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Many	common	disorders	of	pregnancy	are	attributed	to	insufficient	invasion	of	the	uterine	lining	by	tropho-
blast,	fetal	cells	that	are	the	major	cell	type	of	the	placenta.	Interactions	between	fetal	trophoblast	and	mater-
nal	uterine	NK	(uNK)	cells	—	specifically	interactions	between	HLA-C	molecules	expressed	by	the	fetal	tro-
phoblast	cells	and	killer	Ig-like	receptors	(KIRs)	on	the	maternal	uNK	cells	—	influence	placentation	in	human	
pregnancy.	Consistent	with	this,	pregnancies	are	at	increased	risk	of	preeclampsia	in	mothers	homozygous	for	
KIR	haplotype	A	(KIR AA).	In	this	study,	we	have	demonstrated	that	trophoblast	expresses	both	paternally	and	
maternally	inherited	HLA-C	surface	proteins	and	that	maternal	KIR AA	frequencies	are	increased	in	affected	
pregnancies	only	when	the	fetus	has	more	group	2	HLA-C	genes	(C2)	than	the	mother.	These	data	raise	the	pos-
sibility	that	there	is	a	deleterious	allogeneic	effect	stemming	from	paternal	C2.	We	found	that	this	effect	also	
occurred	in	other	pregnancy	disorders	(fetal	growth	restriction	and	recurrent	miscarriage),	indicating	a	role	
early	in	gestation	for	these	receptor/ligand	pairs	in	the	pathogenesis	of	reproductive	failure.	Notably,	preg-
nancy	disorders	were	less	frequent	in	mothers	that	possessed	the	telomeric	end	of	the	KIR B	haplotype,	which	
contains	activating	KIR2DS1.	In	addition,	uNK	cells	expressed	KIR2DS1,	which	bound	specifically	to	C2+	
trophoblast	cells.	These	findings	highlight	the	complexity	and	central	importance	of	specific	combinations	of	
activating	KIR	and	HLA-C	in	maternal-fetal	immune	interactions	that	determine	reproductive	success.

Introduction
The main tissue location where maternal allo-recognition of the 
fetus occurs is in the uterus at the site of placentation, where 
fetal extravillous trophoblast cells (EVTs) invade and intermingle 
with maternal leukocytes (1). Uterine NK (uNK) cells account 
for approximately 70% of decidual leukocytes and are likely to be 
involved in placentation and thus fetal growth and development. 
We proposed that placentation is regulated as a result of inter-
actions between maternal killer immunoglobulin-like receptors 
(KIRs) expressed by uNK cells and their cognate ligands, HLA-C 
molecules, displayed by invading fetal trophoblast cells (2, 3). The 
importance of NK cell KIR/HLA-C interactions in mediating allo-
recognition in the artificial context of BM transplantation (BMT) 
is well known (4). The only physiological situation in which NK 
allo-recognition occurs is during pregnancy.

The function of EVT is to access the maternal blood supply 
during placentation, when trophoblast invades the walls of the 
spiral arteries, converting them to high-conductance vessels (1). 

When trophoblast invasion into the uterus is defective, the blood 
flow is compromised, resulting in abnormal placental develop-
ment and “starving” of the fetus. The clinical presentation of 
this failure of placentation is variable, and disorders such as pre-
eclampsia, fetal growth restriction (FGR), unexplained stillbirth, 
or recurrent miscarriage (RM) can all occur (5, 6). These are the 
major disorders of human pregnancy, and an understanding of 
the mechanisms regulating trophoblast invasion will give insight 
into their primary pathogenesis.

Several preliminary pieces of evidence indicate that maternal 
KIR/trophoblast HLA-C interactions are important in placenta-
tion. Trophoblast cells that invade the uterus have a unique, tissue-
specific pattern of HLA class I expression that includes invariant 
HLA-G and HLA-E and polymorphic HLA-C, but not highly poly-
morphic HLA-A and HLA-B (7). Therefore, of the class I molecules 
expressed by trophoblast, only HLA-C shows the variability neces-
sary for a fetal allo-antigen. HLA-C molecules are mainly present 
in a stable conformation on the trophoblast, whereas on somatic 
cells they are also present as unstable, unfolded conformers (8). 
Significantly, despite the co-dominant expression of HLA class I 
molecules on somatic cells, it has never been established whether 
extra-embryonic EVTs express paternal HLA-C allotypes.
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uNK cells are phenotypically distinct from their peripheral blood 
NK (PBNK) cell counterparts (9, 10). Of particular relevance to allo-
recognition of the fetal trophoblast is that their KIR expression 
is skewed toward recognition of HLA-C (11, 12). This is reflected 
functionally by increased binding of HLA-C tetramers by uNK cells 
compared with PBNK cells. Reciprocally, KIR tetramers do bind spe-
cifically to the fully conformed HLA-C molecules on normal tropho-
blast. Thus, KIRs on uNK cells have a significantly enhanced ability 
to bind trophoblast HLA-C compared with KIRs on PBNK cells.

The regulation of NK responses is known to depend, in part, 
on 2 polymorphic gene systems, KIR and HLA, which are encoded 
on separate chromosomes, thus segregating independently (13, 
14). Over 350 different KIR genotypes have been described, which 
highlights the great variability in the KIR gene family (15). There 
are 2 basic KIR haplotypes, however, A and B, which differ princi-
pally in that the B haplotype has additional activating receptors. 
In any pregnancy, the maternal KIR genotype could be AA (no acti-
vating KIRs) or AB/BB (1–10 activating KIRs). These 2 haplotypes 
can be further usefully subdivided into centromeric and telomeric 
regions, Cen-A, Tel-A, Cen-B, and Tel-B (16, 17) (Figure 1). KIR genes 
within each of these regions are in strong linkage disequilibrium 
(18, 19). The HLA-C ligands for KIRs are divided into 2 groups, 
defined by a dimorphism at position 80 of the α1 domain. Group 1  
HLA-C (C1) allotypes bind inhibitory KIR2DL2/3, while group 2 
HLA-C (C2) allotypes bind both inhibitory KIR2DL1 and activat-
ing KIR2DS1. While virtually all individuals have inhibitory KIRs 
for C1 and C2, less than 50% of white British individuals have 
the activating KIR2DS1 that is found on the B haplotype. This 
great diversity of maternal KIRs and fetal HLA-C ligands means 
that certain KIR/HLA-C combinations might be more favorable 
to reproductive success than others, due to the overall signals that 
the NK cell receives.

Here we show that invading EVTs are the principal site of HLA-C 
expression in decidua basalis and that both maternal and pater-
nal HLA-C allotypes are presented to KIRs on uNK cells. We dem-
onstrate specific binding of both inhibitory and activating KIRs 
to trophoblast HLA-C. Thus, NK allo-recognition mediated by 
maternal KIR/fetal HLA-C interactions can occur at the maternal-
fetal interface. Building on our previous work, we took a genetic 
approach to unravel how these KIR/ HLA-C interactions affect the 
process of placentation. Our genetic studies on 3 common disor-

ders of pregnancy with similar underlying defects in placentation 
— preeclampsia, FGR, and RM — show that the inherent variability 
of maternal KIRs and fetal HLA-C acts in a predictable fashion to 
influence successful pregnancy.

Results
HLA-C is selectively expressed by EVT at the site of placentation. Since 
HLA-C is the predominant ligand for uNK KIRs, we examined 
expression of HLA-C in the decidua basalis. Previously, localization 
of HLA-C expression in tissues has been hampered by a lack of suit-
able antibodies. We used a newly characterized mAb (DT9) specific 
for HLA-C with minimal cross-reactivity with other class I antigens 
including HLA-G (20). In the decidua, infiltrating EVTs intermin-
gled with and were closely apposed to maternal CD56+ NK cells 
that expressed KIRs (12) (Figure 2, A and B). HLA-C was strongly 
expressed selectively by EVTs (identified by cytokeratin or HLA-G 
expression) (Figure 2, C–E). We conclude that the HLA-C molecules 
expressed by the fetal trophoblast will be recognized preferentially 
by the maternal KIR on uNK cells at the site of placentation.

EVTs express both maternal and paternal HLA-C allotypes. We next 
ascertained whether HLA-C on the surface of the extra-embryonic 
EVT is strictly maternal or paternal in origin, since many genes are 
imprinted in the placenta, or is co-dominantly expressed, as on all 
somatic cells. To do this we characterized the mAb WK4C11 (21) 
and found that it bound all C1 (apart from Cw7), but not C2, allo-
types on normal cells including EVTs (Supplemental Table 1 and 
Supplemental Figure 1, A and B; supplemental material available 
online with this article; doi:10.1172/JCI43998DS1). Consistent 
with this reactivity, WK4C11 blocked binding of KIR2DL3-Fc pro-
teins to a C1 transfectant, but not of 2DL1-Fc to a C2 transfectant 
(Supplemental Figure 1C). Thus, we determined that WK4C11 can 
be used as a reliable marker of most C1 allotypes. Using WK4C11, 
we stained primary trophoblast cells in which parental origin of 
the HLA-C alleles had previously been determined by genotyping 
(Table 1). The results clearly showed that both maternal syngeneic 
and paternal allogeneic HLA-C allotypes were expressed by the 
trophoblast at equivalent levels (Figure 3). Thus, maternal KIR 
allo-recognition of paternal HLA-C, as well as recognition of self 
HLA-C, can occur at the site of placentation.

Both inhibitory and activating KIRs for C2 are expressed by uNK cells 
and bind to trophoblast HLA-C molecules. The only known activating 

Figure 1
Representative KIR A and B haplotypes illus-
trate centromeric (Cen-A and Cen-B) and telo-
meric (Tel-A and Tel-B) gene regions, with the 
HLA-C ligands (C1 and C2) depicted above 
their cognate receptors. In addition, KIR2DL2 
also binds subsets of C2 allotypes (54), and 
KIR2DS4 binds some C1 and C2 allotypes 
(63). A KIR2DS5 locus may also be found in the  
Cen-B region, but this is seen infrequently in the 
white British population. Similarly, KIR2DS3 is 
most often associated with the KIR2DL5B locus 
in the Cen-B region, as shown here, but may 
occasionally occur in the Tel-B region (18).



research article

4104	 The	Journal	of	Clinical	Investigation   http://www.jci.org   Volume 120   Number 11   November 2010

KIR for HLA-C is 2DS1, which binds to C2 allotypes (22). Fur-
thermore, a fundamental distinction between the 2 KIR haplo-
types with respect to HLA-C is the presence in the B haplotype of 
the 2DS1 gene (Figure 1). It was therefore important to determine 
whether uNK cells are the same as PBNK cells in expressing 2DS1 
when the gene is present (23). By using a combination of mAbs, we 
were able to show that uNK subsets express both 2DL1 and 2DS1 
proteins (Supplemental Figure 2). We then asked whether these 
KIRs could bind trophoblast, given that, compared with PBLs, 
an unusually high proportion of HLA-C molecules are located in 
the KIR-reactive β2m-associated conformation on trophoblast 
(8). KIR-Fc proteins (inhibitory 2DL1 and activating 2DS1) both 
bound normal primary trophoblast and blood CD3+ T cells from 
C1/C2 but not C1/C1 donors. Binding was blocked by the anti-KIR 
mAb HP-3E4 (Figure 4). We conclude that KIR2DL1 and 2DS1 do 
indeed bind trophoblast C2 molecules.

Paternal and maternal C2 groups both influence reproductive success. 
Do the KIR/HLA-C interactions we have observed in the placen-
tal bed have any functional significance? Placentation is defective 
in several important clinical pregnancy disorders including pre-
eclampsia, FGR, and RM. We confirmed and extended our previ-
ous observations with additional patient cohorts to show that the 
frequency of the KIR AA genotype is significantly increased com-
pared with normal controls in preeclampsia, and here we found 
it was also increased in FGR and particularly in women with RM 
(Supplemental Figure 3). In addition, in all affected cohorts, both 
mother and fetus had increased C2 carrier frequencies (Supple-
mental Figure 4). These results suggest that in all these conditions 
associated with defective placentation, women with a KIR AA 
genotype seem to be more at risk when this genotype is combined 
with a fetal C2 group (Table 2). As the 2 additional cohorts of pre-
eclamptic patients showed the same differences in maternal KIR 
genotype, individual KIR gene, and C2 frequencies compared with 
the controls, as observed with our initial cohort (2), we combined 
all 3 cohorts for further, more detailed analyses.

uNK cells are likely to be educated during their development so 
that they are calibrated to the levels of maternal C2 present (24). 

The fetal trophoblast cells might have fewer, as many, or more 
C2 genes compared with the mother, and we predicted this could 
affect maternal uNK responses. We therefore analyzed the KIR AA 
frequencies in normal and affected pregnancies grouped accord-
ing to the relative number of C2 genes in the mother and fetus 
(Figure 5A). In pregnancies where the fetus has more C2 genes 
than the mother (i.e., mother C1/C1 with fetal C1/C2 and mother 
C1/C2 with fetal C2/C2), the KIR AA genotype frequency was sig-
nificantly increased in affected pregnancies compared with con-
trols (P = 0.007, odds ratio [OR] 2.09) (Table 3). Thus, an extra 
copy of fetal C2 genes relative to the number of maternal C2 genes 
confers a significant risk. Furthermore, there was a statistically 
significant interaction detected between the KIR AA genotype and 
dosage of C2 genes (Table 3). This was shown by comparing the 
KIR AA frequencies between pregnancies in which the dose of C2 
in the fetus was less or more than in the mother (P = 0.04, Mantel-
Haenszel test). We conclude that there is a significant risk when 
the mother has a KIR AA genotype and the fetus has more C2 cop-
ies than the mother.

Where there is one more C2 allele in the fetus than in the 
mother, this allele must be derived from the father. To determine 
whether paternal C2 presents a risk distinguishable from a simple 

Figure 2
HLA-C is expressed predominately on the EVT in the decidua basalis. 
(A and B) Immunofluorescence staining of frozen sections of human 
first-trimester implantation site showed infiltrating EVTs in sections of 
decidua basalis identified by staining for HLA-G. EVTs were observed 
mingling and in close apposition with CD56+ NK cells. (C) Cytokeratin 
staining identified EVTs and glandular epithelial cells. (D and E) Only 
EVTs were strongly labelled with the mAb DT9, specific for HLA-C allo-
types. There was weak staining of other maternal cells in the decidua 
identified as CD45+ leukocytes (not shown). Scale bars: 200 μm (A); 
30 μm (B); 60 μm (C–E).

Table 1
Genotyping of first-trimester placentae and decidua to identify 
the maternal and paternal HLA-C alleles inherited by the fetus

Sample  Mother Fetus Parental 
no. Allele 1 Allele 2 Allele not  Allele  originA

   detected detected
1 0304 0401 0202 0304 M
2 0102 0401 0602 0102 M
3 0501 0702 0501 1402 P
4 0304 0701 0401 0304 M
5 1402 1602 0602 1402 M
6 0102 0602 1505 0102 M
7 0303 0401 1502 0303 M
8 0302 0102 1502 0302 M
9 0701 0102 0701 1402 P
10 0701 0401 0701 1601 P
11 0602 0202 0602 0804 P
12 1601 0704 0602 1601 M

Maternal HLA-C alleles inherited by the fetus are shown in bold. The 12 
placental samples were analyzed by FACS because either the maternal 
or the paternal HLA-C allele (“Allele detected”) could be selectively rec-
ognized by the mAb WK4C11 (see Figure 3 for FACS analysis and Sup-
plemental Figure 1 for characterization of WK4C11). AParental origin of 
the HLA-C allele detected on the trophoblast. M, maternal; P, paternal.
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gene dosage effect, we performed another analysis, in which we 
selected only pregnancies with a single fetal C2 allele that we could 
definitively type as maternally or paternally inherited (Figure 5B). 
Even with these considerably reduced numbers, we could detect 
that only allogeneic paternal C2 ligands showed a significant risk  
(P = 0.022; OR 2.02) (Table 3). In both of these analyses, the fetus 
had inherited a paternal C2 allele. Based on these data, we pro-
pose that women with the KIR AA genotype are at an increased risk 
when confronted with additional fetal C2 alleles representing a 
paternal allogeneic C2 ligand on invading fetal trophoblast cells.

Genes in the telomeric region of KIR B haplotypes protect against dis-
orders of pregnancy. The corollary of our findings that KIR AA 
genotypes are detrimental is that KIR B haplotypes will be ben-
eficial. To see which B-haplotype KIRs are protective, we grouped 
the women according to whether they had centromeric (Cen-B) 
and/or telomeric (Tel-B) genes (Figure 1). Although there was 
some protective effect when only the Cen-B region was present, 
the most striking observation in all pregnancy disorders (par-
ticularly in women with RM) was that the presence of the Tel-B 

region conferred highly significant protection (Table 2  
and Supplemental Figure 5), which reached signifi-
cance when the fetus carried a C2 group (Table 2). 
After comparing all controls (n = 592) with all affected 
pregnancies (n = 975), we found that the Tel-B region 
was present in 45% of controls but only in 33% of 
affected pregnancies (P = 1.7 × 10–6, OR 0.60 [95% CI 
0.49–0.74]). A trend test analysis, comparing all cases 
with all controls, ordered from KIR AA to Tel-B (with 
and without Cen-B) gave a P value of 1 × 10–6 (Table 2). 
In spite of the consistently stronger deleterious effects 

of KIR AA in the mother when the fetus was C2, as opposed to C1, 
a Mantel-Haenszel test for an interaction of KIR AA and fetal C2 
was not significant. This indicates that the deleterious effect of 
KIR AA is not dependent on fetal C2 alone. These observations, 
along with the significant difference between fetuses with fewer 
as opposed to more copies of C2 than the mother, emphasize the 
importance of maternal HLA-C status as well as the maternal/
paternal derivation of fetal C2 (Table 3).

We also analyzed the frequency of individual KIR B haplotype 
genes to determine whether any particular KIR is responsible for 
the protective effect. We found a highly significant reduction in 
frequency for all KIR B genes telomeric to 2DL4 in all affected 
cohorts (Table 4 and Supplemental Figure 6, A–C). In particular, 
2DS1, which encodes the activating KIR that binds to tropho-
blast C2 molecules, was present in 32% of affected pregnancies 
compared with 43% of controls (P = 1.3 × 10–5, OR 0.63 [95% CI 
0.51–0.77]). Due to the strong linkage disequilibrium within the 
Tel and Cen regions, however, we cannot discard an additive effect 
of the other KIR genes within the Tel-B region.

Figure 3
Fetal EVTs express both maternally and paternally inher-
ited HLA-C allotypes. EVTs isolated from the genotyped 
placental samples shown in Table 1 were identified by flow 
cytometric staining for HLA-G. Double staining with the 
mAb WK4C11 showed that HLA-G+ EVTs expressed both 
paternal and maternal C1 allotypes. Examples are shown 
in which the C1 allele detected by mAb WK4C11 was inher-
ited maternally or paternally (samples 8 and 9, respectively, 
in Table 1). No staining was seen on EVTs with WK4C11 
when the trophoblast had the C2/C2 genotype.

Figure 4
KIR2DS1 and KIR2DL1 bind specifically 
to C2 molecules on EVTs. (A–H) Binding 
of KIR-Fc fusion proteins was measured 
by flow cytometry to peripheral blood 
CD3+ T cells (A–D) or HLA-G+ EVTs 
isolated from placentae of healthy first-
trimester pregnancies (E–H). KIR2DL1 
and 2DS1 bind cells from C2-positive 
(A, B, E, and F) but not C2-negative 
(C, D, G, and H) donors. The indicated 
KIR-Fc fusion protein histograms are 
outlined in black and secondary anti-
body histograms in gray. Pre-incubating 
with an anti-KIR mAb (HP-3E4) blocked 
KIR2DS1-Fc and KIR2DL1-Fc binding 
to both PBLs and trophoblasts (histo-
grams with dotted line).
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Discussion
For successful establishment of the placenta, fetal trophoblast 
cells need to infiltrate the decidua and transform spiral arteries in 
the first few weeks of pregnancy. As a result, the fetus receives suf-
ficient oxygen and nutrients for normal growth and development. 
This invasion must be balanced, so that excessive trophoblast pen-
etration of the uterus does not occur (which would endanger the 
mother), or so that arterial transformation is not defective (which 
would starve the feto-placental unit). Our findings suggest that 
the immune system plays a part in defining this maternal-fetal 
boundary. The different experimental approaches we used all indi-
cate that interactions of maternal KIRs with trophoblast HLA-C 
molecules influence placentation. Using the mAb WK4C11, we 
show that trophoblast cells strongly express both parental HLA-C  
allotypes. At the site of placentation, these fetal cells mingle 
with maternal NK cells expressing activating (2DS1) and inhibi-
tory (2DL1) KIRs. Fresh uNK cells do not 
behave like PBNK cells in functional assays, 
and unless vigorously activated, they do not 
readily kill target cells or produce IFN-γ (9, 
25–27). We therefore took a genetic approach 
to determine how polymorphism of KIR and 
HLA-C might affect maternal/fetal interac-
tions. Genetic studies linking KIR and HLA 
variants with outcome in infectious diseases 
are now supported by functional studies 
(28–31). In preeclampsia and FGR, both of 
which are characterized by poor placentation, 
the pregnancies most at risk are those with 
a maternal KIR AA genotype in association 
with an extra C2 gene in the fetus relative to 
the mother. Furthermore, there is a clear pro-
tective effect when the mother has Tel-B KIR, 
the region containing KIR2DS1. Our findings 
indicate that maternal KIRs can mediate allo-
recognition of paternal HLA-C on tropho-
blast, in a situation analogous to BMT (4). 
Indeed, recent studies reveal interesting par-

allels in transplantation for acute myelogenous leukemia, in that 
a reduced risk of relapse was found in transplantations involving 
donors with KIR B haplotypes (4, 32). However, the protective 
effect was strongest with Cen-B homozygosity, which is in contrast 
to our findings that Tel-B is protective. This probably reflects the 
dominant role of KIR2DS1 interaction with HLA-C in pregnancy 
compared with additional possible KIR interactions with a range 
of HLA and other ligands on leukemic cells.

The common genetic thread between these pregnancy disorders 
with diverse clinical presentations indicates that maternal KIR/
fetal HLA-C interactions occur in the early weeks of gestation as 
the trophoblast moves into the decidua to effect the physiological 
conversion of uterine spiral arteries that is essential to successful 
pregnancy (33, 34). Interstitial trophoblasts invade decidua to sur-
round and destroy the media of the spiral arteries, transforming 
them into high-conductance vessels. In addition, endovascular tro-

Table 2
The Tel-B region of the KIR B haplotype protects against disorders of pregnancy, particularly when the fetus has a C2 gene

Maternal KIR genotype frequencies (%)  Maternal KIR frequencies (%)  Maternal KIR frequencies (%) only 
KIR B regions in all controls and affected cases in pregnancies with fetal C2 in pregnancies with fetal C1 
presentA Controls Affected  Controls  Affected  Controls  Affected 
 (n = 592) (n = 975) (n = 235) (n = 513) (n = 188) (n = 338)
None (KIR AA) 27.5 36.9C 17.0 23.4G 11.8 13.0
Cen-B alone 27.4 30.1 14.2 17.7 12.5 12.1
Tel-B alone 19.3 14.6D 11.1 9.4 8.7 6.4
Cen-B plus Tel-B 25.8 18.5E 13.2 9.8 11.3 9.2
All with Tel-BB 45.1 33.0F 24.3 19.2H 20.0 15.6
Trend test P < 0.001 P = 0.002 NS

AAll affected women (preeclampsia, FGR, and RM) were grouped according to whether they had any KIR B haplotype genes in the centromeric (Cen-B) 
and/or telomeric (Tel-B) region. The frequency of these KIR genotypes was compared in affected and control pregnancies. BIncludes both Tel-B alone 
and Cen-B plus Tel-B groups. (Separate results are shown for each pregnancy disorder in Supplemental Figure 6). The trend from no KIR B genes (AA 
genotype) to possession of Tel-B genes was highly significant (P < 0.001). Preeclampsia and FGR pregnancies were divided into those with a C2 carrier 
fetus and those with a C1/C1 fetus. Reduced group sizes were due to omission of the women with RM plus some patients from the affected cohorts in 
which the baby was not available. The trend from AA genotype to presence of Tel-B region KIR was significant (P = 0.002) only when there was a C2 allele 
present in the fetus. CP = 1.3 × 10–4, OR 1.54 (1.23–1.92). DP = 0.019, OR 0.71 (0.55–0.94). EP = 7.4 × 10–4, OR 0.65 (0.51–0.83). FP = 1.7 × 10–6, OR 0.60 
(0.49–0.74). GP = 0.01, OR 1.49 (1.10–2.01). HP = 0.039, OR 0.74 (0.56–0.97).

Figure 5
Categorization of pregnancy types according to the relative number of C2 genes or by paren-
tal origin of the fetal C2. (A) Pregnancies were separated into 3 groups: those in which the 
fetus had fewer C2 genes than the mother (i.e., B and E), those in which the fetus and mother 
had the same number of C2 genes (i.e., A, D, and G), and those in which the fetus had more 
C2 genes than the mother (i.e., C and F). (B) Alternatively, pregnancies were selected in 
which the origin of the single fetal C2 gene could be definitively identified as being derived 
from either the father (i.e., C and D1) or the mother (i.e., D2 and E). HLA-C allele typing to 4 
places was used to identify the parental origin of the fetal C2, distinguishing D1 from D2. See 
Table 3 for comparison of the groups.
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phoblasts move down the spiral arteries during the first 8–10 weeks 
of gestation, forming a loose plug that prevents blood from flow-
ing at high pressure into the delicate gestational sac. RM, defined 
as the loss of 3 or more consecutive pregnancies, affects 1%–3% of 
couples in the United Kingdom (35). The single most important 
predictive factor in identifying a woman’s risk of miscarriage is a 
previous miscarriage (36). The risk increases cumulatively as the 
number of previous miscarriages rises, suggesting that there are 
underlying predisposing causes. In addition, RM is linked to a 
poor reproductive outcome (preeclampsia or FGR) in subsequent 
pregnancies (37, 38). Defective placentation is known to occur 
in a substantial proportion of cases of early pregnancy loss, with 
reduced trophoblast invasion into both the decidua and spiral 
arteries (39–41). The underlying primary defect in preeclampsia, 
FGR, and stillbirth is also abnormal placentation, and these dis-
orders share the resultant reduction in uteroplacental blood flow 
(5, 6, 42). Failure of placentation therefore underlies a 
spectrum of common pregnancy disorders.

The exact clinical presentation will depend on the 
degree of vascular transformation, the resultant distur-
bances in uterine artery blood flow, and the subsequent 
extent of stress responses in the developing placenta 
(5, 43). In miscarriage, trophoblast invasion is most 
severely deficient and the placenta is subjected to over-
whelming oxidative stress, with fetal loss late in the first 
trimester. The decrease in frequency of KIR Tel-B genes 
and concomitant increase in KIR AA genotypes is most 
significant in women who experience this. By contrast, 
in pregnancies with FGR alone, trophoblast invades 
much further into the decidua, which only results in 
ER stress in the placenta (42, 43). Women who experi-
enced only FGR had the least significant alteration in 
KIR gene frequencies. In preeclampsia, arterial vascu-
lar transformation is altered to an intermediate degree, 
with placental oxidative stress superimposed on the ER 
stress. Thus, in preeclampsia but not FGR, these severe 
stress responses trigger the release of inflammatory and 
anti-angiogenic factors into the maternal circulation. 
The severity of the resulting symptoms of preeclamp-
sia depends on additional genes acting systemically in 
the mother. FGR and preeclampsia therefore exhibit 
different degrees of trophoblast transformation of spi-
ral arteries, and this is reflected in the more significant 

findings in KIR/HLA-C genotypic 
variation in preeclampsia. These 
results may have clinical signifi-
cance in that sperm from C1/C1 
donors is predicted to be “safer”; 
indeed, C2/C2 males may be the 
“dangerous” males identified by 
epidemiological studies, since 
their sperm is guaranteed to lead 
to pregnancies in which the tro-
phoblast cells express C2 (44, 45).

PBNK cells are calibrated dur-
ing development by the strength 
of the input received by NK 
receptors from self-HLA, so they 
adjust to the specific HLA class I  
environment in an individual. 

This determines the responsiveness of mature NK cells, a process 
called NK education (24, 46). It is not yet known whether uNK 
cells are subjected to the same educational constraints as PBNK 
cells, and indeed there is now evidence that uNK cells may be edu-
cated in utero (47). Our findings do show an additional effect of 
maternal self–HLA-C on the risk conferred by maternal KIR AA in 
pregnancy. Women with the KIR AA genotype are particularly at 
risk when they have fewer C2 genes than the fetus, or when fetal 
C2 is paternally inherited. The size of our cohort did not provide 
the statistical power to determine whether it is the higher dose of 
fetal C2 or an allogeneic fetal C2 that results in harmful uNK cell 
responses in KIR AA women. However, our findings show that it 
is not just the number or identity of fetal C2 genes, but also their 
relation to maternal C2 that is important. This does implicate a 
role for maternal HLA-C in education during uNK cell develop-
ment in determining the NK cell response to trophoblast.

Table 3
Maternal KIR AA frequency is increased in affected compared with control pregnancies when  
the fetus has more C2 genes than the mother or when fetal C2 is inherited paternally

Parameter ORA P n (affected/controls)
Effect of relative dose of maternal and fetal C2 genesB

Fetus had fewer C2 genes than the mother 0.97 1.00 177/85
Fetus had the same number of C2 genes 1.43 0.06 364/233
Fetus had more C2 genes than the mother 2.09 (1.24–3.51) 0.007 188/105
Effect of origin of fetal C2 genesC

Paternal origin 2.02 (1.14–3.58) 0.022 135/90
Maternal origin 1.11 0.90 91/61

AWhere shown, values in parentheses denote 95% CI. BSee Figure 5A for groupings. ORs and P values were 
calculated for the relative frequency of the maternal KIR AA genotype in control and affected pregnancies. 
CSee Figure 5B for groupings.

Table 4
Frequency of KIR A and B haplotype gene carriers compared between women 
with pregnancy disorders and normal controls

 Control Affected  P ORA 

  (n = 592) (n = 975)

A haplotype KIR
2DL3 89.5% 91.0% NS 1.18
2DL1 96.1% 97.1% NS 1.37
3DL1 94.3% 95.9% NS 1.39
2DS4 all alleles 94.6% 96.2% NS 1.45
2DS4 full-length 36.2% 36.2% NS 1.00
2DS4 deletedB 80.1% 85.7% 0.0004 1.50 (1.14–1.96)
B haplotype KIR
2DS2 53.5% 48.8% NS 0.83
2DL2 52.9% 48.3% NS 0.83
2DS3 29.6% 25.3% NS 0.81
3DS1C 44.3% 33.0% 2.6 × 10–5 0.62 (0.48–0.77)
2DL5C 55.7% 44.7% 2.9 × 10–5 0.64 (0.52–0.79)
2DS5C 36.1% 27.9% 8.0 × 10–4 0.68 (0.55–0.85)
2DS1C 43.1% 32.1% 1.3 × 10–5 0.63 (0.51–0.77)

See Figure 1 for a schematic of the KIR A and B haplotypes in this study. Results are 
shown separately for the 3 different pregnancy disorders in Supplemental Figure 6, 
A–C. AWhere shown, values in parentheses denote 95% CI. BP value was significant 
only with the unadjusted method. CP value remained significant after correcting for 13 
comparisons using Bonferroni method.
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We now show that in pregnancies in which trophoblast cells 
expressed C2, the most important protective maternal KIR genes 
for successful reproduction are those in the Tel-B region of the 
B haplotype. The only KIR on the Tel-B that is known to bind to 
HLA-C is KIR2DS1, the activating receptor for C2 groups (22). We 
showed specific binding of KIR2DS1 to normal trophoblast, pro-
viding confirmation that trophoblast C2 acts as a ligand for both 
KIR2DS1 and 2DL1. Although HLA-C molecules on trophoblast 
are all in a stable β2m-associated form with none of the unfolded 
conformers found on PBLs (8), the binding pattern was similar for 
both cell types with lower affinity of 2DS1 compared with 2DL1. 
One interpretation of these findings is that when the fetus has a 
C2 allele, uNK cell responses that result from KIR2DS1 binding to 
trophoblast C2 are beneficial for arterial transformation compared 
with those from a woman lacking this KIR. Several studies have 
shown that KIR2DS1+ PBNK cells can mediate allo-responses and 
produce IFN-γ after contact with C2+ target cells, but these 2DS1+ 
cells were only functional in a donor lacking C2 (48–50). Using 
PBNK cells, the presence of C2 in these 2DS1+ donors reduces the 
responsiveness of their NK cells, indicating that this activating KIR 
has an effect on PBNK cell education (51). The presence of mater-
nal C1 or C2 groups might therefore affect uNK cell responsive-
ness not only in women with KIR AA genotypes, but also in those 
who possess KIR2DS1. In vitro assays such as CD107 or IFN-γ  
production are of limited use in assessing functions of freshly 
isolated uNK cells. Thus, despite some promising leads (52), the 
precise nature of uNK cell responses to C1+ or C2+ target cells is 
essentially unknown and will be a major challenge given the ethical 
and technical difficulties of studying these cells.

There are indications that other B haplotype KIR genes are 
important. Pregnancies with Cen-B KIR genes alone, without Tel-B 
region KIR, are at a reduced risk compared with KIR AA pregnan-
cies (Table 4). Of these Cen-B KIR genes, KIR2DS3 appears non-
functional (53) and the ligands for KIR2DS2 are unknown. Howev-
er, KIR2DL2 does bind both C1 and C2 allotypes (54). In addition, 
the KIR2DL1*004 allele that is generally present on the KIR Cen-B 
haplotype is a poor NK cell educator and responses of uNK cells 
expressing this 2DL1 allele are likely to be weak (55). Thus, 2DL2 
and 2DL1*004 Cen-B–associated KIRs might also influence success-
ful placentation. Although C2 groups are clearly important, they 
appear not to be the only KIR ligands on the trophoblast, as there 
is a slight protective effect of Tel-B KIR in pregnancies even with a 
C1/C1 fetus. The ligands for KIR2DS5 and 2DL5 are unknown, 
but KIR3DS1 is unlikely to be important, as HLA-B antigens are 
never expressed by the trophoblast (7).

Using clinical, molecular, and genetic approaches, we now show 
that maternal KIR/fetal HLA-C interactions are determinants of 
successful placentation. These NK/trophoblast interactions occur 
in the first few weeks of pregnancy in the decidua basalis. Func-
tional outcomes depend on inherent variability of maternal KIR 
and HLA-C as well as fetal HLA-C genes. Critical factors include the 
presence of an extra paternally derived C2 gene in the fetus and the 
advantageous effects of Tel-B KIR haplotype genes. The C2 group 
of MHC-C genes arose late and became fixed in primate evolution, 
but as yet there is little evidence that C2 is beneficial in infection 
(13, 28). This raises the question of what selective pressure keeps 
C2 in the human population. One possible explanation is that, 
although C2 is deleterious in the fetus, it appears to be beneficial 
in the mother, and thus reproductive performance might account 
for the persistence of C2 alleles in human populations. For KIR it is 

clear that KIR A haplotypes are beneficial in NK responses to infec-
tions (56). The fact that KIR A and B haplotypes have complemen-
tary functions in immunity and reproduction may serve to explain 
why they are found in all human populations (57).

Methods
Human tissue for cell biology. Placental tissue was obtained from elective ter-
minations of normal pregnancies between 6–12 weeks gestation. Ethical 
approval was obtained from the Cambridgeshire 2 Research Ethics Com-
mittee (reference no. 04/Q0108/23; Cambridge, United Kingdom), and 
informed written consent was obtained from each patient. Trophoblast 
cells and leukocytes were isolated as previously described (58).

Immunofluorescence staining of human implantation site. Freshly cut 5-μm 
cryostat sections of first-trimester human implantation site were fixed for  
10 minutes in cold acetone, rehydrated with PBS, and blocked for 1 hour 
with PBS/2% normal goat serum/1% BSA. Primary antibodies to HLA-C 
(clone DT9, mIgG2b) (20, 59) and cytokeratin-7 (clone OV-TL 12/30, mIgG1, 
Dako A/S) were applied together to sections overnight at 4°C. Isotype-specif-
ic goat anti-mouse IgG2b–Alexa Fluor 488 and goat anti-mouse IgG1–Alexa 
Fluor 568 (Invitrogen) were pre-absorbed with 10% human Ab serum and 2% 
normal goat serum prior to application to sections for 60 minutes at room 
temperature. Coverslips were mounted with Vectashield-DAPI and slides 
analyzed using a confocal microscope. Primary antibody to CD56 (clone 
My13, mIgG1; Zymed Laboratories Inc.) was applied as described above. Free 
anti-mouse sites were blocked with 200 μg/ml mouse IgG prior to the addi-
tion of mouse anti–HLA-G–FITC (clone MEM-G/9-FITC; AbD Serotec).

Fusion proteins. Expression plasmids (provided by W. Carr, Massachu-
setts General Hospital, Charleston, Massachusetts, USA) containing 
extracellular regions of KIR2DL1 or KIR2DS1, matching the Ensemble 
sequences ENST00000336077 and ENST00000400867, respectively, fused 
to an IgG-Fc with the 18 C-terminal amino acids from IgA (60). A KIR2DL3 
IgG-Fc expression plasmid was donated by E. Long (National Institute of 
Allergy and Infectious Diseases, Rockville, Maryland, USA) (61). Fusion 
proteins were expressed by transient transfection in 293T cells using Lipo-
fectamine 2000 (Invitrogen) and purified from supernatant with protein G-
Sepharose beads (Amersham Pharmacia Biotech). Fusion proteins resolved 
as single bands at approximately 75 kDa in reducing SDS-PAGE analysis. 
KIR2DL3-Fc bound C1- but not C2-transfected 721.221 cells. KIR2DL1-Fc 
and KIR2DS1-Fc bound C2- but not C1-transfected 721.221 cells.

Flow cytometry. Freshly isolated or cultured trophoblasts were analyzed 
by flow cytometry as previously described (7). Briefly, cells were incubated 
with mAb or fusion protein, then with PE-conjugated polyclonal second-
aries (Sigma-Aldrich and Dako), before staining with directly conjugated 
mAb to identify leukocyte or trophoblast cell populations using MEM-G/ 
9-FITC to HLA-G (62) (AbD Serotec) and CD3-FITC (clone SK7) (Becton 
Dickinson). Fetal Hofbauer cells were gated out with CD45-PE-Cy5 (clone 
HI30) (BioLegend). Fusion protein binding was blocked by prior incuba-
tion with the mAb HP-3E4 (for KIR2DL1 and S1), a control isotype clone 
G155-228 (both Becton Dickinson) or the mAb WK4C11, generated from a 
hybridoma of B cells isolated from peripheral blood of multiparous women 
(21). WK4C11 reactivity was characterized against 96 common classical 
HLA-I allotypes using LABScreen Single Antigen beads (One Lambda)  
as previously described (7).

Expression of KIR2DS1 in CD56+CD14– uNK cells was examined by 
multicolor FACS analysis using the mAbs EB6 (to KIR2DL1 and KIR2DS1) 
(Beckman Coulter) and 8C11 (to most KIR2DL1 alleles but not KIR2DS1) 
(a gift from C. Retiere, University of Nantes, Nantes, France) (23). uNK cells 
were initially stained with 8C11, detected with goat anti-mouse IgG–Alexa 
Fluor 488 (Invitrogen), followed by EB6-allophycocyanin and CD56–peri-
dinin chlorophyll protein (BioLegend).
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Genomic DNA isolation and genotyping. Genomic DNA was isolated from 
chorionic villi or decidual tissue and digested with proteinase K and RNase A  
(Roche) in combination with tissue lysis and protein precipitation buffers 
(Qiagen), prior to precipitation of DNA with isopropanol. HLA-C allele 
typing to 4 places was carried out at the Anthony Nolan Trust or in the 
Laboratory of Experimental Immunology.

Genomic DNA was obtained from maternal blood from 3 cohorts of 
women with preeclampsia, defined as new hypertension (140/90 mmHg) 
after week 20 of pregnancy, together with new proteinuria 300 mg/24 h  
(n = 742); from 2 groups with FGR (birth weight at the 5th percentile or 
less; n = 118); and from 1 cohort of couples in which the woman had suf-
fered at least 3 unexplained miscarriages with no live births (RM women 
n = 115, RM men n = 81). Controls consisted of 3 cohorts of primiparous 
women with normal pregnancies and, where available, their male part-
ners (total n = 592). Cord samples or mouth swabs were obtained from 
the babies for DNA isolation (preeclampsia babies n = 733, FGR babies  
n = 118, controls n = 423). All samples were from white British individuals. 
A study of our matched cohorts of preeclamptic and control pregnancies 
has been published previously (see Supplemental Figure 3 and ref. 2). The 
RM study group was an extension of our original study group (3). Geno-
typing data for the separate cohorts are provided in the supplemental fig-
ures. KIR and C1/C2 genotyping were performed as described previously 
(2, 3). KIR haplotype regions were defined by the presence of the follow-
ing KIR genes: Cen-A/2DL3; Tel-A/3DL1 and 2DS4; Cen-B/2DL2 and 2DS2; 
Tel-B/2DS1 and 3DS1. Ethical approval for each study was obtained from 
the relevant committee: RM through the London Multiregional Ethical 
committee (reference no. 05/MRE02/20; London, United Kingdom), and 
preeclampsia and FGR through the Cambridge Research Ethics committee 
(reference nos. 01/197 and 05/Q0108/367; Cambridgeshire, United King-
dom). Informed written consent was obtained from all subjects.

Statistics. The data were analyzed using the χ2 and 2-tailed Fisher’s exact 
test. A P value of 0.05 was considered to be statistically significant. When 

multiple testing was performed, the Bonferroni correction was applied. 
The magnitude of the effect was estimated by ORs and their 95% CIs (Win-
dows 11.0.0.2001; SPSS Inc.). The trend tests were performed with SAS 
PROC FREQ procedure (SAS 9.1; SAS Institute). The Mantel-Haenszel test 
was used to test for interaction of KIR and HLA-C.
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