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Maf promotes osteoblast differentiation
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Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow mul-
tipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including
osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinedio-
nes, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes
and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation
switch is unknown. Here we show an age-related decrease in the expression of Mafin mouse mesenchymal
cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the
osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor
Pparg. The crucial role of Mafin both osteogenesis and adipogenesis was underscored by in vivo observations
of delayed bone formation in perinatal Maf/~ mice and an accelerated formation of fatty marrow associated
with bone loss in aged Maf*~ mice. This study identifies a transcriptional mechanism for an age-related
switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against

age-related bone diseases.

Introduction

A progressive and irreversible accumulation of DNA damage,
which is triggered by telomere shortening and various stressors
such as oxidative stress, contributes to cellular senescence and
organismal aging (1, 2), but how aging is related to the disruption
of the homeostatic balance of cell differentiation from a common
progenitor is not well understood. Bone marrow contains mul-
tipotent mesenchymal progenitor cells, which differentiate into
various anchorage-dependent cell types, including adipocytes and
osteoblasts (3, 4). With age, mesenchymal cells in the bone mar-
row become inclined to undergo differentiation into adipocytes
rather than osteoblasts (5-7), resulting in an increased number of
adipocytes and a decreased number of osteoblasts, causing osteo-
porosis. Adipocytes are also known to directly inhibit functions
of other cells in the bone marrow, including hematopoietic stem
cells and osteoblasts (8-11). Since an increase in marrow fat along
with bone loss is observed in diabetic patients treated with thia-
zolidinediones (TZDs) (12), understanding the mechanism of this
differentiation switch has substantial relevance to both the man-
agement of age-related osteoporosis and secondary osteoporosis
after such drug treatment. However, the change in mesenchymal
cell differentiation cannot be adequately explained by cellular
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senescence ot the cell cycle arrest caused by DNA damage. While
estrogen deficiency causes postmenopausal osteoporosis (6, 13), it
has been suggested that the downregulation of cytokines and hor-
mones, such as IGF1, TGFB1,IL-11, and growth hormone, is corre-
lated with age-related bone loss (6, 14, 15). However, a cell-intrinsic
mechanism that regulates the age-related switch in mesenchymal
cell differentiation remains to be elucidated. Here we report an
age-related decrease in the expression of Mafin mesenchymal cells
and present evidence that Maf regulates mesenchymal cell bifur-
cation into osteoblasts and adipocytes. This study establishes
the crucial role of the Maf-mediated transcriptional program in
the physiological and age-related regulation of mesenchymal cell
lineage, which may facilitate the development of new therapeutic
strategies against bone and metabolic diseases.

Results

A genome-wide screening of transcription factors involved in the age-related
decrease in bone formation. To identify the transcription factors
involved in age-related bone loss, we performed a genome-wide
screening of mRNAs expressed in cells derived from mouse cal-
varia during osteoblastogenesis. Among 1,470 transcription fac-
tors, we identified 163 genes related to osteogenic function; the
identifying characteristic of these factors was that their expression
was increased by more than 4-fold during osteoblastogenesis (Fig-
ure 1A and Supplemental Table 1, A and B; supplemental material
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Impaired bone formation in Maf-- mice. (A) A genome-wide screening of transcription factor mMRNAs during in vitro differentiation of osteoblasts
(OBs) and a comparison of their expression between 8- and 32-week-old BMSCs. The increase in Maf expression during osteoblastogenesis
was confirmed in calvarial osteoblasts (RNA blot analysis, right top). Maf expression was markedly lower in BMSCs derived from the aged mice
(real-time RT-PCR analysis, right bottom). Screening results are summarized in the Venn diagram. *P < 0.05; **P < 0.01. (B) Alizarin red/alcian
blue staining of E17 embryos (top). Top view of calvaria (bottom). Images in B are composites. (C) Histology (von Kossa staining) and micro-
computed tomography analysis of WT and Maf-- littermates at PO (n = 3). Scale bar: 100 um. (D) ALP and von Kossa staining of osteogenic
fronts (OFs) in the calvaria of WT and Maf- littermates. Scale bar: 100 um. (E) Expression of Bglap1 in the calvaria of WT and Maf-- mice

(in situ hybridization). Scale bar: 100 um.

available online with this article; doi:10.1172/JCI42528DS1). To
identify age-related genes, we also comprehensively analyzed the
mRNAs expressed by bone marrow stromal cells (BMSCs) derived
from 8- and 32-week-old mice, which resulted in identifications
of 179 genes, the expression of which was decreased in the aged
mice by more than 2 fold (Supplemental Table 1C). Fifty-two
genes met both criteria (Supplemental Table 1D), from which we
selected 7 genes preferentially expressed in BMSCs (with an aver-
age difference greater than 200). Among these 7 genes, we identi-
fied Maf (also known as c-Maf) to be the most highly expressed in
the BMSCs. We confirmed that the expression of Maf increased
during osteoblastogenesis, using calvarial and BMSCs (Figure 1A,
right top, and Supplemental Figure 1A), and decreased with age
(Figure 1A, right bottom, and Supplemental Figure 1B). Maf, a
3456
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basic leucine zipper transcription factor, is known to be involved
in the regulation of diverse developmental processes such as
lens fiber elongation (16) and Th2 cell differentiation (17, 18).
Although it has been documented that transcription factors such
as AFosb, Taz, Esr1, Msx2, and Cebpf regulate the bifurcation of
osteoblast/adipocyte differentiation (7, 19, 20), the expression of
AFosb was increased in aged BMSCs (Supplemental Figure 2) and
the other 4 factors were not included in the 179 age-related genes
(Supplemental Table 1C). These results suggest that Maf is one of
the potential candidate genes underlying an age-related decrease
in osteoblastogenesis.

The indispensable role of Maf in osteogenesis. Since Maf - mice usually
die immediately after birth (16), we investigated the role of Maf
in osteogenesis by analyzing the skeletal development of perinatal
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Table 1
Skeletal development of perinatal Maf~-mice

wrt Maf--
BV/TV (%) 29.51 +0.15 23.56 + 0.32°
Tb.N (mm-1) 13.43+0.26 11.81 + 0.338
Th.Sp (um) 51.86 + 1.59 64.98 + 1.46A
Tb.Th (um) 22.47 +0.03 20.36 + 0,638

Microcomputed tomography analysis of WT and Maf-- littermates at PO.
BV/TV, bone volumef/tissue volume, Tb.N, trabecular number, Tb.Sp, tra-
becular separation, and Tb.Th, trabecular thickness. AP < 0.01. BP < 0.05.

Maf~~ mice. Bone formation was severely impaired in both the long
and calvarial bones in the embryos of Maf”~ mice (Figure 1B), and
bone volume was decreased in newborn Maf~~ mice (Figure 1C,
Table 1, and Supplemental Figure 3). The formation of alkaline
phosphatase-positive (ALP-positive) cells on an osteogenic front
was markedly impaired in the calvaria of newborn Maf~~ mice (Fig-
ure 1D). In situ hybridization analysis revealed the expression of
osteoblast genes, such as Bglap1 (encoding osteocalcin), but not of
Runx2 was much lower in the embryos of Maf 7~ mice than WT mice
(Figure 1E and Supplemental Figure 4, A and B), although the pro-
liferating or apoptotic osteoblast numbers were not different (Sup-
plemental Figure 4C). Since the osteoclast number was decreased in
Maf~~ mice, possibly in a cell-autonomous manner (Supplemental
Figure 5), it is unlikely that abnormal osteoclastic bone resorp-
tion contributes to the low bone mass phenotype in Maf”~ mice.
When a neomycin-resistance gene cassette was inserted into the Maf
locus, chondrocyte development was reported to be affected in the
mutant mice, but the mice were not perinatally lethal (18). In the
current study, in which the coding sequence of Maf was entirely
replaced by the LacZ cassette, the mice were perinatally lethal and
exhibited more severe chondrocyte abnormalities (Supplemental
Figure 6). It is difficult to rule out the possibility that a defect in
chondrocytes contributes to a skeletal phenotype in long bone, but
Maf~~ mice exhibited a defective bone formation in flat bones, like
the calvaria (Figure 1B), which are not formed by endochondral
bone formation, suggesting a role of Maf in osteoblasts. To analyze
a cell-autonomous defect in osteoblasts further, osteoblast differ-
entiation was evaluated in an in vitro culture system of osteoblast
precursor cells derived from the calvaria of newborn Maf”~ mice.
ALP activity and bone nodule formation were markedly suppressed
in Maf~~ cells (Figure 2A), but neither the proliferation nor apop-
tosis was affected (Figure 2B). These results collectively indicate
that a complete lack of Mafled to an osteopenic phenotype, due to
impaired osteoblast differentiation and bone formation.

Maf regulates osteoblast differentiation in cooperation with Runx2. The
expression of various osteoblast-specific genes, including Bglap1,
was severely suppressed in Maf~~ cells (Figure 2, C and D), but
Runx2, a well-known transcriptional regulator of Bglapl (21, 22),
was normally expressed in Maf”~ mice (Supplemental Figure 4B).
Itis notable that Maf expression was not decreased in Runx2~/~ cal-
varial osteoblasts (Supplemental Figure 7). These results prompt-
ed us to investigate whether Maf directly regulates the BglapI pro-
moter. As expected, 5 Maf recognition element-like (MARE-like)
sequences were contained in the 1,050-base Bglap1 promoter region
(Figure 2E). A reporter gene assay indicated that Maf activates the
Bglapl promoter mainly through a region containing 3 proximal
MARE-like sequences (MARE1-MARE3), which was included in
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the proximal DNase hypersensitive site (23) and partially over-
lapped with osteoblast-specific element 1 (OSE1) (22) (Figure 2F).
ChIP experiments showed that Mafis recruited to the region con-
taining MARE1-MARE3 in primary osteoblasts (Figure 2G), sug-
gesting that Maf directly regulates the Bglapl promoter.

To gain insight into the transcriptional partners of Maf, we
analyzed the Maf transcriptional network using a systems biol-
ogy approach, based on protein-protein interaction databases and
our own GeneChip analysis. Fos, Jun, Atf4, Nfat, and Runx2 were
included among the transcription factors predicted to interact
with Maf (Supplemental Figure 8). The function of these candi-
date partners was examined in the Maf-mediated activation of the
Bglap1 promoter, which was found to be exclusively enhanced by
the addition of Runx2 (Figure 2H and data not shown). Consistent
with this, the transcriptional activity of Maf on the Bglap1 promoter
was markedly decreased in Runx27- cells (Supplemental Figure 9).
Maf bound to Runx2 in an immunoprecipitation assay (Figure 3
and Supplemental Figure 10), and immunohistochemical analysis
showed that Maf was colocalized with Runx2 in calvarial osteo-
blasts (Supplemental Figure 11). Thus, these results suggest that
Maf controls osteoblast differentiation by regulating osteoblastic
gene expression mainly in cooperation with Runx2.

Maf suppresses adipogenesis by the downregulation of Pparg. We further
characterized the Maf~~ calvarial cells using gene set enrichment
analysis (GSEA), which revealed adipocyte-related genes to be
highly enriched in Maf~~ cells (Supplemental Figure 12). Indeed,
GeneChip data showed that the expression of adipocyte genes was
upregulated in Maf~~ calvarial cells, even under the conditions
optimized for osteoblast differentiation (Figure 4A). Maf”/~ cells
differentiated into oil red O-positive adipocytes more efficiently
than WT cells (Figure 4B). Real-time RT-PCR analysis confirmed
the expression of Pparg, the key transcription factor for adipogene-
sis, as well as that of Fabp4, Slc2a4, Lpl, Acc1, and Cd36, downstream
effectors of Ppary (24-26), to be markedly elevated in Maf7~ cells
(Figure 4C and Supplemental Figure 13). To further investigate the
role of Maf'in osteoblast and adipocyte differentiation, we ectopi-
cally expressed Maf in C3H10T1/2 cells, a stromal cell line with a
capacity to differentiate into both osteoblasts and adipocytes, and
found that the introduction of Maf resulted in a severe blockade of
adipocyte differentiation and an enhancement of osteoblast differ-
entiation (Figure 4D and Supplemental Figure 14). Similar results
were obtained using another stromal cell line, ST2, and BMSCs
(Supplemental Figure 15, A-C). In addition, short hairpin RNA-
mediated knockdown of Maf'in ST2 cells resulted in a blockade of
osteoblast differentiation and an acceleration of adipocyte differ-
entiation (Supplemental Figure 15, D and E). Similar results were
obtained using BMSCs (Supplemental Figure 15F). These results
suggest that Maf promotes osteoblast differentiation and inhibits
adipocyte differentiation in a cell-autonomous manner.

To understand the mechanism underlying the Maf-mediated
inhibition of Pparg expression and adipogenesis, we examined the
effect of Maf on the transcriptional activity of Cebp, the family
members of which are involved in the regulation of Pparg (27, 28).
Overexpression of Maf clearly suppressed the activation of the
Pparg promoter by Cebpa and Cebpd but not that by Cebpp (Fig-
ure 4E and data not shown). Since the introduction of mutation(s)
into MARE:s in the Pparg promoter did not affect the inhibitory
effect of Maf on Cebpd activity, it is unlikely that Maf inhibited the
Pparg promoter activity by directly binding to MARESs (Supplemen-
tal Figure 16, A and B). EMSA revealed that Maf did not affect the
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Regulation of osteoblast differentiation and Bglap1 expression by Maf in cooperation with Runx2. (A) ALP and alizarin red staining of WT
and Maf-- calvarial cells. ALP activity and bone nodule formation were quantitated. (B) Proliferation and apoptosis of WT and Maf-- cal-
varial cells. (C) mRNA expression of osteoblast-specific genes in WT and Maf-- calvarial cells (GeneChip analysis). (D) Bglap1 expression
in WT and Maf-- calvarial cells cultured with osteogenic medium for 7 days (RNA blot analysis). (E) Schematic of 5 MARE-like sequences
(MARE1-MARES) in the regulatory region of Bglap1, and Bglap1-luc variants harboring point mutation(s) in MARE-like sequences. pDHS
and dDHS indicate proximal and distal DNase hypersensitive sites, respectively (23). Arrows indicate the primer set used for ChIP. Numbers
within ovals represent corresponding MARE sequences. Ovals with “X”s indicate sequences without that respective MARE sequence. (F)
Effect of Maf on the Bglap1-luc variants. (G) Recruitment of Maf to the Bglap1 promoter region containing MARE1-MARES. Calvarial cells
cultured with osteogenic medium for 7 days were analyzed by ChIP. (H) Effect of Runx2 and AP-1 family members on Maf-mediated activa-
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DNA binding activity of Cebpd, further supporting Maf-mediated
inhibition of the Pparg promoter being independent of Maf bind-
ing to DNA (Supplemental Figure 16C). In addition, AP-1 family
members and Runx2 did not affect Maf-mediated inhibition of the
Pparg promoter (Supplemental Figure 16D). As it has been docu-
mented that Maf and Cebpd commonly use CREB-binding pro-
tein gene (Crebbp) as their crucial transcriptional coactivator (29)
(Supplemental Figure 8), we inferred that competition for the lim-
ited amount of Crebbp accounts for the inhibitory effect of Maf
on the Cebpd activity. As expected, the interaction of Cebpd with
Crebbp was suppressed by the overexpression of Maf (Figure 4F).
Overexpression of Crebbp recovers the Maf-mediated inhibition
of the effect of Cebpd on the Pparg promoter (Figure 4E), lend-
ing support to the notion that Maf inhibits Cebpd activity due to
Crebbp squelching, although this may not be the sole mechanism
underlying Maf inhibition of adipogenesis.

Decreased Maf expression accelerates age-related osteoporosis and fatty
bone marrow. Although the perinatal lethality of Maf~”~ mice ren-
ders it difficult to evaluate the development of fatty marrow with
aging, the expression of Pparg in the bone marrow is much higher
in perinatal Maf”~ mice than WT mice (Figure 5A), suggesting
that the adipogenesis is enhanced in vivo in the case of Maf defi-
ciency. Haploinsufficiency of Maf did not affect bone formation
in embryos or neonatal mice (Figure 1B and Supplemental Figure
17). At the age of 22 weeks, however, histological analysis revealed
that the bone marrow was filled with adipocytes characterized by
fat vacuoles, and the bone volume was reduced in the Maf*~ mice
(Figure S, B and C, and Table 2). In contrast, no abnormalities in
cartilage were found in the adult or neonatal Maf*”~ mice (Supple-
mental Figures 6 and 18). The accelerated fatty marrow formation
was accompanied by a decrease in osteoblast number and bone
formation (Figure SD), while osteoclastic bone resorption was not
affected in the Maf*~ mice, with the serum calcium and phosphate
levels being normally maintained (Supplemental Figures 19-21).
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Thus, haploinsufficiency of Maf results in enhanced adipogen-
esis and decreased osteogenesis in vivo, which was obvious at an
advanced age, suggesting that the decreasing level of Maf with age
contributes to the age-related switch in mesenchymal cell differen-
tiation into adipocytes rather than osteoblasts.

To determine whether forced expression of Maf in mesenchymal
cells would rescue an aging phenotype of Maf*~ mice, we
overexpressed Mafin calvarial cells by retroviral transfer and trans-
planted them into the femurs of aged mice (Supplemental Figure 22).
Maf*/~ mice transplanted with Maf-transduced calvarial cells had
a higher trabecular bone mass (but not cortical bone mass) and
a decreased number of intramedullary adipocytes compared with
those transplanted with mock-infected calvarial cells (Figure 6A
and Table 3). We observed similar results when we transplanted
Maf-transduced calvarial cells into aged WT mice (Supplemental
Figure 22D). These results indicate that overexpression of Maf
resulted in effective restoration of both an accelerated aging phe-
notype in Maf*~ mice and age-related changes in WT mice.

ROS regulation of Maf expression through Trp53. How is Maf expres-
sion regulated during aging? Since it has been reported that age-
related bone loss is related to an increased expression of the Wnt
inhibitor secreted frizzled-related protein 4 (30) or a decreased
production of soluble factors, such as IGF1, TGFB1, IL-11, and
bone morphogenetic protein 2 (6, 14, 15), we evaluated the effect
of these factors as well as the effect of ROS on Maf expression.
Although none of the soluble factors increased Maf expression in
osteoblast precursor cells (Supplemental Figure 23), treatment
with the hydrogen peroxide led to a marked decrease in Maf expres-
sion, which was restored by the addition of the antioxidant N-ace-
tylcysteine (Figure 6B). These results prompted us to investigate
whether administration of N-acetylcysteine rescue the bone phe-
notype of Maf*/~ mice. As expected, administration of N-acetylcys-
teine led to an increased bone mass and decreased intramedullary
fatin Maf*~ mice (Figure 6, C and D).
October 2010 3459
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Figure 4

Maf inhibition of adipocyte differentiation by suppressing Cebpd/a-mediated induction of Pparg. (A) mRNA expression of adipocyte-specific
genes in WT and Maf-- calvarial cells cultured with osteogenic medium (GeneChip analysis). (B) Adipocyte formation in WT and Maf-- calvarial
cells cultured with osteogenic medium (oil red O staining). (C) Expression of Pparg and Fabp4 in WT and Maf-- calvarial cells cultured with
osteogenic medium (real-time RT-PCR analysis). (D) Effect of Maf overexpression on adipocyte and osteoblast differentiation of C3H10T1/2
cells. Scale bar: 200 um. (E) Effect of Crebbp overexpression on Maf-mediated inhibition of Cebpd activation of the Pparg promoter. (F) Inhibition
of interaction between Cebpd and Crebbp by Maf. *P < 0.05; **P < 0.01.

Furthermore, to gain mechanistic insight into the downregulation
of Mafby ROS, we focused on the regulation of Mafby TrpS53, which
is reported to be induced by ROS and involved in aging (1, 2,31, 32).
Indeed, the Maf promoter contains multiple Trp53 binding sites and
overexpression of Trp53 markedly inhibited the activity of the Maf
promoter (Supplemental Figure 24). In addition, the downregula-
tion of Mafby ROS was markedly attenuated in Trp537~ osteoblasts
(Figure 6B). Although NF-kB is involved in aging (33) and activated
by ROS, Maf expression was not restored by an NF-kB inhibitor
3460
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(Supplemental Figure 25). These results suggest that the oxidative
stress that accumulates with aging mediates, at least in part, the age-
related decrease in Maf expression through Trp53.

Discussion

The molecular basis for age-related changes in higher organisms
is poorly understood, particularly in the skeletal system. Although
many factors have been suggested to regulate the bifurcation of
osteoblasts and adipocytes, the function of a few factors has been
October 2010
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Figure 5
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demonstrated by genetic loss-of-function studies (7), and how the
expression level of these factors changes in aging is not well known.
A combination of a genome-wide screening and mouse genetic
studies led us to identify the expression level of Maf to be both
under the influence of aging and a determinant of mesenchymal
cell differentiation into osteoblasts and adipocytes (Figure 6E).

Maf promotes osteoblast differentiation by regulating osteoblast
genes, including Bglap1, in cooperation with Runx2. We propose
that Maf functions as a modulator of bone formation by regulating
the activity of crucial determinants like Runx2. Even in aged mice,
bone marrow cells expressed a normal level of Runx2 (based on the
screening shown in Figure 1A and Supplemental Table 1), but a low
level of Maf expression resulted in a decrease in Runx2-mediated
transcriptional activity. Therefore, Maf'is a potential candidate to
help explain the gradual and moderate decrease in bone formation
observed in age-related osteoporosis. We also demonstrated that
Maf inhibited adipocyte differentiation through the downregula-
tion of Pparg expression, thus indicating that Maf regulates the
bifurcation of the mesenchymal cell lineage into osteoblasts and
adipocytes. It is interesting to note that the MAF locus was recently
identified as one of the risk loci for obesity (34).
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Using genetically modified mice, AP-1 superfamily members
Fral, Junb, and AFosb were shown to regulate bone formation
(35-37), but AFosb was the only member that also regulates adi-
pogenesis (19). However, since the adipogenic function of AFosb
depends on a non-cell-autonomous mechanism (38), Maf is the
only AP-1 superfamily member that has a cell-autonomous role
in the regulation of both osteoblast and adipocyte differentia-
tion. Interestingly, Maf also regulated osteoclastogenesis in a cell-
autonomous manner, possibly by modulating NFAT activity (Sup-

Table 2
Skeletal development of 22-week-old Maf+-mice

WT Maf+-
BV/TV (%) 443 £0.15 3.17 £ 0.54A
Tb.N (mm-1) 1.90 + 0.02 1.54 +0.144
Th.Sp (um) 503.82 + 5.69 623.86 + 51.19A
Tb.Th (um) 23.35+0.59 20.98 + 0.60%

Microcomputed tomography analysis of the femurs of 22-week-old WT
and Maf+- mice. AP < 0.05.
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Figure 6

Aging and Maf-mediated regulation of osteoblastogenesis and adipogenesis. (A) Effect of Maf overexpression in mesenchymal cells on an aging
phenotype of Maf+*- mice. Three-dimensional microcomputed tomography images and histological analysis of the bone marrow (toluidine blue
staining) of Maf+*- mice transplanted with Maf-transduced or mock-infected calvarial cells. Scale bar: 200 um (top row); 100 um (bottom row). (B)
Effect of hydrogen peroxide on Maf expression in WT and Trp53-- calvarial osteoblasts (real-time RT-PCR analysis). (C) Effect of N-acetylcys-
teine (NAC) administration on an aging phenotype of Maf+*- mice. Three-dimensional microcomputed tomography images (top row) and histology
of the bone marrow (toluidine blue staining, middle and bottom rows) of mice (n = 4). Images in the middle row are shown at higher magnification
in the bottom row. Scale bar: 500 um (top and middle rows); 50 um (bottom row). (D) Microcomputed tomography and histological analysis of
WT and Maf+- mice. (E) A model of Maf-mediated reciprocal regulation of osteoblast and adipocyte differentiation. *P < 0.05; **P < 0.01.
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Table 3
Skeletal development and adipogenesis in Maf- mice trans-
planted with Maf-transduced and mock-infected calvarial cells

Mock-infected Maf-transduced

calvarial cells calvarial cells
BV/TV (%) 4.95+0.77 6.81 £ 0.57A
CV/TV (%) 35.06 + 0.43 35.09 + 0.71
Adipocytes (mm-2) 97.1+6.6 62.8 +6.78

Effect of Maf overexpression in mesenchymal cells on an aging pheno-
type of Maf+- mice (n = 4). CV/TV, cortical bone volume/total volume.
AP <0.05.8P < 0.01.

plemental Figure 5, C and E), suggesting that Maf plays a distinct
role in each skeletal cell type.

Since Ppary inhibits the expression of Maf (39), a small reduc-
tion in Maf expression would form a vicious cycle: an increasing
expression of Pparg further inhibits Maf expression, leading to a
severe reduction in Maf. Antidiabetic drugs — such as TZDs, which
activate Ppary — are known to reduce bone mass and increase
fracture risk (12). Interestingly, treatment with rosiglitazone led
to decreased Maf expression (data not shown). This is possibly
because Ppary agonists accelerate this vicious cycle through sup-
pression of Maf expression.

Mathematical modeling of gene expression is helpful for under-
standing how the gradual reduction of Maf expression leads to a
dramatic change in cell differentiation. Based on this simulation,
if the expression of Maf decreased by more than 60% of the maxi-
mum level, the adipogenic genes became preferentially expressed
(Supplemental Figure 26 and Supplemental Methods). Reduction
of Maf gene expression in neonatal Maf”~ mice was not sufficient
for activation of this switch, as we observed no obvious bone
phenotype in neonatal Maf*/~ mice (Figure 1B and Supplemental
Figure 17). As the level of Maf gradually decreased with age, they
exhibited an osteopenic phenotype with fatty marrow.

Currently, there are few drugs available in the clinic that effec-
tively increase bone formation. The modulation of Mafexpression
appears to hold considerable promise as what we believe to be a
novel antiaging therapeutic target in the skeletal system.

Methods

Mice. Maf~~ mice were previously generated and described elsewhere (16).
Maf~~ mice were backcrossed into C57BL/6 mice for more than 9 genera-
tions, unless otherwise described. All mice were born and maintained under
specific pathogen-free conditions. All animal experiments were performed
with the approval of the Animal Study Committee of Tokyo Medical and
Dental University and conformed to relevant guidelines and laws.

Microcomputed tomography analysis. CT scanning was performed using a
ScanXmate-A100S Scanner (Comscantechno). Three-dimensional micro-
structural image data were reconstructed and structural indices were calcu-
lated using TRI/3D-BON software (RATOC). Bone mineral density (BMD)
was calculated using TRI/3D-BON-BMD-PNTM software (RATOC). Bone
morphometric and BMD analyses were performed at a region 0.8-1.8 mm
above the distal growth plate of the femur in adult mice and using the full-
length femur in postnatal mice, unless otherwise described.

In situ hybridization and immunohistochemical analysis. Embryos and bones
were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned
(5 wm). In situ hybridization was performed using 3°S-labeled Bglapl,
Runx2, and Collal probes as described previously (40). The Pparg probe
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is a 521-bp fragment of the Pparg coding region. Immunohistochemical
analysis was performed using a standard avidin-biotin peroxidase method
(Vector Laboratories), according to the manufacturer’s protocols. Paraffin-
embedded sections were dewaxed, rehydrated, and subjected to an antigen
retrieval procedure. The sections were then blocked with 5% lamb serum
and incubated with the antibody. The antibodies are listed in Supplemen-
tal Table 2. For the proliferation assay, pregnant mice were injected with
BrdU 1 hour before sacrifice. We detected mitotic cells using the BrdU
Staining Kit (Zymed) and detected apoptotic cells by TUNEL staining with
the ApoAlert DNA Fragmentation Kit (Clontech).

Cell cultures. For in vitro osteoblast and adipocyte differentiation, cells
derived from bone marrow or calvaria were cultured with osteogenic medi-
um (50 uM ascorbic acid, 10 nM dexamethasone, and 10 mM f-glycero-
phosphate) or adipogenic medium (0.5 mM 3-isobutyl-1-methylxanthine,
5 ug/ml insulin, and 1 uM dexamethasone), as described previously (20,
41). ALP assay (7 days of culture), alizarin red staining (21 days of cul-
ture), and oil red O staining (10 days of culture) were performed as previ-
ously described (20, 41). We determined the rate of cell proliferation using
the Cell Proliferation ELISA kit (Roche) and detected apoprotic cells by
TUNEL staining with the MEBSTATIN Apoptosis Kit Direct (MBL). The
method for in vitro osteoclast differentiation was described previously
(42-44). Briefly, bone marrow-, fetal liver-, or spleen-derived cells, cultured
with 10 ng/ml M-CSF (R&D Systems) for 2 days, were used as osteoclast
precursor cells, which were further cultured with 50 ng/ml RANKL (Pepro-
tech) in the presence of 10 ng/ml M-CSF for 3 days. In the coculture system
used to generate osteoclasts, bone marrow cells were cultured with calvarial
cells in the presence of 1 nM 1,25-dihydroxyvitamin D3 (Wako) and 1 uM
prostaglandin E, (Cayman Chemical) for 7 days.

To obtain the stable transformants constitutively expressing Maf, the ret-
roviral vectors pMX-HA-Maf-IRES-Puro and pMX-IRES-Puro, as the control,
were introduced into C3H10T1/2 and ST2 clonal cells, and the stable trans-
formants were selected with puromycin. To establish the stable transformants
expressing shRNAs targeting Maf, the retroviral vectors pSIREN-shMaf and
pSIREN-shControl were introduced into ST2 clonal cells, and stable trans-
formants were selected with puromycin. For osteoblast and adipocyte differ-
entiation, transformants were cultured under an osteogenic condition (50
uM ascorbic acid, 10 nM dexamethasone, 10 mM f-glycerophosphate, and
100 ng/ml BMP2) and adipogenic condition (0.26 mM 3-isobutyl-1-methyl-
xanthine, 85 nM insulin, and 0.5 uM dexamethasone), respectively.

Transplantation of Maf-transduced calvarial cells. The transplantation experi-
ment was performed as described previously (45) with minor modifications.
Briefly, we used 32-week-old WT and Maf*”~ mice as recipients and newborn
Maf*~ mice as donors. The mice were obtained from an intercross between
Maf*/~ mice, which are backcrossed into C57BL/6 mice for more than 9 gen-
erations. The mice were anesthetized by an injection of somnopentyl into
the peritoneal cavity, and the proximal femur was gently drilled with a dia-
mond-coated burr. Cells were obtained from calvaria derived from newborn
Maf*/~ mice and transduced with a retroviral vector (pMX-HA-Maf-IRES-
GFP or pMX-IRES-GFP). The Maf-transduced or mock-infected calvarial
cells were directly injected into the bone marrow cavity through the hole in
the femur using a 28-gauge needle (approximately 1 x 10° cells per femur).
The needle was inserted almost to the distal metaphysis. After transplanta-
tion, the drilled hole was filled with bone cement (Fuji Lute, GC). The mice
were analyzed 1 month after transplantation. Microcomputed tomogra-
phy analysis and measurement of fat marrow were performed within 1 mm
above the distal growth plate of the femur.

Administration of N-acetylcysteine. Maf*~ mice were backcrossed into
C57BL/6 mice for more than 3 generations. Mice were supplied drinking
water containing 2 mg/ml N-acetylcysteine ad libitum for 14 weeks. At
22 weeks of age, mice were sacrificed and analyzed.
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RNA blot and real-time RT-PCR analyses. Total RNA was extracted with
ISOGEN (Wako) or the RNeasy Lipid Tissue Mini Kit (Qiagen). Total
RNA was blotted and hybridized with [a-32P]dCTP-labeled probes
for Maf, Bglap1, and Gapdh, as described previously (39, 41). Real-time
RT-PCR was performed with a LightCycler (Roche) using SYBR Green
(Toyobo) as described previously (44). The primer sequences are listed
in Supplemental Table 3.

GeneChip analysis. GeneChip analysis, clustering analysis, and GSEA were
performed as described previously (42, 46, 47). Calvarial cells cultured with
osteogenic medium for 0, 7, and 21 days were analyzed. BMSCs derived from
8- and 32-week-old mice were isolated as described previously (48) with minor
modifications. Briefly, bone marrow cells from each of the mice were isolated
by flushing the femurs and tibiae with a-MEM with 10% FBS, and these cells
were plated on plastic dishes. After 3 days, adherent cells were used. BMSCs
contain a precursor of osteoblasts and adipocytes (data not shown) (49). The
total RNAs extracted from these cells were used for cONA synthesis by reverse
transcription, followed by synthesis of biotinylated cRNA through in vitro
transcription. After cRNA fragmentation, hybridization with the Mouse
Genome 430 2.0 Array (Affymetrix) was performed as described previously
(42). The main part of the data set was deposited and can be obtained from
the Genome Network Platform (http://genomenetwork.nig.ac.jp/).

ChIP assay. After calvarial cells were cultured with osteogenic medium for
7 days, ChIP assay was performed using the ChIP Assay Kit (Upstate) with
minor modification. The antibodies used are listed in Supplemental Table 2.
The primer sequences are listed in Supplemental Table 3.

Retroviral gene transfer. Retroviral vectors pMX-HA-Maf-IRES-GFP
and pMX-HA-Maf-IRES-Puro were constructed by inserting DNA frag-
ments encoding HA and Maf into pMX-IRES-GFP and pMX-IRES-Puro
(50). Retroviral vectors pSIREN-shMaf and pSIREN-shControl were
constructed by inserting annealed oligonucleotide into RNAi-Ready
PSIREN-RetroQ (BD Biosciences). The oligonucleotide sequences are
listed in Supplemental Table 3. Retroviral packaging was performed by
transfecting the plasmids into Plat-E or Plat-A cells using FuGENEG6 as
described previously (50).

Reporter gene assay. The reporter plasmids, BglapI-luc variants, were con-
structed from 10500c-luc (41), and mutations in MARE-like sequences
were introduced by PCR. A site-directed mutagenesis performed with
sequential PCR steps was used to engineer the mutated MARE-like
sequences. Two overlapping PCR fragments, each containing the MARE1-
MARES mutation, were generated. The corresponding PCR fragments
were used as templates for the second PCR step. The primer sequences
are listed in Supplemental Table 3. Maf-luc was constructed by subclon-
ing a 2-kb fragment of the 5’ flanking region of the Maf gene into the
pGL3-basic vector (Promega). Luciferase assay was performed in NIH3T3
cells or mouse embryonic fibroblasts (MEFs) established from WT and
Runx27/~ E14 embryos (51). Pparg-luc was constructed by subcloning a
2.2-kb fragment of the 5’ flanking region of the Pparg gene (52) into the
pGL3-basic vector, and mutations in MAREs were introduced by PCR.
The primer sequences are listed in Supplemental Table 3. Luciferase assay
was performed in 3T3-L1 cells. The expression plasmids of Maf, Runx2,
Fos, Fosb, Fosl1, Fosl2, Jun, Junb, Jund, Cebpa, Cebpf, Cebpd, Crebbp,
pS0, p65, and TpS53 have been described elsewhere (16, 41, 42, 53-58).
The expression plasmids of AFosb and A2AFosb were constructed from
full-length Fosb ¢cDNA using PCR. The reporter plasmids (pAcpS-luc,
ref. 42, and pNfatcl-luc, ref. 43) were described previously. MEFs and
NIH3T3 and 3T3-L1 cells were transfected using Lipofectamine plus
reagents (Invitrogen). After 30-36 hours, dual luciferase assay was per-
formed according to the manufacturer’s protocols (Promega).

Immunoblot and immunoprecipitation analyses. Immunoblot and immuno-
precipitation analyses were performed as previously described (59). The
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antibodies used are listed in Supplemental Table 2. For analyzing the
interaction between Maf and Runx2, HA-tagged Maf, HA-tagged N-ter-
minal region of Maf (HA-tagged MafAC), HA-tagged C-terminal region
of Maf (HA-tagged MafAN), HA-tagged Runx2, HA-tagged Runx2AN,
HA-tagged Runx2AC, FLAG-tagged Maf, and FLAG-tagged Runx2 pro-
teins were produced by the in vitro transcription/translation system
(Promega). These proteins were mixed in a binding buffer and incubated
with anti-FLAG antibody-conjugated agarose beads (Sigma-Aldrich).
Recovered proteins were subjected to immunoblot analysis with anti-
FLAG and anti-HA antibodies. For analyzing the interaction among
Maf, Cebpd, and Crebbp, HA-tagged Maf and Cebpd proteins were pro-
duced by the in vitro transcription/translation system. FLAG-tagged
Crebbp proteins were produced by transfecting FLAG-Crebbp expression
plasmids into HEK293T cells using FuGENEG6 (Roche). These proteins
were mixed and incubated with anti-FLAG antibody-conjugated agarose
beads. Recovered proteins were subjected to immunoblot analysis with
anti-Cebpd, anti-FLAG, and anti-HA antibodies.

Treatment of Trp53~/~ osteoblasts with hydrogen peroxide. Osteoblasts were iso-
lated from the calvaria of newborn mice deficient in Trp53 (accession no.,
CDBO0001K; http://www.cdb.riken.jp/arg/mutant%20mice%20list.html)
(60) and treated with 600 uM hydrogen peroxide. Five days after the treat-
ment, mRNAs were extracted and subjected to real-time PCR analysis.

EMSA. EMSA was performed as previously described (59). Maf and
Cebpd proteins were produced by the in vitro transcription/translation
system. The CCAAT probe for binding of Cebpd and the MARE probe for
binding of Maf were generated by annealing synthetic oligonucleotides.
The oligonucleotide sequences are listed in Supplemental Table 3. Anti-
bodies against Maf and Cebpd were used for supershift analysis.

ELISA. Soluble osteocalcin levels and TRAP activity in serum were detect-
ed using the mouse osteocalcin EIA kit (Biomedical Technologies Inc.) and
mouse TRAP assay (SBA Sciences), respectively.

Statistics. Statistical analysis was performed using Student’s ¢ test for
comparisons between 2 groups and analysis of variance with Bonferroni
post-hoc test for comparisons among 3 or more groups, unless otherwise
described. All data are expressed as mean + SEM.
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