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Cathepsins were originally identified as proteases that act in the lysosome. Recent work has uncov-
ered nontraditional roles for cathepsins in the extracellular space as well as in the cytosol and
nucleus. There is strong evidence that subspecialized and compartmentalized cathepsins partici-
pate in many physiologic and pathophysiologic cellular processes, in which they can act as both
digestive and regulatory proteases. In this review, we discuss the transcriptional and translational
control of cathepsin expression, the regulation of intracellular sorting of cathepsins, and the struc-

tural basis of cathepsin activation and inhibition. In particular, we highlight the emerging roles of
various cathepsin forms in disease, particularly those of the cardiac and renal systems.

The maintenance of a healthy organism largely relies upon con-
trolled biosynthesis, maturation, function, and terminal breakdown
of proteins. Proteolytic enzymes contribute to these processes by
irreversibly cleaving peptide bonds. This can result in destruction
of the substrate protein, its maturation, or modulation of the bio-
logical activities of the cleavage products. To accomplish the multi-
tude of selective and well-controlled proteolytic events that keep us
healthy, the human genome encodes more than 550 proteases and
more than 200 endogenous protease inhibitors (1, 2).

The so-called “catheptic activity” (derived from the Greek word
kathépsein, meaning to digest or to boil down) was first described
in the gastric juice during the 1920s (3). Today, cathepsins are
classified based on their structure and catalytic type into serine
(cathepsins A and G), aspartic (cathepsins D and E), and cysteine
cathepsins (Figure 1 and Sidebar 1). The latter constitutes the larg-
est cathepsin family, with 11 proteases in humans referred to as
clan CA, family Cla: cathepsins B, C (also known as cathepsin J
and dipeptidyl-peptidase 1), F, H, K (also known as cathepsin O2),
L, O, S, W,V (also known as cathepsin L2), and Z (also known as
cathepsin X and cathepsin P) (4). In general, the cysteine cathep-
sins are stable in acidic cellular compartments, i.e., in lysosomes
and endosomes, and capable of efficiently cleaving a wide variety
of substrates. Despite this, during the past decade, important and
specific functions of cathepsins have been discovered to occur
extracellularly and in other locations inside cells, such as secretory
vesicles (5, 6), the cytosol (7-9), and the nucleus (10, 11). When
studying the function of cathepsins, one needs to consider species
differences between humans and mice (Table 1 and Sidebar 2).

Novel insight into cathepsin function was made possible by
various novel genomic, proteomic, and imaging tools as well as
the generation and in-depth analysis of knockout and transgenic
mice (12). These studies established that cathepsins are not sim-
ply redundant, homeostatic enzymes involved in the turnover of
proteins delivered to the lysosome by endocytosis or autophago-
cytosis but are critically involved in the proteolytic processing of
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specific substrates. Thus, cathepsins contribute to distinct physi-
ologic processes, such as antigen presentation in the immune
system (13), collagen turnover in bone and cartilage (14, 15), and
neuropeptide and hormone processing (16, 17). Various diseases
or phenotypes develop when cathepsins are lost in humans or
mice, respectively (Tables 2 and 3). In addition, ectopic or exces-
sive expression and activity of cathepsins promotes the develop-
ment of several common diseases in humans and mice, including
cancer and arthritis (Table 3).

The roles of cathepsins in many physiologic and disease pro-
cesses have been covered by recent comprehensive reviews (17-20).
Here, we focus on the recently discovered roles of cathepsins
in organ diseases, with a special emphasis on the ubiquitously
expressed cysteine endopeptidase cathepsin L. In particular,
we discuss how the different functions of a cysteine cathepsin
depend on the cell type in which it is expressed and the cellular
compartment in which the protease is localized. We address the
homeostatic function of cathepsin L in the heart and its potential
role in cardiac regeneration, the reciprocal processing function of
cathepsins B and L in ectopic trypsinogen activation during the
onset of acute pancreatitis, and the emerging roles of cytosolic
and nuclear cathepsin L variants in proteinuric kidney disease
and stem cell physiology, respectively.

A primer on cathepsin biology

Cathepsin L transcription and translation. Substantial work has been
done to analyze the promoter regions of the human cathepsin L
gene (CTSL) promoter as well as to understand the regulation of
different splice variants within the 5’ untranslated region of the
transcript (21, 22). Of note, one of the splice variants contains a
functional internal ribosomal entry site that enables ongoing
translation of human cathepsin L under stress conditions, and
hypoxia can shut down cap-dependent translation initiation (23).
More recent work has focused on the regulation of cathepsin L
alternative translation. According to the presence of different
forms of cathepsin L in distinct subcellular and extracellular com-
partments, cathepsin L proteins can be initiated from downstream
AUG sites (10), omitting the signal peptide that is normally pres-
ent at the N terminus of lysosomal cathepsin L that routes the
protein to the ER during its synthesis (Figure 2) (10, 24-26).
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Figure 1

Phylogeny and nomenclature of cathepsins. Phylogenic tree of mouse and human cathepsin
proenzymes. Mouse cathepsin L, human cathepsin V, and human cathepsin L are compared
with each other and with human and mouse cathepsin B in order to demonstrate the phylogenic
distance to other prototypic members of the cysteine cathepsin family.

Cathepsin biosynthesis, processing, and trafficking. As secreted pro-
teins, cathepsins are synthesized with an N-terminal signal
peptide that targets the protein to the lumen of the ER (Figure 2).
The signal peptide is cotranslationally cleaved and N-linked
glycosylation occurs within the ER. Similar to other proteases,
cysteine cathepsins are synthesized as inactive proenzymes and
require proteolytic processing for activity. The immature protein
possesses an N-terminal proregion, which is removed to activate
the enzyme, suggesting that the proregion acts as an autoinhibi-
tor. Indeed, synthetic peptides corresponding to proregions do
function as specific inhibitors of the parent cathepsin in the case
of cathepsin L and cathepsin-like cysteine proteases (27, 28).
The understanding of the nature of cathepsin propeptide inhi-
bition has been advanced by the structural determination of a
number of proenzyme forms of cathepsins, including cathepsins
B (29, 30), L (29), K (31, 32), X (33), and S (34). The structures
are broadly similar, with a small “mini-domain” at the N termi-
nus, which forms a small compact structure, and an extended
peptide, which is bound over the active site cleft, occluding it.
The inhibitory peptide is not cleaved, as it is held in an inverse,
nonproductive orientation over the active site. The folded mini-

Sidebar 1

Structural features of cathepsins

I: Mouse cathepsin L
Human cathepsin V (L2)
_ Human cathepsin L

— Human cathepsin B
Mouse cathepsin B

domain interacts noncovalently with the
enzyme to tether the inhibitory peptide
over the active site at one end. The tether
at the other end is provided by the peptide
bond, connecting the enzyme and prore-
gion. Binding within the active site is non-
covalent, with the exception of cathepsin
X, which has a disulfide bond between a
cysteine in the proregion and the active
site cysteine (33). In addition to its role in
autoinhibition, the N-terminal proregion
of cathepsin L appears to be necessary for
the correct folding of the protein (35), a
finding that is also true for papain (36).
Mutations destabilizing the interface
between the helices prevent correct folding of the protein (37, 38).
Folding of the proregion may precede folding of the full protein,
thereby providing a scaffold that then directs the folding of the
remaining domains. The full structure would be stabilized by the
formation of disulfide bonds that prevent unfolding once the
proregion has been removed (Figure 2).

Initial glycosylation generates high mannose glycans within the
ER. Cathepsins destined for the lysosome are further processed
in the Golgi apparatus by modification of mannose residues to
mannose-6-phosphate (m6p). For cathepsin D, recognition of the
cathepsin by the initial enzyme in m6p formation requires interac-
tions with surface loops in the structure (39). Two to three lysine
residues separated by 34 A appear to be critical in the recognition
motif (40). Modified cathepsins bind to the m6p receptor for tar-
geting to the lysosome. Upon acidification in late endosomes,
cathepsins become active and begin proteolytic processing, with
cleavage within the proregion allowing proregion dissociation
from the enzyme. This process may occur autocatalytically for
both cathepsin B (41) and cathepsin L (42). Due to the distance
between the active site and the identified cleavage sites, the process
is believed to be intermolecular rather than intramolecular (42).

3422

The name cathepsin is used to designate a diverse number of intracellular acidic proteases, including serine proteases (cathepsins
A and G), aspartic proteases (cathepsin D and E), and the more numerous cysteine proteases (Figure 1). Based on their primary
and tertiary structures, the cysteine cathepsins are members of the clan CA, Cla family of cysteine peptidases. Historically, cys-
teine cathepsins have been termed papain-like proteases, because they resemble the overall fold of papain, the major protease of
the papaya fruit (reviewed in refs. 30 and 108). The mature proteins are generally small (20-30 kDa) and mostly monomeric, with
the exception of tetrameric cathepsin C, which contains a C-terminal extension for assembly (109). Posttranslational processing
generally results in cleavage of the enzyme into disulfide-linked heavy and light chains (110). Members of the cysteine cathepsin
family papain superfamily are composed of two folding domains, comparable in size, divided by a solvent-accessible cleft, con-
taining the enzyme active site. The cleft between the two domains serves as a binding site for the target polypeptide chain of the
protein substrate in a generally extended conformation. The extended binding site allows some sequence specificity for different
cathepsins. Thus, while the structurally similar cathepsins L, K, and S have similar binding sites and specificities, cathepsin L
favors aromatic residues, particularly Phe, at the second position before the cleaved bond, while cathepsins K and S will take any
hydrophobic residue. Cathepsin K is unusual in accepting a proline at this position, allowing it to cleave collagen (111). The active
site cysteine is part of a conserved “catalytic triad” formed by the cysteine pairing with a histidine, which in turn is paired with an
asparagine. The configuration is similar to what is seen in serine proteases and is believed to function by allowing the formation of
a thiolate-imidazolium ion pair between the cysteine and the histidine side chains. The thiolate ion from the cysteine subsequently
performs a nucleophilic attack on the peptide carbonyl carbon.
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Summary of nomenclature of human and mouse cathepsins L and V, together with genomic localization, expression pattern, and some

examples of substrate specificity

Cathepsin Symbols? and alleles Genomic locus
Human cathepsin L CTSL, CTSL1, 9g21/22 (no synteny
CATL, MEP in mouse genome)
Human cathepsin V CTSV, CTSL2, 9g22.2 (syntenic to mouse
CATL2, CTSU chromosome 13; 30.0 cM,

i.e., the Ctsl/locus)

Ctsl, Ctsl1, MEP,
nkt, fs

Mouse cathepsin L

Chromosome 13; 30.0 cM

(syntenic to human chromosome
9022.2, i.e., the CTSV locus)

Expression

ubiquitous, expression levels
vary among cell types

Substrate specificity
cleaves z-PheArg-AMCB; does not
cleave elastin; does not generate
angiostatin-like peptides
from plasminogen
cleaves z-PheArg-AMCB; cleaves
elastin; generates angiostatin-like
peptides from plasminogen

restricted to macrophages,
thymus, testis, cornea,
keratinocytes, some
cancer cell types
ubiquitous, expression levels

vary among cell types

cleaves z-PheArg-AMCB;
cleaves elastin

ASymbols in common use are underlined. BThe fluorogenic peptide z-PheArg-AMC is frequently used for determination of cathepsin L activities. These

assays require inhibition of cathepsin B by a specific inhibitor such as CA074.

This results in an active, single chain form of the protein. Upon
arrival at the lysosome, further processing cleaves the protein
into two chains. Active cathepsins may also be recruited from
late endosomes or lysosomes for secretion into the extracellular
space via Ca?*-mediated fusion of these organelles with the plasma
membrane (43, 44). In addition, a minor population of cathep-
sins (approximately 5%) does not travel to the lysosome but is
instead secreted as a proenzyme. Furthermore, alternative splic-
ing and exon skipping can lead to cathepsin forms that lack the
signal peptide, and these can subsequently localize to the nucleus
and mitochondrial matrix (Figure 3) (21, 45). Recent data suggest
that truncated forms of cathepsin L are important in regulating
the cytoskeleton of kidney podocytes (7, 8), whereas others have
described mature cathepsin L outside lysosomes, e.g., during
histone processing in embryonic stem cells (25). These cathepsin

Sidebar 2

Cysteine cathepsins in humans and mice

L variants have been previously shown to arise by translation from
an alternate downstream AUG site (10) and to be located in the
nucleus of fibroblasts, in which they can cleave the transcription
factor cut-like homeobox 1 (Cux1) (10). Cathepsin L also processes
histone H3 during mouse embryonic stem cell differentiation (25).
Although conventional cathepsin L cleaves various proteins very
efficiently, due to the denaturing conditions and low pH of the
lysosome, cytosolic and nuclear cathepsin L exhibit remarkable
substrate specificity that allows a very specific enzymatic activity
at cytosolic or nuclear pH (46). So far, two substrates of cytosolic
cathepsin L have been described in podocytes: dynamin (7) and
synaptopodin (8). In addition, CD2-associated protein (CD2AP)
in podocytes is protected from puromycin-induced degradation in
the absence of cathepsin L, suggesting the possibility that CD2AP
is an additional cathepsin L substrate (9).

Most of the human cysteine cathepsins possess a highly homologous mouse counterpart, which makes the generation and
analysis of cathepsin-knockout mice a relatively straightforward approach to understanding the in vivo functions of these
proteases. However, because of a series of tandem duplications of an ancestral cathepsin L gene, the mouse genome, but not that
of the human, encodes an additional set of 8 closely related cysteine cathepsins that are all exclusively expressed in the placenta
of mice (112). It is even more striking that in human phylogeny cathepsin L evolved into two closely related proteases, namely
the “classic” human cathepsin L and human cathepsin V (Table 1 and Figure 1). All three enzymes — mouse cathepsin L, human
cathepsin L, and human cathepsin V — are highly homologous, with about 75% amino acid identities. Nevertheless, the three
proteases vary in their expression pattern and some (but not all) biochemical properties (Table 1). Consequently, commonly
used biochemical assays for activity measurement do not distinguish between human cathepsins L and V, and a serious note of
caution is required for conclusions on human cathepsin L drawn from analyses of Ctsl~ mice. Inhibitors selective for cathepsin
L and V are just emerging (113) and will prove useful in determining their individuals functions. Furthermore, the search for
disease associations with expression or genetic polymorphisms of cathepsins (114-116), together with functional analysis of
human cells and mouse experiments combining gene knockouts with transgenic expression of the human proteases, have already
provided valuable insights into the specific in vivo functions of human cathepsins L and V (74, 117, 118). In summary, the com-
plex phylogeny, the widespread expression of cathepsin L-like enzymes, and the multiple phenotypes of the gene knockout mice
highlight the great importance of the cathepsin L-like proteases in physiology and disease processes. Defining specific in vivo
functions for human cathepsins L and V and testing their individual potential as diagnostic markers or drug targets represents

a considerable challenge for further investigations.
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Table 2
Human syndromes caused by inherited cysteine cathepsin mutations

Inherited syndrome

Papillon-Lefévre and
Haim-Munk syndromes

Cysteine cathepsin

Cathepsin C
loss-of-function mutations

Description

Hyperkeratosis palmoplantaris with periodontosis in humans.
The severe periodontitis causes early loss of primary and

Refs.
119,120

permanent teeth, due to destruction of alveolar bone. Ctsc-null

mice show impaired activation of granzymes and other immune cell
serine proteases. This may be the cause for dysregulation of localized
polymorphonuclear leucocyte response in the inflamed periodontal
tissues of patients with Papillon-Lefévre/Haim-Munk disease.

Pycnodysostosis Cathepsin K

loss-of-function mutations

Pycnodysostosis is characterized by osteopetrosis, caused by
impaired degradation of collagen | in the bone matrix in humans,

121-124

with an identical phenotype in Cstk-null mice. Ctsk inhibitors are
in trials for slowing turnover of bone in osteoporosis.

Opposing roles of cathepsins B and L in acute
pancreatitis

Physiological activation of digestive proteases. The acinar cells of the exo-
crine pancreas produce and secrete a wide variety of potent proteo-
lytic enzymes essential for intestinal digestion of nutrient proteins.
However, these digestive enzymes are potentially harmful. There-
fore, these proteases are produced as precursors (i.e., zymogens)
within pancreatic acinar cells and are only activated in the duo-
denum. The key step in this activation process is the conversion
of inactive trypsinogen to active trypsin by limited proteolysis by
enteropeptidase, a highly selective trypsinogen-cleaving protease
located at the luminal site of duodenal cells (26). The proteolyti-
cally active trypsin initiates an activation cascade of proteolytic
enzymes within the duodenum, thereby ensuring the high proteo-
lytic capacity needed for food digestion (26).

Cathepsin B: a major trypsin activator in acute pancreatitis. Because
of the vital role of trypsin in protease activation, the ectopic
intrapancreatic cleavage of trypsinogen to proteolytically active
trypsin has long been considered as a key event in the patho-
genesis of acute and chronic pancreatitis (47). The most direct
evidence for this pathogenic principle comes from recent work
on hereditary chronic pancreatitis: most affected families have
heritable mutations that either increase the autoactivation of
trypsinogen or impair the inhibition/degradation of active tryp-
sin within pancreatic acinar cells (48). Yet, cathepsin mutations
have not been found in hereditary pancreatitis. However, cathep-
sin B has long been considered a promising candidate for the
trypsinogen-activating protease in pancreatic acinar cells. Sup-
port for this notion stems from in vitro experiments showing
that cathepsin B can remove the N-terminal hexapeptide, the so
called “trypsinogen-activation peptide”, from the human, rodent,
and bovine trypsinogen zymogens. Notably, this cleavage mimics
that of the physiological trypsinogen activator enteropeptidase
(49, 50). The isoleucine residue that is exposed and represents
the N terminus of trypsin interacts via its free amino group with
the side-chain carboxy group of asparagine 194 (chymotrypsin
numbering), thereby enabling and stabilizing the proteolytic
active conformation of trypsin (51). The functional relevance of
cathepsin B for trypsinogen activation in acute pancreatitis has
been analyzed in various rodent models. In these studies, both
genetic deficiency for cathepsin B and treatment of animals with
a cathepsin B inhibitor resulted in reduced trypsin activity and
amelioration of pancreatitis (52-54).

3424
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Cathepsin L: keeping trypsin in check. Because of their partially over-
lapping substrate repertoires, it had been widely assumed that cys-
teine cathepsins other than cathepsin B might also contribute to
trypsinogen activation in pancreatitis. Biochemical data obtained
from bovine and human proteins revealed a specific cathepsin L
cleavage site in trypsinogen at a position 3 amino acids C-termi-
nal from the normal enteropeptidase/cathepsin B cleavage site (5).
This cleavage prevents the generation of the N-terminal isoleucine
that is essential for the active conformation of trypsin. Hence, in
contrast to cathepsin B, cleavage of trypsinogen by cathepsin L
results in an inactive trypsin variant. Active trypsin is not cleaved
by cathepsin L at this position but at a second cathepsin L cleavage
site between amino acids E82 and G83 that inactivates trypsin (5).
These data imply that cathepsin L can prevent ectopic trypsinogen
activation. In keeping with this notion, Cts[~~ mice show increased
intrapancreatic trypsin activity upon pancreatitis induction (5). Of
note, CtsI”/~ mice also show less severe pancreatitis, because, as a
result of the less severe local and systemic inflammation, acinar
cells undergo apoptosis instead of necrosis. Thus, cysteine cathep-
sins serve complex roles in the pancreas beyond activating and
inactivating trypsinogen.

Cathepsins and protease zymogens: how do they meet? Despite com-
pelling evidence for selective cleavage of trypsinogen by cathep-
sins B and L, an important cell biological question remains to be
resolved: how can endolysosomal cathepsins meet trypsinogen,
which is located in the secretory vesicles of the pancreatic acinar
cell that are known as zymogen granules? Of note, colocalization
of cathepsin B and trypsinogen has been shown by subcellular frac-
tionation and immunogold labeling of EM sections in pancreata
from patients and rodents with pancreatitis (reviewed in ref. 54).

The activation of trypsinogen begins in vesicular organelles
that are acidic (55), raising the possibility that the colocalization
of trypsinogen and cathepsins could result from the missorting
of lysosomal cathepsins, due to inefficient trafficking from the
trans-Golgi network to the endosomal/lysosomal compartment
via the m6p/m6p receptor pathway (56). It has been estimated
that approximately 5%-10% of lysosomal proteins are missorted
and enter the constitutive and regulated secretory pathways, and
itis clear that cathepsin L and other cysteine cathepsins can selec-
tively effect their protease function in secretory vesicles (18, 57).
For example, cathepsin L has been identified as a major enzyme
involved in the generation of secreted pituitary neuropeptides
(e.g., enkephalin, ACTH, a-MSH, B-endorphin) from their large
Volume 120
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Involvement of cysteine cathepsins in organ diseases — evidence from human and animal studies

Disease Cysteine cathepsin Evidence from humans
Atherosclerosis K,L,and S Cathepsins are expressed in
macrophages, smooth muscle cells,
and endothelial cells
of atherosclerotic lesions.
Cancer and B,F H, K, L, Cathepsins are overexpressed in many
metastasis V, S, and X/Z carcinomas and frequently associated
with poor prognosis of patients.
Cathepsins execute multiple functions
in death, proliferation, and invasion
of human cancer cell lines.A
Metabolic K,L,and S High serum CTSS has been
syndrome associated with type Il diabetes.
(obesity and
type Il diabetes)
Lung diseases B,H,K L ,and S High levels of active cathepsins
were detected in inflammatory
bronchoalveolar lavage fluid in acute
and chronic inflammatory lung diseases.
Immune defects C,L V,and S CTSV is overexpressed in and
associated with early-onset myasthenia
gravis. CTSC deficiency (Papillon-Lefévre/
Haim-Munk syndrome) causes impaired
immune response against microbes
in the mouth.
Rheumatoid B,L,K,and S In patients, the cathepsins are expressed
arthritis, in joint cartilage and synovial cells as

osteoarthritis

well as in infiltrating immune cells. They
contribute to cartilage destruction
and immune response.

Refs.
20, 125127

Evidence from mice

All three single knockout mice show
attenuated atherosclerosis in
backgrounds deficient for apoE
or LDL receptor.

Studies of cathepsin-knockout mice
revealed that these proteases are
also involved in angiogenesis and
tumor-associated inflammation.A

19, 128-133

Muscle Ctsl expression is
increased in diabetes-prone mice;
deletions of Ctsl or Ctsk prevent
obesity and improve glucose metabolism.

Ctsk in lung fibroblasts is involved in
matrix turnover and protects from
lung fibrosis. Ctsb mediates
inflammation of silica-treated
macrophages. Cysteine cathepsins
(i.e., Gtsh) are involved in surfactant
protein processing.

Ctsl-null mice show impaired positive
selection of Th cells; however, Tregs
are not affected. This causes
resistance to autoimmune diabetes.
Ctss-null mice show impaired invariant
chain degradation in antigen-presenting cells,
causing resistance to the development of
experimental autoimmune collagen-induced
arthritis and myasthenia gravis.
Selective inhibition of cathepsins has
protective effects in some animal models,
while only minor or even counterproductive
effects have been observed for Ctsk
inhibition in other models.

125, 134-136

127-141

114, 142-146

147-150

Aln these processes, cysteine cathepsins cooperate within their family and with other proteases such as matrix metalloproteinases and the uPAR system.

precursor proteins, such as preproenkephalin and proopiomelano-
cortin, in human cells and mice (17, 58, 59). However, as it stands,
itis not clear how the selective sorting of cathepsins into zymogen
granules can be induced during the onset of acute pancreatitis.

In the search for alternative mechanisms, it was recently pro-
posed that incompletely executed autophagy leads to the observed
enzyme colocalization in early pancreatitis (60). Both starvation
and pancreatitis induce an autophagic response in pancreatic aci-
nar cells that engulfs cytoplasmic proteins and organelles, includ-
ing zymogen granula (60). After fusion of autophagosomes with
lysosomes, the contents of the resulting autophagolysosomes
are digested by lysosomal hydrolases, including cathepsins (61).
Eventually, the autophagolysosomes break down and disappear in
starvation-induced autophagy. In contrast, during pancreatitis the
autophagic process is impaired at the level of autophagolysosome
degradation, thereby providing an acidic compartment for colo-
calization of trypsinogen and cathepsins (60). Furthermore, an
imbalance consisting of low levels of cathepsin L, which degrades
trypsinogen and trypsin, and high levels of cathepsin B, which
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activates trypsinogen, has been found in autophagic vesicles dur-
ing pancreatitis (60). This, in turn, results in intracellular accumu-
lation of active trypsin that activates further digestive enzymes,
thereby causing damage to pancreatic cells, a hallmark eventin the
pathogenesis of pancreatitis.

Cysteine cathepsins in the heart

Cathepsin L: a homeostatic protease within the myocardium. Cardiomy-
opathies represent a heterogeneous group of heart diseases that
are characterized by progressive myocardial remodeling, leading
to impaired pump function of the heart (62, 63). Among many
other etiologies, defects in lysosomes and lysosomal hydrolases
have been shown to cause myocardial heart disease (64, 65). Car-
diomyopathies have also been described as a component of inher-
ited disorders caused by deficiency of lysosomal glycosidases; for
example, Pompe disease is caused by abnormal accumulation of
glycogen. Deficiency of lysosome-associated membrane protein 2
(LAMP-2) induces the accumulation of autophagic vacuoles and
causes Danon disease, which is characterized by severe myopathy
Volume 120 3425
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Figure 2

Cathepsin structures and traditional and nontraditional protease trafficking. Cathepsins contain a signal peptide (blue) that directs insertion
of the nascent polypeptide chain into the ER. Within the ER, the signal peptide is cleaved and the protein folds with the assistance of the
proregion (red). Disulfide bond formation (indicated by S-S) and N-linked glycosylation with high-mannose glycans subsequently occurs in
the ER. Within the Golgi, mannose residues are phosphorylated to form m6p, which is used to route the protein into the endosomal/lyso-
somal compartment via the mép receptor. Upon initial acidification of the endosome, cathepsins are activated, which leads to cleavage of
the proregion and further activation of the cathepsin, resulting in further proteolytic processing in the lysosome into heavy and light chains
(yellow). A portion of the cathepsins is not converted to the m6p form and as a result is shunted into the exocytosis pathway. Conversion
to m6p appears to be rate limiting, as overexpression of a given cathepsin greatly increases the proportion of the enzyme in this pathway.
Ribbon diagrams depict the structure of mature cathepsin L in the extracellular matrix and in the lysosome. The ribbon colors correspond to

the colors used in the diagram on the left.

of cardiac and skeletal muscles (64, 65). Of note, LAMP-2-deficient
mice display a vacuolar cardioskeletal myopathy that is similar to
that observed in individuals with Danon disease (66). Increased
activity of lysosomal enzymes also has been found in patients with
hypertensive heart failure (67, 68).

In contrast to those of these well-established lysosomal stor-
age diseases and their causative molecules, the role of lysosomal
proteases in the heart remained elusive for a long time. However,
recent findings with 1-year-old Ctsl/~ mice shed light on this issue
(69, 70). These aging animals develop a cardiac phenotype that dis-
plays key features of human dilated cardiomyopathy (69). As such,
complete deficiency of cathepsin L causes interstitial myocardial
fibrosis and the appearance of pleomorphic nuclei in cardiomyo-
cytes, both characteristics of human cardiomyopathies. It also
causes cardiac chamber dilation and impaired cardiac contraction.
Moreover, at 1 year of age, Ctsl”/~ mice develop supraventricular
3426
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tachycardia, ventricular extrasystoles, and first-degree atrioven-
tricular blockage (69). Deficiency of cathepsin L in mice affects
the endolysosomal system of cardiomyocytes in newborn mice
(69). In particular, it increases the number of acidic organelles,
although these vesicles lack the accumulation of typical lysosomal
storage materials and have altered morphology (70). Subsequently,
the defects in the acidic cellular compartment are accompanied by
complex biochemical and cellular alterations, with loss of cytoskel-
etal proteins and mitochondrial impairment (70). These findings
raise the question of how cathepsin L deficiency and the observed
alteration of the acidic cellular compartment change intracellular
signaling toward induction of a hypertrophic response with sub-
sequent dilation of the heart.

Cathepsin L involvement in cardiac signal transduction. In a gain-
of-function approach, human cathepsin L was transgenically
overexpressed in the cardiomyocytes of mice (71). The transgenic
October 2010
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Figure 3

Alternative translation from downstream
AUG sites produces cytoplasmic and nuclear
cathepsin L. (A) Alternative translation from

Cathepsin L mRNA i —— i 2 downstream AUG sites produces cathepsin L
IP_P%' Transiation from Transiation from that is devoid of the leader sequence and that
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mice had a decreased hypertrophic response and exhibited reduced
cardiomyocyte apoptosis in two models of hypertensive heart fail-
ure, i.e., aortic banding and angiotensin II infusion. The observed
cardioprotective effect of human cathepsin L overexpression in the
mouse heart was associated with inhibition of Akt signaling (71).
As of yet, it has not been fully resolved how cathepsin L blocks Akt
signaling in the heart, but some information on how cathepsin L
affects intracellular signal transduction processes is available from
data obtained in mouse epidermis. Cathepsin L-deficient mouse
keratinocytes show enhanced recycling of nondegraded plasma
membrane receptors and their ligands to the cell surface and sus-
tained growth factor signaling (72). This impaired termination
of growth factor signaling within the endolysosomal compart-
ment results in increased Ras, Akt, and MAPK activation (73). As
a consequence, the proliferation of basal epidermal keratinocytes
is increased. This, in turn, results in the epidermal hyperprolifera-
tion and increased susceptibility to squamous carcinogenesis in
the skin of CtsI~~ mice (74). Thus, the overexpression of cathepsin
L in the endolysosomal compartment of cardiomyocytes is likely
to result in immediate proteolysis of endocytosed receptors and
their ligands. Therefore, both the time span available for signaling
from the receptors and the rate of receptor recycling are reduced.
This premature signal termination lowers the activation state of
cytosolic kinases like Akt and therefore reduces the hypertrophic
response of the challenged mouse myocardium (71).

Extracellular cathepsins in cardiac remodeling and repair. It is also
worth noting that dilative cardiomyopathy-associated intersti-
tial fibrosis in Cts//~ mice is the only defect in the heart that can-
not be rescued by transgenic reexpression of mouse cathepsin L
in cardiomyocytes of otherwise cathepsin L-deficient mice (75).
These results imply that the observed cardiac fibrosis in Ctsl”/~
mice is caused by the absence of cathepsin L from cardiac fibro-
blasts and not from cardiomyocytes. Since collagen I (Collal)
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mRNA expression is not enhanced in cathepsin L-deficient myo-
cardium, the accumulation of collagen in the ECM is most likely
due to impaired collagen turnover.

Cathepsin L is mainly located in the endosomal/lysosomal com-
partment, but a fraction of the proenzyme can be secreted and
activated by other proteases such as matrix metalloproteinases.
Activated extracellular cathepsin L is capable of processing ECM
proteins, such as fibronectin, laminin, and type I, IV, and XVIII
collagen, even at neutral pH (76-78). Cysteine cathepsins, such as
cathepsin S and cathepsin B, are highly abundant in the left ven-
tricular myocardium of patients with hypertensive heart failure
and therefore have been implicated in turnover of the ECM and
cardiac remodeling in this disease (68, 79).

This turns attention to another emerging aspect of extracellular
cathepsin L — its involvement in cardiac repair. Endothelial pro-
genitor cells home to ischemic areas, differentiate, and build the
basis for new blood vessels, a process known as neovasculariza-
tion (80). Improvement of vascularization and function of isch-
emic areas in the heart may represent a physiologic function of
endothelial progenitor cells. The infusion of excess numbers of
in vitro-differentiated progenitors is currently being evaluated
in clinical trials aimed at improving the outcome of postin-
farction congestive heart failure (81). Bone marrow-derived
endothelial progenitor cells show high cathepsin L expression
and activity, and neovascularization after experimental hind
limb ischemia is substantially impaired in Cts//~ mice (82). Fur-
thermore, infusion of cathepsin L-deficient mononuclear cells,
but not that of mononuclear cells from cathepsin D- or MMP9-
deficient mice, results in a failure of these cells to home effi-
ciently. Mechanistically, cathepsin L is required for the invasion
and the proteolytic matrix-degrading activity of the endothelial
progenitors (82). Interestingly, diabetes, a typical risk factor for
ischemic heart disease, impairs human and mouse cathepsin L
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Figure 4

Cytosolic cathepsin L and its function in proteinuric kidney disease. Phosphorylation of synap-
topodin by PKA or CaMKII promotes 14-3-3 binding, which protects synaptopodin and dyna-
min against cathepsin L-mediated cleavage, thereby contributing to a stationary podocyte
phenotype and an intact glomerular filtration barrier. Dephosphorylation of synaptopodin by
calcineurin abrogates the interaction with 14-3-3. This renders the cathepsin L cleavage sites of
synaptopodin accessible and promotes the degradation of synaptopodin and dynamin, thereby
promoting a motile phenotype and the development of proteinuria. The calcineurin inhibitor CsA
and the cathepsin inhibitor E64 safeguard against proteinuria by stabilizing synaptopodin and

dynamin protein levels in podocytes.

activity (but not that of other major proteases) in endothelial
progenitor cells and also reduces invasion of these cells in a
glucose concentration-dependent manner (83). Hence, the spe-
cific impairment of cathepsin L function by hyperglycemia may
explain the poor neovascularization and regeneration capacities
of ischemic tissues in diabetic patients.

The role of truncated forms of cathepsin L in murine

and human renal disease

The role of podocyte cathepsin L in proteinuric kidney diseases. The kidney
glomerulus is a highly specialized structure that ensures the selec-
tive ultrafiltration of plasma, so that essential proteins are retained
in the blood (84). Podocytes are unique cells with a complex cel-
lular organization, consisting of a cell body, major processes, and
foot processes (FPs). The FPs cover the outer aspect of the glomeru-
lar basement membrane. They form a characteristic interdigitating
pattern with FPs of neighboring podocytes, leaving in between the
filcration slits that are bridged by the glomerular slit diaphragm
(SD) (84). Human genetic studies have revealed that mutations
affecting several podocyte proteins, including a-actinin-4 (85),
nephrin (86), PLCe1 (87), podocin (88), transient receptor poten-
tial cation channel, subfamily C, member 6 (TRPC6) (89, 90), and
inverted forming gene 2 (INF2) (91), lead to renal disease, owing
to disruption of the filtration barrier and rearrangement of the
podocyte actin cytoskeleton. Cell biologic and mouse genetic
studies revealed that additional proteins regulate the plasticity of
the podocyte actin cytoskeleton, such as Rho GDIa, podocalyxin,
FAT tumor suppressor homolog 1 (FAT1), NCK adaptor protein 1
(Nck1), Nck2, synaptopodin, and dynamin, and are also of critical
importance for sustained function of the kidney glomerular filtra-
tion barrier (reviewed in ref. 92).

The onset of proteinuria, induced by either LPS (7, 8) or puro-
mycin aminonucleoside (PAN) (9), is associated with the induc-
tion of cathepsin L expression and activity in podocytes. The lat-
ter study also introduced the emerging concept that the onset
of proteinuria represents a migratory event in podocyte FP that
is associated by the activation of cathepsin L (9). This study also
3428
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showed that the SD-associated CD2AP
(93) was protected from puromycin-
induced degradation in primary podocyte
cultures derived from Ctsl~~ mice (9). Sub-
, sequently, it was found that a cytoplas-
\_/Dynﬂn__] mic variant of cathepsin L in podocytes is
l required for the development of protein-

uria in mice through a mechanism that

involves the cleavage of the large GTPase
dynamin (7) and synaptopodin (8). The
clinical relevance of these findings was
underscored by the observation that podo-

Proteinuria

cyte cathepsin L expression is increased in
avariety of human proteinuric kidney dis-
eases, ranging from minimal change dis-
ease (MCD) to diabetic nephropathy (7).
Together, these results support the notion
that cathepsin L-mediated proteolysis
plays a critical role in the development of
various forms of proteinuria (94).

Cathepsin L-mediated degradation of dyna-
min leads to proteinuria in mice. Dynamin
is essential for the formation of clath-
rin-coated vesicles at the plasma membrane during endocyto-
sis (95). Dynamin has also been implicated in the regulation of
actin dynamics in certain cell types (96). Using the Prediction
of Endopeptidase Proteolytic Sites computer algorithm (PEPS)
for predicting putative cathepsin L substrates (46), dynamin was
identified as a target of cathepsin L (7). In mouse podocytes,
dynamin is cleaved by cytoplasmic cathepsin L during LPS- or
PAN-induced experimental proteinuria, and gene delivery of
cathepsin L-resistant dynamin protected mice against LPS-
induced proteinuria (7). The notion that dynamin is required
for proper podocyte structure and function is further supported
by the observation that overexpression of dominant-negative
dynamin leads to a loss of podocyte stress fibers in vitro and
development of proteinuria in mice (7).

Cyclosporine A prevents proteinuria by blocking cathepsin L-medi-
ated degradation of synaptopodin in podocytes. Calcineurin is a
ubiquitously expressed serine/threonine phosphatase (97). Its
best-characterized function is the regulation of nuclear factor
of activated T cells (NFAT) signaling. The immunosuppressive
action of the calcineurin inhibitor cyclosporine A (CsA) stems
from its inhibition of NFAT signaling in T cells (98). CsA can
also induce remission of the proteinuria associated with diseases
such as MCD and focal segmental glomerulosclerosis (FSGS)
(99). Although T cell dysfunction is associated with some forms
of proteinuria (100), including a subset of children with MCD
(101), the salutary action of CsA in MCD and FSGS led to the
suspicion that CsA might exert its effect, at least in part, inde-
pendently of its effects on T cells, a hypothesis also supported by
reports of CsA effectiveness in nonimmunological human (102)
and experimental (103) Alport syndrome.

Recently, a mechanism was identified wherein CsA blocks cal-
cineurin-mediated dephosphorylation of synaptopodin in mouse
podocytes, thereby preserving the phosphorylation-dependent
synaptopodin/14-3-3f interaction (8). This interaction, in turn,
protects synaptopodin from cathepsin L-mediated degrada-
tion and preserves a stable filtration barrier. Moreover, inducible
expression of dominant-active calcineurin in podocytes is suf-
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ficient to cause the degradation of synaptopodin and dynamin,
thereby inducing proteinuria (8). These data describe a calcineu-
rin/cathepsin L signaling pathway in podocytes that contributes
to the regulation of kidney filter function (Figure 4). In contrast
to most other calcineurin-NFAT controlled signaling events
(97,98, 104, 105), the antiproteinuric effect of CsA stems, at least
in part, from its inhibition of cathepsin L-mediated degradation
of synaptopodin in podocytes (Figure 4 and ref. 8).

The emerging role of nuclear cathepsin L in polycystic kidney disease.
Polycystic kidney disease (PKD) represents the most common
genetic renal disease in the world. PKD is inherited as an auto-
somal dominant (ADPKD) or autosomal recessive (ARPKD)
trait and characterized by progressive enlargement of renal cysts
(106). Cux1 is a homeobox gene that represses the cyclin kinase
inhibitors p21 and p27, and transgenic mice ectopically express-
ing Cux1 develop renal hyperplasia (107). A 246-amino acid
deletion in Cux1 accelerates PKD progression in the cpk model
of ARPKD (11), and the ensuing phenotype was explained by a
missing cathepsin L cleavage site in the truncated Cux1 mutant,
which thereby maintains increased tubular cell proliferation and
apoptosis. Cux1 is proteolytically processed by a nuclear isoform
of cathepsin L (10). In both human ADPKD cells and in kidneys
of mice with a targeted deletion in Pkd1, a murine model of PKD,
decreased nuclear cathepsin L levels are associated with increased
levels of Cux1 protein in the cystic cells in vitro and the cysts in
vivo (11). These results suggest a mechanism by which reduced
Cux1 processing by nuclear cathepsin L results in the accumu-
lation of Cux1, downregulation of p21/p27, and increased cell
proliferation in PKD (11). Furthermore, they provide proof of
principle of the hypothesis that nuclear cathepsin L is capable of
processing transcription factors that control important cellular
programs, such as growth.
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Outlook

Recent studies have uncovered multiple divergent roles for differ-
ent cathepsins in a variety of physiologic and pathophysiologic
processes. From the findings in the different organs discussed
above, it has become clear that cathepsins serve as regulatory
enzymes beyond acting as simple housekeeping proteases and
harbor important functions outside the lysosome. Future studies
are required to delineate the translational mechanisms leading to
the generation of the truncated forms of cathepsin L. Structural
insights should aid drug development of cathepsin inhibitors that
act in an allosteric manner and, therefore, may be more specific
for individual cathepsin forms than currently available inhibitors.
The understanding of cathepsins and their recently identified sub-
strates continues to be an expanding area in biology. Most impor-
tantly, they provide starting points for the development of novel
selective therapeutic modalities for various human diseases.
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