The significance threshold 
for all analyses was set at P ≤ 0.05. All analyses were performed using SAS 
software version 9.1.3 (SAS Institute).
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