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Mechanisms of progression of chronic kidney disease (CKD), a major health care burden, are poorly under-
stood. EGFR stimulates CKD progression, but the molecular networks that mediate its biological effects remain
unknown. We recently showed that the severity of renal lesions after nephron reduction varied substantially
among mouse strains and required activation of EGFR. Here, we utilized two mouse strains that react differ-
ently to nephron reduction — FVB/N mice, which develop severe renal lesions, and B6D2F1 mice, which are
resistant to early deterioration — coupled with genome-wide expression to elucidate the molecular nature of
CKD progression. Our results showed that lipocalin 2 (Lcn2, also known as neutrophil gelatinase-associated
lipocalin [NGAL]), the most highly upregulated gene in the FVB/N strain, was not simply a marker of renal
lesions, but an active player in disease progression. In fact, the severity of renal lesions was dramatically reduced
in Len27/~ mice. We discovered that Len2 expression increased upon EGFR activation and that Len2 mediated its
mitogenic effect during renal deterioration. EGFR inhibition prevented Lcn2 upregulation and lesion develop-
ment in mice expressing a dominant negative EGFR isoform, and hypoxia-inducible factor 1o (Hif-10.) was cru-
cially required for EGFR-induced Lcn2 overexpression. Consistent with this, cell proliferation was dramatically
reduced in Lcn2~/~ mice. These data are relevant to human CKD, as we found that LCN2 was increased particu-
larly in patients who rapidly progressed to end-stage renal failure. Together our results uncover what we believe

to be a novel function for Len2 and a critical pathway leading to progressive renal failure and cystogenesis.

Introduction

Regardless of the initial insult, human chronic kidney disease (CKD)
is characterized by progressive destruction of the renal parenchyma
and the loss of functional nephrons, which ultimately lead to end-
stage renal failure (ESRF). CKD represents a worldwide concern:
in the United States, 102,567 patients began dialysis in 2003 (341
patients/million per year) (1), and similar rates were found in devel-
oping countries and in particular ethnic groups (2). However, these
numbers are a small fraction of the millions of patients who are
thought to have some degree of renal impairment. In the United
States, the prevalence of chronically reduced kidney function is 11%
of adults (3). Understanding the pathophysiology of CKD progres-
sion is, therefore, a key challenge for medical planning.

The mechanisms of CKD progression are poorly understood. It
has been shown that reduction of the number of functional neph-
rons triggers molecular and cellular events promoting compensatory
growth of the remaining ones (4). In some cases, this compensatory
process becomes pathological, with the development of renal lesions
and ESRF. Although the pathophysiology of compensation and pro-
gression is complex, unregulated proliferation of glomerular, tubu-
lar, and interstitial cells may promote the development of glomerulo-
sclerosis, tubular cysts, and interstitial fibrosis (5-7). The molecular
programs that control this cascade of events are largely unknown.

Attempts to dissect the molecular basis of CKD have been facili-
tated by the development of several experimental models of renal
deterioration. Among these, the remnant kidney model is a main-
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stay, since nephron reduction characterizes the evolution of most
human CKD. Consequently, this model recapitulates many features
of human CKD, including hypertension, proteinuria, and glomerular
and tubulointerstitial lesions. Over the last 50 years, this model has
led to the discovery of critical pathways and, more importantly, to
the design of therapeutic strategies to slow the progression of CKD,
such as the widely clinically used renin-angiotensin inhibitors (8).

More recently, studies in various mouse strains have highlight-
ed the importance of genetic factors in the evolution of experi-
mental nephron reduction (9-11). We previously showed that the
course and extent of renal lesions following nephron reduction
vary significantly between two mouse strains: whereas FVB/N mice
develop severe lesions, (C57BL/6 x DBA2)F1 (hereafter referred to
as B6D2F1) mice undergo compensation alone (12). Moreover,
we observed that the development of renal lesions paralleled the
extent of cell proliferation (12). In fact, once the compensatory
growth is achieved, a second wave of cell proliferation occurs only
in the FVB/N strain. Hence, this model offers a powerful tool to
unravel the transcriptional programs and the critical mediators
that are selectively activated long after nephron reduction to drive
deterioration of the remaining nephrons.

In the present study, we performed an unbiased profiling of gene
expression in the kidneys of the FVB/N and B6D2F1 mouse strains,
2 months after nephron reduction, when renal lesions develop and the
second wave of cell proliferation is ongoing. We identified a critical
mediator of progressive renal failure, namely the carrier protein lipo-
calin 2 (Lcn2, or neutrophil gelatinase-associated lipocalin [NGAL],
siderocalin, 24p3, uterocalin), and uncovered what we believe to be a
novel function of Len2. Moreover, we elucidated a unique molecular
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Lcn2 is overexpressed after nephron reduction in mice and correlates with lesion progression. (A and B) Lcn2 expression evaluated by (A) in situ
hybridization (original magnification, x100) and (B) immunohistochemistry (x200) in kidneys from sham-operated (control) and 75% Nx FVB/N
mice 2 months after surgery. Representative images for each group (n = 6) are shown. (C) Correlation between renal Lcn2 mRNA expression
evaluated by real-time RT-PCR and tubular lesion score in FVB/N mice, 2 months after Nx (r = 0.87, P < 0.001). (D) Correlation between renal
Lcn2 protein expression evaluated by Western blot and tubular lesion score in FVB/N mice, 2 months after Nx (r = 0.74, P < 0.01). (E) Urinary
Lcn2 excretion significantly correlates with renal Lcn2 protein expression. Left panel: Western blot of renal and urinary Lcn2 protein in control
(C) and Nx FVB/N mice. Protein extracts from kidney of Nx Lcn2-- mice was used as negative control (C-). Right panel: Correlation between
renal Lcn2 production and urinary Lcn2 excretion evaluated by Western blot (r = 0.99, P < 0.01).

pathway by which activation of EGFR results in Lcn2 expression,
which then stimulates tubular proliferation and cystogenesis.

Results

Gene profiling. To elucidate the molecular pathways of CKD progres-
sion, we performed unbiased profiling of gene expression in remnant
kidneys of two mouse strains that react differently to nephron reduc-
tion. Using microarrays containing 5,579 cDNAs, we found 70 genes
whose expression levels differed significantly 2 months after nephron
reduction (P < 0.05). Among these transcripts, 44 were upregulated
(Supplemental Table 1; supplemental material available online with
this article; doi:10.1172/JCI42004DS1) and 26 were downregulated
(Supplemental Table 2) in damaged FVB/N kidneys as compared
with well-preserved kidneys from B6D2F1 mice. Grouping these
results by gene ontology category, we observed a range of functions
for the 70 transcripts, although many of the downregulated mRNAs
(38%) regulated metabolic processes (Supplemental Figure 1). The
gene undergoing maximal transcriptional induction (9.95-fold
change, P =0.008) in the FVB/N lesion-prone strain was Lcn2.

Lcn2 correlates with lesion progression in mouse and human with CKD.
Lcn2 is a member of the lipocalin superfamily (13), a family of pro-
teins that transport hydrophobic molecules such as retinoids, fatty
acids, and organic chelators of iron (14). Real-time RT-PCR con-
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firmed that Len2 mRNA increased 10-fold 2 months after nephron
reduction in FVB/N but not in B6D2F1 mice, while it was almost
undetectable in control animals (Supplemental Figure 2). In situ
hybridization and immunohistochemistry corroborated these obser-
vations and showed a marked increase in Lcn2 mRNA and protein in
damaged kidneys of FVB/N mice (Figure 1, A and B). Len2 was pre-
dominantly found in proximal tubules and in a few ascending limbs
of Henle’s loops and collecting ducts (Supplemental Figure 3A).
High magnification revealed that Len2 was mainly located in cyto-
plasmic granules at the subapical zone (Supplemental Figure 3B).
By combining in situ hybridization and immunohistochemistry on
serial sections, we found that a proportion of Lecn2 must have derived
from the glomerular filtrate, since in some proximal tubules Len2
mRNA staining was negative while anti-Lcn2 staining was markedly
positive (in situ” and antibody*). On the other hand, the majority of
proximal epithelia that had undergone dilation and cystic transfor-
mation displayed both Len2 message and antibody staining (in situ*
and antibody"), indicating not only endocytosis of filtered protein
but ongoing local synthesis and secretion of Len2 (Supplemental
Figure 3C). Renal Len2 mRNA (Figure 1C) and protein (Figure 1D)
levels correlated with the intensity of tubular damage (r = 0.87,
P<0.001 and r=0.74, P < 0.01 for mRNA and protein, respectively).
In addition, we observed that renal Len2 protein content significant-
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Lcn2 is overexpressed in polycystic kidney disease in mice and humans and correlates with CKD progression. (A and B) Lcn2 expression evalu-
ated by (A) immunohistochemistry and (B) Western blot in kidneys from wild-type (control) and jck mice, 3 weeks after birth. Representative imag-
es and blots for each group (n = 4) are shown. Original magnification, x200. (C) LCN2 staining in kidneys from controls (n = 9) and patients with
ADPKD (n = 9). Original magnification, x100. (D) Urinary LCN2 excretion in patients with slow progression (eGFR decline <4.5 ml/min/1.73 m?
per year) as compared with fast progressors (eGFR decline >4.5 ml/min/1.73 m? per year) toward ESRF. (E) Urinary LCN2 excretion inversely
correlates with eGFR in patients with ADPKD (r = -0.77, P < 0.0001). Data are mean + SEM; n = 4-6 for mice and n = 87 for ADPKD patients.
Mann-Whitney U test: *P < 0.05, control versus jck mice; **P < 0.01 slow versus fast progressors.

ly correlated with Len2 excretion (r=0.99, P < 0.01) (Figure 1E), sug-
gesting that the kidney is the major source of urinary Len2.

A time course analysis of Len2 expression and renal morphology
revealed that the increase in both Len2 mRNA and protein levels
preceded the development of renal lesions 4 weeks after nephron
reduction (Supplemental Figure 4). Moreover, we confirmed that
Len2 upregulation was associated with the progressive develop-
ment of tubular dilations in another experimental model of CKD,
the juvenile cystic kidney (jck) mice (Figure 2, A and B). Of note,
these mice develop a form of polycystic kidney disease similar to
human autosomal dominant polycystic kidney disease (ADPKD)
(15). Last, in patients with ADPKD, who are similar to our model in
displaying severe and progressive tubular dilations, LCN2 immuno-
reactivity was markedly increased, particularly in cysts (Figure 2C).
Urinary LCN2 was most prominent in fast progressors toward
ESRF rather than in slow progressors (see Methods) (496 + 146 vs.
152 + 52 ng/mg creatinine, P < 0.01) (Figure 2D), and it inversely
correlated with residual estimated glomerular filtration rate (eGFR)
(r=-0.77,P < 0.0001) (Figure 2E) and microalbuminuria (r = 0.72,
P <0.0001). Interestingly, LCN2 expression was also increased
in renal tubules of kidneys from patients with either congenital
nephron deficit, a pathological condition very similar to nephron
reduction, or IgA nephropathy, the most common primary form of
CKD (Supplemental Figure 5). Our findings in mice and humans
together with recent works (16-18) suggested that Lcn2 might par-
ticipate in the pathogenesis of cysts and CKD.

Lcn2 gene inactivation prevents lesion development and cyst formation.
To determine the role of Len2 in progressive CKD, we performed
75% nephron reduction (Nx) in Len2~/~ mice (19). To this end, we
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firstintroduced the Len2 mutated allele in the lesion-prone (FVB/N)
background. The Len2~7~ FVB/N mice reproduced normally and had
no apparent phenotype under physiological conditions (data not
shown). As expected, 2 months after nephron reduction, wild-type
mice developed severe renal lesions, mainly consisting of glomeru-
losclerosis, tubular atrophy, and cystic dilation, mild interstitial
fibrosis, and multifocal mononuclear cell infiltration (Figure 3A).
However, the frequency and severity of renal lesions were dramati-
cally reduced in Len27~ mice. Quantification showed that Len27-
mice had considerably fewer glomerular, tubular, and intersti-
tial lesions as compared with wild-type littermates (Figure 3A).
Notably, there were fewer tubular dilations and no cysts in Len27/~
mice. Consistent with these findings, renal function was better
preserved in Len27/~ mice as compared with wild-type littermates,
2 months after nephron reduction. Serum creatinine and blood
urea nitrogen were 5 £ 0.5, 18 £ 2.6, and 11 + 0.6 umol/1 (P < 0.01)
and 29 £ 1,109 = 15, and 65 + 4 mg/dl (P < 0.01) in control, Nx
Len27+, and Nx Len27~ mice, respectively (Supplemental Figure 6,
A and B). As expected, mean arterial blood pressure significantly
increased in wild-type mice as compared with control animals
(135+7.5and 116 + 3.4 mmHg, P < 0.05) 2 months after nephron
reduction. The increase was of the same magnitude in Len2 7~ mice
(143 + 2.2 mmHg). Development of renal lesions was accompa-
nied by severe proteinuria in wild-type mice (6.16 + 1.21 vs. 0.003
+0.001 mg/d in Nx and control mice, respectively, P < 0.001),
whereas proteinuria was substantially decreased in Len27~ animals
(3.30 + 1.03 mg/d, P < 0.05) (Supplemental Figure 6C). Of note,
Len2 inactivation did not change the course of nephron reduction
in lesion-resistant C57BL/6 mice (Figure 4).
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Figure 3

Len2 deficiency protects from the development of renal lesions. (A) Morphology and lesion scores of kidneys from control, 75% Nx Lcn2++,
and Lcn2-- FVB/N mice, 2 months after nephron reduction. Original magnification, x200, x600, and x400 for tubular, glomerular, and interstitial
lesions, respectively. (B) Morphology and cystic surface of kidneys from control, jck/Lcn2++, and jck/Lcn2-- mice, 3 weeks after birth. Original
magpnification, x200. Because no differences were detected between wild-type and mutant control mice, results for only 1 group are shown.
Data are mean + SEM; n = 4-6, 10—12, and 5-6 for control, Nx, and jck mice, respectively. ANOVA followed by Tukey-Kramer test: **P < 0.01,

***P < 0.001, control versus Nx or jck mice; #P < 0.01, ##P < 0.001, Lcn2++ versus Lcn2--.

To confirm the beneficial effect of Len2 gene inactivation in
renal deterioration and cyst formation, we bred Len2~/~ mice with
the jck mice. Notably, the severity of renal lesions was substan-
tially reduced in double mutant jck/Lcn27~ mice (Figure 3B).
Quantification showed that the tubular dilation score was signif-
icantly lower in double mutant mice as compared with jck litter-
mates 3 weeks after birth (Figure 3B). Collectively, these results
demonstrated that Len2 is an effector of renal damage during
CKD progression.
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Iron accumulation does not account for progressive renal dysfunction. We
next aimed at elucidating the mechanisms underlying the lesion-
promoting effect of Len2. Len2 might act through iron mobilization
(20). In fact, abnormal levels of iron accumulate in kidneys during
CKD, where it may participate in the deterioration process (21, 22).
Perls staining confirmed that iron content increased in damaged
tubules 2 months after nephron reduction. However, iron accumula-
tion was similar in remnant kidneys of Lcn27~ mice as compared with
wild-type littermates (Supplemental Figure 7). More importantly,
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chelation of iron by desferrioxamine (DFO) (Figure 5A) unexpect-
edly worsened renal disease in FVB/N mice (Figure SB). In particular,
tubular dilations were more severe and diffuse in mice treated with
DFO 2 months after nephron reduction. Notably, Lcn2 mRNA and
protein expression were dramatically increased in kidneys of DFO-
treated animals as compared with vehicle-treated counterparts
(Figure 5, C and D). Proliferation of tubular cells was also signifi-
cantly enhanced 2 months after nephron reduction in DFO-treated
mice (Figure SE). Hence, whereas iron deposited in the proximal
tubules does not account for renal deterioration in our model, the
experiments with DFO clearly show that manipulating Len2 levels is
tightly correlated with hyperproliferation and progressive damage.

Lcn2 is a target of EGFR signaling. It is known that cell proliferation
contributes to the development of renal lesions, and particularly to
cystogenesis (23). Previous studies have suggested that Len2 can be
induced by a number of growth factors that stimulate tubular cell pro-
liferation (24). Among these, EGFR is of particular interest, since it is
critical in the evolution of CKD (25). We therefore hypothesized that
Len2 could act downstream of EGFR and mediate its growth effects.
To investigate this hypothesis, we first treated renal tubular mIMCD-3
cells with EGF. Western blot analysis revealed that Len2 protein
levels were markedly increased after addition of EGF (Figure 6A).
Quantitative RT-PCR showed that Lcn2 mRNA levels paralleled the
increase of the protein in EGF-treated cells (Figure 6B), indicating
that the Len2 gene is transcriptionally regulated by EGFR. To validate
these findings in vivo, we took advantage of a line of transgenic mice
that overexpresses a dominant negative EGFR isoform (EGFR-M)
selectively in proximal tubular cells (26). Inhibition of EGFR pre-
vented the increase in Len2 mRNA in remnant kidneys of transgenic
mice, 2 months after nephron reduction (Figure 6C). Consistently,
the severity of renal lesions was substantially reduced in EGFR-M
mice as compared with wild-type littermates (Figure 6D).

HifIouis a critical intermediate between EGFR and Len2. We next tried to
identify the factors that account for Len2 transcription upon EGFR
activation. The observation that DFO dramatically stimulated Len2
expression after nephron reduction suggested that hypoxia-inducible
facrors (HIFs) might play a role. In fact, by inhibiting Fe?*-dependent
prolyl hydroxylases, DFO stabilizes Hif-1a and Hif-2a (27). Inter-
estingly, our results showed that Hif-1a protein levels increased in
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Figure 4

Lcn2 inactivation does not affect
the response to nephron reduc-
tion in the lesion-resistant C57BL/6
mice. Morphology of kidneys from
control, 75% Nx Lcn2++, and
Len2-- C57BL/6 mice, 2 months
after surgery. Original magnifica-
tion, x200, x600, and x400 for
tubular, glomerular, and interstitial
lesions, respectively. Because no
differences were detected between
wild-type and mutant control mice,
results for only 1 group are shown.
n =4-6 and 8-10 for control and Nx
mice, respectively.

E

damaged kidneys of FVB/N mice 2 months after nephron reduction
(Figure 7A). Since previous studies have shown that hypoxia may
develop in damaged kidneys in CKD (28), we analyzed renal oxy-
genation 2 months after nephron reduction. Pimonidazole hypoxia
probe failed to detect any positive tubules in remnant kidneys of
FVB/N mice, with the exception of those located in the surgical scars
(Figure 7B), demonstrating that hypoxia did not account for Hif-1a
overexpression in our experimental model of CKD. In vitro experi-
ments confirmed that EGF stimulated Hif-1a expression in renal
mIMCD-3 cells. In fact, Hif-1a protein levels markedly increased
upon EGF stimulation (Figure 7C). Hifla mRNA levels, determined
by real-time RT-PCR, changed neither in vivo after nephron reduc-
tion nor in vitro upon EGF treatment (data not shown), suggesting
that Hif-1a is induced via a post-transcriptional mechanism. In
addition, we observed that the increase in Hif-1o was specific, since
the expression of Hif-2a changed neither in remnant kidneys nor
in EGF-stimulated cells (Supplemental Figure 8). More importantly,
we showed that Hif-1a silencing by siRNA partially inhibited Len2
expression both under basal conditions and, mainly, upon EGF stim-
ulation in mIMCD-3 cell lines (Figure 7D), indicating that Hif-1o.is a
critical intermediate in EGFR-induced Lcn2 overexpression.

Lcn2 mediates the proliferative effect of EGFR. To next investigate
whether Len2 mediated the mitogenic effect of EGFR, we estab-
lished mIMCD-3 cell lines expressing Lcn2 shRNAs. Quantitative
RT-PCR and Western blots revealed that Lcn2 mRNA was depleted
by 96% (Figure 8A), whereas the protein was undetectable (Figure 8B)
in Len2-silenced cells. Interestingly, Len2 silencing completely
abolished cell proliferation after the addition of EGF at different
experimental time points (Figure 8C). Similar results were obtained
by using different clones and a second shRNA targeting Lcn2 (data
not shown). We found consistent results in our mouse model in
vivo. In fact, Len2 gene deletion prevented the increase in tubular
cell proliferation 2 months after nephron reduction, as reflected ina
significantly lower level of proliferating cell nuclear antigen—positive
(PCNA-positive) tubular cells in remnant kidneys of Lcn27~ mice as
compared with wild-type littermates (Figure 8D). Notably, Len2 gene
inactivation did not inhibit the increase in cell proliferation in glom-
eruli (Figure 8E). These results were confirmed using an antibody
directed against Ki-67, a protein selectively expressed in proliferat-
Volume 120 Number 11
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DFO increases Lcn2 expression and worsens renal lesions after nephron reduction. (A) Perls staining of kidneys from control and 75% Nx mice
either treated or not with DFO. Original magnification, x200. (B) Morphology of kidneys from control, DFO-treated control, Nx, and Nx DFO-
treated mice, 2 months after surgery. Original magnification, x200. (C and D) Lcn2 expression evaluated by (C) in situ hybridization (x100) and
(D) immunohistochemistry (x200) in kidneys from control and Nx mice treated or not with DFO, 2 months after surgery. (E) DFO enhances cell
proliferation after nephron reduction. PCNA staining (black arrows) and quantification of Pl in kidneys from control and Nx mice, either treated
or not with DFO. Original magnification, x400. Because no differences were detected between wild-type and DFO-treated control mice, results
for only 1 group are shown. Data are mean + SEM; n = 4-10. ANOVA followed by Tukey-Kramer test: **P < 0.01, ***P < 0.001, control versus

Nx mice; ##P < 0.001, Nx versus Nx DFO-treated mice.

ing cells (Supplemental 9). Thus, it appears that Lcn2 is an essential
mediator of the mitogenic effect of EGF in renal tubular cells.

The dual effect of Len2 inactivation on apoptosis. Tubular growth
reflects the balance between cell proliferation and cell loss by
apoptosis. Both EGFR and Lcn2 have been implicated in the con-
trol of apoptosis (25, 29). TUNEL analysis revealed an increase in
apoptosis in both tubules (Figure 9A) and glomeruli (Figure 9B) of
wild-type mice as compared with control animals 2 months after
nephron reduction. The number of TUNEL-positive cells was sig-
nificantly reduced in Len27~ mice in both glomerular and tubular
structures (Figure 9, A and B). However, Len2 silencing did not sig-
nificantly affect the number of apoptotic tubular mIMCD-3 cells,
regardless of the presence of EGF (Figure 9B).
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Discussion

Unbiased profiling analyses offer a powerful approach to uncover
critical mediators and dissect novel molecular networks of com-
plex biological processes such as CKD progression. By combining
experimental models of CKD in mice from different genetic back-
grounds with microarray analyses, we have established a pivotal
role for Len2 in regulating the progression of CKD and cyst for-
mation. Furthermore, we have defined an important pathophysi-
ological mechanism by which Len2 mediates the mitogenic effect
of EGFR, consistent with its role in cell proliferation in cystogen-
esis. Inhibition of this pathway by Len2 gene inactivation or by
the expression of a dominant negative EGFR isoform prevented
lesion development in the transgenic mice. Conversely, overexpres-
November 2010
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Lcn2 is a transcriptional target of EGFR. Lcn2 protein (A) and mRNA (B) expression
in mIMCD-3 cells, 24 hours after EGF treatment. (C and D) Overexpression of a
dominant negative EGFR isoform abolishes renal Lcn2 synthesis and prevents lesion
development after nephron reduction. (C) Lcn2 mRNA expression visualized by in situ
hybridization (original magnification, x100) and (D) renal morphology (PAS, x200) of
kidneys from control and 75% Nx wild-type and EGFR-M mice, 2 months after sur-
gery. Data are mean + SEM; n = 2-3 and 6-10 for in vitro and in vivo experiments,
respectively. Wilcoxon test: *P < 0.05, vehicle- versus EGF-treated cells.

sion of Len2 significantly correlated with hyperproliferation and
CKD progression in both mice and humans. We have further iden-
tified Hif-1a as a crucial intermediate between EGFR and Lcn2
upregulation. Collectively, these results elucidate what we believe
to be a novel molecular pathway of CKD progression and show
that Len2 acts as a growth-promoting factor whose overexpression
identifies patients with rapid CKD progression.

Lcn2, like all members of the lipocalin superfamily, binds hydro-
phobic ligands; the ligand is thought to define the function of the
protein. Len2 binds enterochelin (20), parabactin (20), and carboxy-
mycobactin (30), which are siderophores produced by bacteria for
the purpose of binding iron. The siderophore-chelating property
of Len2 renders it a bacteriostatic agent (20). Consistent with this
finding, Len2 mutant mice have a profound defect in the defense
against E. coli (19, 31) and Mycobacterium tuberculosis (32). Nonethe-
less, Lcn2 expression dramatically increases in several aseptic patho-
logical conditions such as cancers (33), inflammatory diseases (34),
and acute kidney injury (24), suggesting that Lcn2 may have other
functions. To date, study of its noninfectious activities has focused
on its effects on cell proliferation and/or apoptosis (24), but proof
of these in a physiological setting in vivo has been lacking. Even
in the case of acute kidney injury, a disease that is related to CKD,
it remains unclear whether Len2 is a critical mediator of tubular
changes (19). Hence, our work is the first clear demonstration to
our knowledge that in vivo Len2 has a critical function in a patho-
logical condition other than infection, namely serving as a growth
regulator that mediates CKD progression. Our findings in mice and
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humans may be generally applicable to many forms
of CKD, because Lcn2 is also expressed in obstruc-
tive uropathy (16), diabetic nephropathy (16), and in
damaged kidneys of patients with IgA nephropathy
(17) or HIV-associated nephropathy (18).

Our study shows that Len2, which is induced by
EGEFR, controls aberrant growth of renal tubules
and cysts. Notably, we demonstrated that Len2 gene
inactivation inhibited proliferation of tubular cells,
which led to a marked decrease in cyst formation in
mice. Consistently, we identified cystic tubular epi-
thelia as the major source of Lcn2 production. These
data suggest that Len2 might act as a tubulogenic
factor that controls cell growth. This is supported
by additional evidence: first, Lcn2 induced tubular
development in in vitro assays in the rat (35); second,
Lcn2 infusion favored tubular regeneration after
ischemic injury in mice (36); third, high LCN2 levels
were associated with a higher rate of cystic growth
in humans (37). This property was not limited to
mammalian cells: Lpr-1, a newly identified lipocalin
family member, controlled unicellular tube develop-
ment in the excretory system of Caenorhabditis elegans
(38). Our data also suggest that Lcn2 may modulate
tubular shape by controlling both cell proliferation
and apoptosis. In fact, the beneficial effect of Len2
gene inactivation in mutant mice was accompanied
by a decrease in tubular apoptosis, consistent with
a previous observation in proximal tubule lacking
Pkdl, a cystic disease-associated gene (39). However,
this effect may be indirect, since Len2 silencing in
vitro did not affect the number of apoptotic tubu-
lar cells. Whether the growth-promoting effect of
Lcn2 is mediated by the binding of Len2 to a unique receptor, thus
inducing a signaling cascade, or alternatively by iron mobilization,
as suggested by the DFO experiments, remains to be elucidated.

In the present study we observed that Len2 gene inactivation pro-
tected from glomerulosclerosis and interstitial fibrosis after nephron
reduction, despite the fact that Lcn2 was expressed only by tubules.
The mechanism for this observation remains unknown. It may result
from the perfusion and filtration of serum Lcn2 that we found by
immunostaining in the tubules. Alternatively, since injuries to tubu-
lar cells, i.e., proteinuria, result in the expression of tubular cytokines
and growth factors that ultimately lead to mesangial cell proliferation
and matrix synthesis (40), it is tempting to hypothesize a crosstalk
between tubular and surrounding renal cells. Studies in transgenic
mice strongly support this idea. For example, it has been observed
that mice that overexpressed VEGF selectively in tubules developed
interstitial fibrosis and glomerular disease (41). And we have previ-
ously shown that the overexpression of a dominant negative isoform
of EGFR in proximal tubules prevented the development of glomeru-
lar and interstitial lesions after nephron reduction (26). On the other
hand, it has been shown that interstitial scarring resulted in the loss
of microvessels, which, in turn, impacted the adjacent unaffected
glomeruli (42). It is worthy of note that the synthesis of paracrine
mediators may increase in proliferating tubular cells (43). Hence, we
speculate that by inhibiting tubular cell proliferation, Lecn2 might
protect glomeruli and interstitium from lesions development.

Activation of EGFR has been implicated in the evolution of CKD.
Overexpression of an active EGFR form, the c-erb-B2 receptor, induc-
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Figure 7

Hif-1atis a critical intermediate between EGFR and Lcn2. (A) Hif-1a protein expression and quantification in control and 75% Nx mice, 2 months after
surgery. (B) Pimonidazole immunostaining in control and Nx mice, 2 months after surgery. Postischemic kidneys (2 hours clamping of renal pedicle)
were used as positive hypoxic control. Original magnification, x200. (C) Hif-1a protein expression and quantification in mIMCD-3 cells, 24 hours after
EGF treatment. (D) Hif-1a silencing partially overcomes EGFR-induced Lcn2 upregulation. Hif-1o and Len2 protein expression in either mock- (Con-
trol) or Hif-1a. siRNA—transfected (siHif-1c) mIMCD-3 cells, treated or not with EGF. Data are mean + SEM; n = 2—-6 and 6—10 for in vitro and in vivo
experiments, respectively. Mann-Whitney U test: *P < 0.05, control versus Nx mice; Wilcoxon test: *P < 0.05, vehicle versus EGF-treated cells.

es tubular hyperplasia and the development of renal cysts in trans-
genic mice (44). Conversely, expression of a dominant negative EGFR
isoform inhibits cell proliferation, leading to reduced tubular dila-
tions after nephron reduction (26). Other genetic and pharmacologi-
cal approaches have confirmed the key role of EGFR and cell prolif-
eration in polycystic kidney diseases (45, 46), and overexpression and
mislocalization of EGFR were observed in cystic epithelia of jck mice
(15). On the other hand, we have previously established that EGFR
acts as a central integrator of angiotensin II pathway, a potent media-
tor of CKD (47). While the exact molecular networks that mediate
the deleterious effect of EGFR during CKD have not been yet elu-
cidated, our data point to Len2 as the crucial transcriptional target
of EGFR during cyst formation and glomerulosclerosis. It is worthy
of note that a very recent study showed that Len2 is also required
for c-erb-B2 receptor signaling in breast cancer (48). In addition, our
data show that Hif-1at is a critical intermediate between EGFR and
Lcn2, consistent with the finding that Len2 is upregulated in most
pathological conditions characterized by hypoxia, such as ischemia
or cancers (24, 33). Whether Hif-1a is more extensively involved in
the control of Len2 gene expression requires further investigations.
Clinical studies have suggested that urinary Len2 excretion might
mark patients with the most severe clinical course (49), but wheth-
er Len2 is simply a marker of tubular damage or a key mediator of
the deterioration process has been unknown. Our data now show
a direct relationship between Lcn2 expression and disease progres-
sion and provide the first demonstration to our knowledge that Len2
is instrumental in CKD. CKD is a progressive disease, and there are
many possible medical interventions over its course if the disease is
recognized and treated in a timely manner. Current biomarkers of
CKD progression, i.e., creatinine and albuminuria, have their limita-
tions in terms of achieving this goal (50). An ideal biomarker should
reflect tissue pathology, act as a critical component of disease, and be
easily detectable by noninvasive approaches. By showing that Len2
unites these characteristics, we have provided strong evidence for the
use of this molecule as a candidate biomarker of CKD progression.
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In conclusion, we have uncovered what we believe to be a novel
function of Len2 and highlighted its crucial role in the pathogen-
esis of progressive CKD. This is the first in vivo demonstration to
our knowledge that Lcn2 acts as a growth regulator by mediating
the mitogenic effect of EGFR signaling. Moreover, we have identi-
fied Len2 as one of the key effectors of renal damage and cystogene-
sis and one of the most promising biomarkers of CKD progression,
worthy of study in large patient cohorts. We suspect that our find-
ings will be critical in other pathological conditions that are also
characterized by aberrant growth, such as cancers that demonstrate
both EGFR activation and intensive Len2 expression (51, 52).

Methods
Animals. Mice used for these studies were FVB/N, C57BL/6, and B6D2F1
(Charles River); mutant jck bearing a Nek8 mutation (The Jackson Labo-
ratory); transgenic EGFR-M expressing a dominant negative isoform of
EGFR under the control of kidney-specific type 1 y-glutamyl transpep-
tidase promoter (26); and Len27~ mice (19). Len27/~ mice on the FVB/N
genetic background were obtained using a marker-assisted speed congenic
strategy. Ninety-three microsatellite markers spanning each autosomal
chromosome (average distance of 14.2 cM) were used to discriminate
C57BL/6 and FVB/N alleles. Heterozygous C57BL/6 Lcn2*~ mice were
bred with heterozygous jck mice to obtain double-homozygous transgenic
jek/Len27~ mice. All experiments were performed on 9-week-old females,
except for jck mice that were studied 3 weeks after birth. Animals were fed
ad libitum and housed at constant ambient temperature in a 12-hour light
cycle. Animal procedures were approved by the Departmental Director of
“Services Vétérinaires de la Préfecture de Police de Paris” and by the ethical
committee of Université Paris Descartes.

Mice were subjected to 75% Nx or sham operation (controls), as previous-
ly described (26). After surgery, mice were fed a defined diet containing 30%
casein and 0.5% sodium. Several groups of mice were investigated in com-
plementary studies. For microarray studies, 6 and 9 mice from each strain
were subjected to either sham operation or NXx, respectively. For Len2 time
course analysis, 5-6 sham-operated and 4-8 Nx mice were studied at each
November 2010
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Figure 8

Lcn2 mediates the proliferative effect of EGFR. (A and B) Stable Lcn2 shRNA (shLcn2) inhibits Lcn2 expression in mIMCD-3 cell lines. mRNA
(A) and protein (B) expression in shLcn2 cells as compared with scrambled shRNA cells (Control). (C) Cell proliferation assay (left panel) and cell
counting (right panel) in scrambled shRNA and Lcn2 shRNA mIMCD-3 cells, treated or not with EGF. (D) PCNA staining (black arrows) and quan-
tification of tubular proliferation in kidneys from control, 75% Nx Lcn2*+, and Lcn2-- mice, 2 months after surgery. Original magnification, x400.
(E) PCNA staining (black arrow) and quantification of glomerular proliferation in kidneys from control, Nx Lcn2++, and Lcn2-- mice, 2 months
after surgery. Original magnification, x600. Because no differences were detected between wild-type and mutant control mice, results for only 1
group are shown. Data are mean + SEM; n = 3—4 and 6-10 for in vitro and in vivo experiments, respectively. ANOVA followed by Tukey-Kramer

test: **P < 0.01, control versus shLcn2 cell lines; *P < 0.05, **P < 0.01,

time point. Transgenic studies employed EGFR-M or Len27~ mice and wild-
type littermates; for each group, 4-6 mice were subjected to sham opera-
tion and 10-16 mice to nephron reduction. For iron chelation experiments,
5 sham-operated and 6 Nx mice were injected with 100 mg/kg/d DFO
(Sigma-Aldrich) by subcutaneous osmotic minipumps (2004, Alzer) for
2 months. For hypoxyprobe experiments, 6 sham-operated and 6 Nx mice
were injected intraperitoneally with 60 mg/kg pimonidazole (Chemicon)
2 hours before sacrifice. Postischemic kidneys (2 hours renal pedicle clamp-

ing) were used as positive hypoxic controls.
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control versus Nx mice; *P < 0.05, Nx Lcn2++ versus Nx Lcn2-- mice.

Mice were sacrificed 2 months after surgery. In addition, for Len2 time
course study, mice were also sacrificed at 4 and 6 weeks after surgery. One
week before sacrifice, blood pressure was recorded in both sham-operated
(n=3) and subtotally nephrectomized (n = 6) awake Len2** and Len27/- mice
for 2 consecutive days, using tail-cuff plethysmography and PowerLab/4SP
software (AD Instruments). Urine samples were also collected using met-
abolic cages from 6 mice of each experimental group over the course of
24 hours. At the time of sacrifice, the kidney was removed for morphologi-
cal, protein, and mRNA studies.
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Impact of Len2 inactivation on apoptosis. (A) TUNEL assay and quantification of TUNEL-positive tubular cells (white arrows) in kidneys from
control, 75% Nx Lcn2++, and Lcn2-- mice, 2 months after surgery. Original magnification, x400. (B) TUNEL assay and quantification of TUNEL-
positive glomerular cells (white arrows) in kidneys from control, Nx Lcn2++, and Lcn2-- mice, 2 months after surgery. G, glomerulus. Original
magnification, x600. Because no differences were detected between wild-type and mutant control mice, results for only 1 group are shown. (C)
Cell apoptosis quantification in scrambled shRNA and Lcn2 shRNA mIMCD-3 cells, 24 hours after EGF treatment. Data are mean + SEM; n =3
and 4 for in vitro and in vivo experiments, respectively. ANOVA followed by Tukey-Kramer test: **P < 0.01, ***P < 0.001, control versus Nx mice;

#P < 0.01, ##P < 0.001, Nx Lcn2++ versus Nx Lcn2-- mice.

Clinical samples. The study was conducted on 87 subjects with ADPKD (40
male, 47 female; mean age 52.4 years, range 24.7-79.2 years). The mean serum
creatinine level of patients was 252 = 169.9 mmol/l, and the eGFR value
(assessed using the MDRD formula; ref. 53) was 33 + 20 ml/min/1.73 m?.
Of the 87 patients, 76 were hypertensive under treatment. The decline in
renal function was evaluated retrospectively over 6 years, then patients were
divided into 2 groups: slow progressors (¢GFR decline <4.5 ml/min/1.73 m?
per year; mean, 2.4 + 0.1; n = 52) or fast progressors (eGFR decline
>4.5 ml/min/1.73 m? per year; mean, 6.0 = 0.2; n = 35).

Kidneys from patients with ADPKD (n = 9), oligomeganephronia (n = 11),
and IgA nephropathy (n = 12) were analyzed for LCN2 expression. Nor-
mal kidneys not used for transplantation or tumor-free pole of kidneys
removed for carcinoma were used as controls (n = 9).

This protocol was approved by the Hospital Plan for Clinical Research
(PHRC) program of the French Ministry of Health. Informed consent was
obtained from volunteers before enrollment in the study.

Cells. For siRNA transfection experiments, transient inactivation of
Hif-1a expression in mIMCD-3 cells was achieved using siRNA SMART-
pool from Dharmacon according to the manufacturer’s recommenda-
4074
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tions. Cells were transfected with siRNA (100 nM) using DharmaFECT4
siRNA Transfection Reagent (Thermo Fisher Scientific). Eight hours after
transfection, cells were serum starved for 12 hours and then treated with
40 ng/ml EGF (R&D Systems) in serum-deprived medium for 48 hours.

For shRNA transfections, mIMCD-3 cells were stably transfected with
pSuppressor Retro vector (Imgenex) containing an shRNA for Len2 or a
scramble oligonucleotide (Dharmacon). The Lcn2 shRNA sequence con-
tains either the cloning nucleotides 5'-GGAAATATGCACAGGTATC-3'
or 5'-GCTACTGGATCAGAACATT-3' followed by a 9-base loop and the
inverted cloning sequence. In the scramble sequence, the cloning sequence
is replaced by S-GAGCGTACCAGATTAAAGT-3' or S'-GATTCGACCAGA-
CATGTAT-3'. Cells stably transfected were maintained in DMEM/HamF12
medium containing 10% FBS.

For EGF experiments, cells were serum starved for 18 hours and then
treated with 40 ng/ml EGF in serum-deprived medium for 24-96 hours.
Cells were collected at 24 hours for Len2 assay and apoptosis experiments
and at 24-96 hours for proliferation experiments.

cDNA microarray. RNAs were obtained from whole kidneys of 9 Nx
mice from each strain using RNeasy Midi Kit (QIAGEN) according to the
Volume 120 November 2010
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manufacturer’s protocol. RNAs were reverse transcribed and labeled with
either cyanine Cy-3 or Cy-5. FVB/N Cy3-cDNAs and B6D2F1 CyS-cDNAs
(and, conversely, FVB/N Cy5- and B6D2F1 Cy3-cDNAs) were cohybrid-
ized on mouse cDNA microarrays containing 5,579 cDNAs including
expressed sequence tags (Genopole). Preparations of RNAs and cDNAs
and hybridization were performed according to the Genopole protocol,
as previously reported (54). Six arrays were hybridized. For each array, the
RNAs from 3 mice were pooled. Hybridized microarrays were scanned and
images were analyzed using GenepixPro 4.0 software (Molecular Devices)
by the Genopole microarray facility.

Real-time RT-PCR. Lcn2 mRNA was detected in mouse kidneys and mIMCD-3
cells by real-time RT-PCR using an ABI PRISM 7700 Sequence Detection
system (Applied Biosystems). Primers (Eurogentec) were as follows: Lcn2
forward 5'-GGACCAGGGCTGTCGCTACT-3" and reverse 5'-GGTG-
GCCACTTGCACATTGT-3'; Hif-1a (i) forward 5'-CCTGGAAACGAGT-
GAAAGGATTC-3' and reverse 5'-GCATGCTAAATCGGAGGGTATTAA-3';
Hif-1a (ii) forward 5'-TCACCAGACAGAGCAGGAAAGAG-3' and reverse
5-GGCAGACAGGTTAAGGCTCCTT-3'. Gapdh and Sdha were used as the
normalization controls in kidneys and cells, respectively.

Renal function and morphology. For mouse samples, proteinuria and blood
urea nitrogen were measured using an Olympus multiparametric analyzer
(Instrumentation Laboratory), while serum creatinine was evaluated by
HPLC. For human samples, creatininuria and albuminuria were measured
using a Hitachi 917 analyzer (Roche Diagnostics).

Kidneys were fixed in 4% paraformaldehyde and paraffin embedded, and
4-um sections were stained with PAS, Masson’s trichrome, H&E, and picrosir-
ius red. Ferric iron deposits were detected using Prussian blue staining accord-
ing to Perls reaction. The degree of glomerular and interstitial lesions was
evaluated using semiquantitative score methodology as previously described
(7). The degree of tubular lesions was quantified using a Nikon digital cam-
era Dx/m/1200 and Lucia software (Laboratory Imaging Ltd.). Ten randomly
selected microscopic fields (x200) were scored. For jck mice, the entire section
was quantified at x100 magnification. The tubular score was expressed as the
ratio between the tubular dilation surface and the total section area.

In situ hybridization. In situ hybridization was carried out on 8-um sec-
tions of paraffin-embedded mouse kidneys using digoxigenin-labeled ribo-
probe corresponding to nucleotides 80-641 of the mouse Len2 sequence
(NM_008491). Riboprobe was synthesized using reagents from Roche,
according to the manufacturer’s instructions.

Western blot analysis. Western blots were performed as previously described
(12) using either a goat antibody to mouse Len2 (R&D Systems) at 1:1,000
in 1% milk/TBST or a rabbit antibody to mouse Hif-1a or Hif-2a (Novus
Biologicals) at 1:500 or 1:200, respectively, in 5% milk/TBST followed by
either a rabbit horseradish peroxidase-conjugated anti-goat antibody at
1:10,000 (Dako) or a donkey horseradish peroxidase-conjugated anti-rab-
bit antibody at 1:2,000 (Amersham). Mouse monoclonal a-tubulin anti-
body (Sigma-Aldrich) was used as control. Protein extracts from kidneys
of Len2~/~ mice were used to confirm antibody specificity.

Immunobistochemistry. For mouse samples, 4-um sections of paraffin-
embedded kidneys were incubated with a goat anti-mouse Lcn2 antibody
(R&D Systems) at 1:300, followed by a rabbit anti-goat biotinylated anti-
body (Dako) at 1:200. Biotinylated antibodies were detected using HRP-
labeled streptavidin (Dako) at 1:500 and 3-3'-diamino-benzidine-tetrahy-
drochloride (DAB) revelation.

For colocalization experiments, lotus tetragonolobus lectin (LTL) was
detected using biotinylated LTL (Vector) at 1:50, followed by HRP-labeled
streptavidin at 1:500. For Tamm-Horsfall staining, mouse kidney sections
were incubated with a goat anti-Tamm-Horsfall antibody (Biogenesis)
diluted 1:200, followed by a biotinylated goat antibody (Dako) at 1:500
and HRP-labeled streptavidin at 1:500. For aquaporin 2 staining, sections
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were incubated with a rabbit anti-aquaporin 2 antibody (Sigma-Aldrich)
at 1:400, followed by donkey HRP-conjugated anti-rabbit antibody
(Amersham) at 1:300. DAB staining was used to detect antibodies.

For hypoxyprobe staining, 4-um sections of paraffin-embedded kidneys
were treated with pronase 0.01%, then incubated with an anti-hypoxyprobe
adducts antibody (Chemicon) 1:200, followed by a biotinylated mouse
antibody (Dako) at 1:500 and HRP-labeled streptavidin at 1:500 and sub-
jected to DAB revelation.

For human samples, 4-um sections of paraffin-embedded kidneys were
incubated with a goat anti-human LCN2 antibody (R&D Systems) at
1:100, followed by an HRP-labeled rabbit anti-goat antibody (Dako) at
1:100 and DAB revelation.

Cell proliferation assay. Proliferative cells were detected in mouse kidney
using PCNA or Ki-67 immunostaining. For PCNA staining, 4-um sections
of paraffin-embedded kidneys were incubated with a mouse anti-PCNA
antibody (Dako) at 1:50, followed by a sheep HRP-conjugated anti-mouse
antibody (Amersham) at 1:100. For Ki-67 staining, 4-um kidney sec-
tions were incubated with a mouse anti-human Ki-67 (BD Biosciences —
Pharmingen), followed by a biotinylated mouse antibody (Vector) at 1:400
and a HRP-labeled streptavidin at 1:1,000. Staining was revealed by DAB.
The tubular proliferation index (PI) was calculated as the number of PCNA-
positive (or Ki-67-positive) nuclei for the total number of tubular nuclei
in 10 randomly selected fields. The glomerular PI was calculated as the
number of glomeruli with at least 1 PCNA-positive nucleus for the total
number of glomeruli. In vitro, proliferation was evaluated by counting the
cell number or by using CellTiter 96 AQueous Cell Proliferation Reagent
(Promega) according to the manufacturer’s instructions.

Apoptosis assay. Apoptosis was detected in 4-um sections of paraffin-embed-
ded kidneys by TUNEL assay using the In Situ Cell Death Detection Kit
(Roche) according to the manufacturer’s protocol. The number of apoptotic
cells was determined as the number of TUNEL-positive nuclei per tubule in
20 randomly selected fields. The glomerular apoptotic index was calculated as
the number of glomeruli with at least 1 TUNEL-positive nucleus for the total
number of glomeruli. In vitro, apoptotic cells were detected by DAPI staining,
and the apoptotic index was calculated as the number of apoptotic-positive
nuclei for the total number of nuclei in 10 randomly selected fields.

Measurement of urinary LCN2. Fresh urine was collected with protease
inhibitors, centrifuged at 805 gat 4°C for 5 minutes, and the supernatant
was removed and stored at -80°C. LCN2 was measured using ELISA (Anti-
bodyShop). Specimens, standards, and reagents were prepared according to
the manufacturer’s instructions. LCN2 levels were expressed as nanograms
per milligram of creatinine. All experiments were performed in duplicate.

Statistics. Data are expressed as mean + SEM. Differences between the
experimental groups were evaluated using ANOVA, followed when sig-
nificant (P < 0.05) by the Tukey-Kramer test. When only 2 groups were
compared, Mann-Whitney U or Wilcoxon tests were used. The Pearson’s
correlation coefficient was used to test correlation between variables.
For microarray experiments, results are expressed as a log of the ratio of
CyS5 to Cy3. Genes with a false discovery rate (FDR) less than 0.05 (using
the Benjamini-Hochberg procedure) and a fold change greater than 1.5
were considered significant. The statistical analysis was performed using
GraphPad Prism software.
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