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Supplemental Methods 

 

Cell culture, radiation exposure and 2D and 3D colony formation assay. Cells were cultured in 

Dulbecco's Modified Eagle Medium (PAA; plus glutamax-I) supplemented with 10% fetal calf serum 

(Biochrom) and 1% non-essential amino acids (PAA) (1). Single doses of 200 kV X-rays (Yxlon Y.TU 

320; Yxlon; 0.5 mm copper filter; ~1.3 Gy/min, 20 mA) were applied and measured using a Duplex 

dosimeter (PTW) (1). To evaluate two(2D)- or three(3D)-dimensional clonogenic cell survival, we 

plated cells on or in laminin-rich extracellular matrix (lrECM (Matrigel™); BD) as published (1). 

 

Antibodies. anti-GSK3β, anti-PINCH1, anti-CD31 (BD), anti-Akt1, anti-pAkt1 S473, anti-pAkt1 T308, 

anti-FoxO1, anti-pFoxO1 S256 (detects pFoxO1 S256 and pFoxO4 S197), anti-FoxO4, anti-pGSK3β 

S9, anti-pGSK3α/β S21/9, anti-ILK (Cell Signaling), anti-β-actin (Sigma), anti-GFP, anti-PPP1A 

(Abcam), anti-Ki-67 (Dako), rabbit polyclonal anti-Pimonidazole (kindly provided by J. Raleigh, 

University of North Carolina, USA); HRP-conjugated donkey anti-rabbit and sheep anti-mouse 

secondary antibodies (Amersham), goat anti-rat TRITC and goat anti-rabbit FITC (Jackson 

ImmunoResearch), Alexa Fluor® 594 goat anti-rabbit IgG (Invitrogen). 

 

Akt1 kinase assay. Akt1 kinase assay was performed according to the manufacturer’s protocol (Cell 

Signaling) (1). 
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Akt1 or PINCH1 knockdown. Akt1 and PINCH1 siRNA target sequences (Applied Biosystems): 

siRNA Sequence (Sense) siRNA ID 

mAkt1 siRNA #1 5’-GGUAUUUCGAUGAGGAGUUtt-3’ #65681 
mAkt1 siRNA #2 5’-GCACCGUGUGACCAUGAACtt-3’ #162426 
hAkt1 siRNA #1 5’-GGGCACUUUCGGCAAGGUGtt-3’ #633 
hAkt1 siRNA #2 5’-GGCUCCCCUCAACAACUUCtt-3’ #42811 
mPINCH1 siRNA #1 5’-CGAACAGUGCUUCGUAUGUtt-3’ #172029 
mPINCH1 siRNA #2 5’-GGGCUUGGCCUACUGUGAAtt-3’ #172030 
hPINCH1 siRNA #1 5’-GGACCUAUAUGAAUGGUUUtt-3’ #15687 
hPINCH1 siRNA #2 5’-GCUAUAUCUCAAAGCAGUUtt-3’ #289501 

 

Non-specific control siRNA: 5’-GCAGCUAUAUGAAUGUUGUtt-3’ (MWG). siRNA delivery was 

accomplished as published (2). Forty-eight hours after transfection cells were either irradiated (colony 

formation assay) or lysed for Western blotting. 

 

PINCH1 expression constructs and site-directed mutagenesis 

Specific primers used: 

Primer Sequence 

PINCH1-C1-fw 5’-gg-GGTACC-CTGGGCGTGGCGGCCGGAA-3’ 
PINCH1-C1-rev 5’-cg-GGATCC-TTATTTCCTTCCTAAGGTCTCAG-3’ 
PINCH1-C1-LIM5 5’-cg-GGATCC-T-CAAACATCACCAAACAGCTGATTA-3’ 
PINCH1-KFAEA-fw 5’-CACACTCAAGAATAAATTTGCGGAAGCTGACATGAAGCCAGTCTG-3’ 
PINCH1-KFAEA-rev 5’-CAGACTGGCTTCATGTCAGCTTCCGCAAATTTATTCTTGAGTGTG-3’ 
PINCH1-AFAEA-fw 5’-CTCACACTCAAGAATGCATTTGCGGAAGCTGACATGAAGCCAGTCTG-3’ 
PINCH1-AFAEA-rev 5’-CAGACTGGCTTCATGTCAGCTTCCGCAAATGCATTCTTGAGTGTGAG-3’ 

 

Transfection of Akt1 and PINCH1 plasmids. Cells were transiently transfected with different RFP-Akt1 

vectors (wt, S473D/T308D, S473A, S473A/T308A, ΔPH) (3) or EGFP-PINCH1 expression constructs 

as published (4). 

 

Mass spectrometry. IPI database was used as described (5). 

 

Sequence homology search. Sequence homology search for the KFVEF motif in the PINCH1 protein 

sequence was performed (Homo sapiens Acc.No. NP_004978, Pan troglodytes Acc.No. 

XP_001136475, Xenopus laevis Acc.No. ABS17667, Danio rerio Acc.No. NP_001019560, Mus 

musculus Acc.No. NP_080424, Equus caballus Acc.No. XP_001501201, Rattus norvegicus Acc.No. 
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XP_574766, Gallus gallus Acc.No. NP_001001766) using: 

http://bioinfo.genotoul.fr/multalin/multalin.html; http//espript.ibcp.fr/ESPript/ESPript/index.php. 

 

Immunoprecipitation. Immunoprecipitation was performed as described (1). 

 

Immunofluorescence staining. Immunofluorescence staining was performed and fluorescence images 

were acquired as described (4). 

 

Identification of allografts in vivo. PCR genotyping and PINCH1 protein expression of tumors was 

performed as described (6). 

 

Evaluation of local tumor control. Actuarial estimates for time to local tumor recurrence were obtained 

using the Kaplan-Meier method and compared using Log rank test (GraphPad Prism software 4.03). 

For analysis of local tumor control data, censored animals were taken into account according to the 

method described by Walker and Suit (7). Tumor control data were fitted to the Poisson dose-

response model. Tumor control probability (TCP) for a radiation dose ‘D’ is 

 

TCP = exp −N ⋅ exp lnn −
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where ‘N’ is the number of tumor stem cells at the start of treatment, ‘n’ is the ‘‘extrapolation’’ number 

in the two component cell survival model, and ‘D0‘ is a parameter describing the sensitivity of tumor 

stem cells to irradiation. The tumor control dose 50% is derived from 

 

TCD50 = D0(lnNn + 0.367). 

 

Model parameters were estimated by maximum likelihood analysis. The non-parametric bootstrap 

method was used to determine 95% confidence intervals for TCD50. All calculations were performed 

using the STATA/SE 8.0 software (STATA Corporation) (8). 
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Histology. Methods to assess vasculature, hypoxia and perfusion in transplanted tumors have been 

described previously (7, 9). The hypoxic marker Pimonidazole (Natural Pharmacia International) was 

injected i.p. (0.1 mg/g body weight, dissolved at 10 mg/ml in 0.9% NaCl) 1 hour before tumor excision 

and the perfusion marker Hoechst 33342 (0.05 ml/mouse, dissolved at 6 mg/ml in PBS; Sigma) was 

injected into the tail vein 1 minute before tumor excision (Figure S4A). After excision, tumors were cut 

into halves. One half was shock frozen in liquid nitrogen and stored at -80°C and the other half was 

fixed in formalin and embedded in paraffin. Frozen central whole tumor cross-sections were air dried 

at room temperature for 1 hour, then fixed in ice-cold acetone for 10 minutes, air dried, and 

rehydrated in PBS. One section per tumor was simultaneously incubated overnight with anti-mouse 

CD31 monoclonal antibody (blood vessels) and rabbit polyclonal anti-Pimonidazole antibody 

(hypoxia). Goat anti-rat TRITC and goat anti-rabbit FITC were used as secondary antibodies (controls 

were secondary antibodies only). For immunofluorescence, whole tumor cross-sections were scanned 

sequentially for Hoechst 33342, TRITC and FITC fluorescence at 100-fold magnification using a Zeiss 

Axioplan 2 fluorescence microscope (Carl Zeiss) equipped with a scanning stage (Maerzhäuser) and 

a digital camera (AxioCam MRm; Carl Zeiss), resulting in congruent digital images consisting of 110 - 

240 visual fields per image. The scanning process and the subsequent image analysis were 

performed using the KS300 image analysis software (Kontron Elektronik). After scanning of the 

fluorescence signals, the sections were stained with hematoxyline and eosine (H&E). Binary images 

from the blinded samples were created by one investigator (U.K.) defining segmentation thresholds 

interactively considering signal-background intensity. A typical staining pattern for blood vessels 

(CD31) and for hypoxia (Pimonidazole) was found in all tumor sections. The procedure of threshold 

setting is arbitrary but reproducible (7). After scanning, the total tumor area and necrotic area were 

delineated with the computer mouse. The relative vascular area and Pimonidazole hypoxic fraction 

were determined as the CD31 and Pimonidazole positive area per viable tumor area, respectively. 

The fraction of perfused vessels was calculated from the ratio of CD31 staining overlapping with the 

Hoechst 33342 perfusion signal in 6 PINCH1fl/fl and 8 PINCH1-/- tumors, respectively. Moreover, we 

performed immunohistochemistry (Animal Research Peroxidase Kit; Dako) by staining paraffin 

embedded tumors (6 PINCH1fl/fl and 6 PINCH1-/- tumors) with anti-Ki-67 antibodies. The index for Ki-

67 staining was determined in 10 randomly selected high-power fields (400-fold magnification) per 
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tumor. For evaluation of the histological parameters, mean values, standard deviation were calculated 

and compared using the unpaired, 2-sided t-test (GraphPad Prism software 4.03). 
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Supplementary Figure Legends 

 

Figure S1. PINCH1 determines cellular radio- and chemosensitivity in vitro. (A and B) Clonogenic cell 

survival of PINCH1fl/fl, PINCH1-/-, EGFP-PINCH1 or EGFP MEF grown on Fibronectin (FN) after 

irradiation (0 – 6 Gy) or after 1-h Cisplatin treatment (0.1, 1 and 10 µM). Results show mean ± s.d. (n 

= 3; * P < 0.05, ** P < 0.01; t-test). 

 

Figure S2. Tumor allograft identification. (A and B) Various excised tumors (#, number of animal) 

were subjected to PCR genotyping and protein expression (Western blotting) for PINCH1 as 

described previously in comparison to normal mouse tissues (6). β-actin served as loading control. bp, 

base pairs. 

 

Figure S3. Tumor growth delay and tumor control probability of PINCH1fl/fl and PINCH1-/- allografts. 

(A) Accessory tumor volume data sets plotted against time. Comprehensive data sets of tumors 

irradiated with single doses of 26, 32, 38, 44, 50, 56 or 62 Gy (mean ± s.e.m. of 10 - 18 mice). (B) 

Direct comparison of growth characteristics of non-irradiated and 32-Gy irradiated tumors plotted in a 

semi-logarithmic scale. Median values for the time to grow to 2 and 5 times the starting volume (large 

symbols) of PINCH1fl/fl and PINCH1-/- tumors were compared using the Mann Whitney U test (* P < 

0.05) (compare Supplemental Table S2). (C) Tumor control probability as a function of radiation dose 

in PINCH1fl/fl and PINCH1-/- tumors growing in immunocompromised mice. Tumor control rates 

(symbols) were obtained from 11 to 18 animals per dose group. Lines represent tumor control 

probability for PINCH1-/- tumors calculated using maximum likelihood analysis. Error bars represent 

95% confidence interval of the tumor control dose 50% (TCD50). The non-parametric bootstrap 

method was used to determine 95% confidence intervals for TCD50. 

 

Figure S4. Assessment of Ki-67-positivity, vasculature, perfusion and hypoxia in PINCH1fl/fl and 

PINCH1-/- allografts. (A) Subcutaneous allograft PINCH1fl/fl and PINCH1-/- tumors were grown in 

immunocompromised mice. After tumor formation (diameter 6 - 8 mm), one experimental arm 

consisted of Pimonidazole and Hoechst 33342 injection at indicated time points prior to tumor 

excision. (B) Haematoxylin and eosin (H&E; panels a, b) or Ki-67 (panels c, d) stained sections of 



PINCH1 in radiation sensitivity                                                                                                                                Eke et al. 13

PINCH1fl/fl and PINCH1-/- tumors, respectively, at a tumor diameter of 6 - 8 mm (bars, 50 µm). (C) 

Assessment of Ki-67 positive cells among total cells was performed using 10 randomly selected high-

power fields (400-fold magnification) per tumor and plotted in percentage scale. Results show mean ± 

s.d.. Statistics compared PINCH1fl/fl versus PINCH1-/- tumors using the unpaired, 2-sided t-test (* P < 

0.05). (D) Representative images of Pimonidazole/Hoechst 33342 co-labeled tumors are shown. 

According to the experimental design described in A, fixed central whole tumor cross-sections were 

stained against CD31 and Pimonidazole prior to scanning of fluorescence-labeled cross-sections for 

Hoechst 33342, TRITC and the FITC fluorescence at 100-fold magnification using a Zeiss Axioplan 2 

fluorescence microscope. (E) After scanning, image analysis was performed using the KS300 image 

analysis software. Results show mean ± s.d. (n = 12 PINCH1fl/fl; n = 9 PINCH1-/-). Statistics comparing 

PINCH1fl/fl versus PINCH1-/- tumors were calculated with an unpaired, 2-sided t-test. 

 

Figure S5. PINCH1 regulates Akt1 and FoxO1 phosphorylation. (A) Densitometry was performed 

from data sets presented in Figure 2A and normalized to total expression of corresponding proteins 

(mean ± s.d.; n = 3; * P < 0.05, ** P < 0.01; t-test). (B) Western blot analysis of total and S9 

phosphorylated GSK3β. β-actin served as loading control. 

 

Figure S6. PINCH1 determines cellular sensitivity to ionizing radiation and chemotherapeutics in 

human colorectal carcinoma cell lines. Cells (DLD1, HCT15, HCT116 as indicated) were exposed to 0 

– 6 Gy X-rays (A) or treated for 1 h with increasing concentrations of Cisplatin (B) or 5-FU (C) under 

PINCH1 depletion (P1 siRNA #1, #2; co, non-specific siRNA control). Data show mean ± s.d. (n = 3; * 

P < 0.05, *P < 0.05, ** P < 0.01; t-test). 

 

Figure S7. (A) Western blot analysis of indicated proteins from DLD1 and HCT15 PINCH1 

knockdown cultures (P1 siRNA #1, #2; co, non-specific siRNA control). (B) Densitometry was 

performed from data sets presented in Figure 3E and Figure S7A and normalized to total expression 

of corresponding proteins (mean ± s.d.; n = 3; ** P < 0.01; t-test). (C) Western blot analysis of total 

and S9 phosphorylated GSK3β DLD1 PINCH1 knockdown cultures (P1 siRNA #1, #2; co, non-specific 

siRNA control). 
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Figure S8. Focal adhesion co-localization of PINCH1, Akt1 and PP1α. EGFP-PINCH1 and EGFP 

cells were stained for Akt1 and PP1α (nuclei stained with DAPI) and confocal images were obtained. 

Arrows indicate Akt1 or PP1α in focal adhesions. 

 

Figure S9. Titration curves for measurement of protein phosphatase activity. (A) Representative 

curves of protein phosphatase activities of different amounts of cell lysates (0 - 12.5 µg) from 

PINCH1fl/fl, PINCH1-/-, EGFP-PINCH1 and EGFP MEF measured according to the manufacturer’s 

protocol. For calculation of data shown in Figure 5F, fluorescence intensities of 0.78 µg, 1.56 µg, 3.13 

µg and 6.25 µg total protein amounts were used (n = 4). (B) Western blot analysis of PP1α 

expression. (C) Representative curves of protein phosphatase activities of different amounts of cell 

lysates (0 – 6.25 µg) from DLD1 control and PINCH1 knockdown cells measured as described in A. 
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Supplemental Tables 

 

Table S1. Numbers of animals in the radiation experiment. Data sets for Kaplan-Meier analysis of 

actuarial estimates for time to local tumor recurrence. 

 

 Number of animals 
Dose in Gy PINCH1fl/fl PINCH1-/-

0 14 14 
26 12 12 
32 13 12 
38 12 14 
44 13 14 
50 12 18 
56 11 14 
62 12 15 
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Table S2. Growth of unirradiated and irradiated (32 Gy) PINCH1fl/fl and PINCH1-/- tumors in nude 

mice. Additional data related to Figure S3B. Tumor growth time (TGT) is the time needed after start of 

experiments to reach 2 and 5 times the starting volume (TGTV2, TGTV5). SE, standard error. 

 

Tumor Experimental 
arm 

Median TGTV2
(days) [SE] 

P-value for 
PINCH1fl/fl vs 
PINCH1-/-

Median TGTV5 
(days) [SE] 

P-value for 
PINCH1fl/fl vs  
PINCH1-/-

PINCH1fl/fl non-irradiated    1.5 [0.12]    3.9 [0.32] 
PINCH1-/- non-irradiated    1.9 [0.23] 0.01    5.0 [0.55] 0.02 

PINCH1fl/fl 32 Gy  19.0 [0.29]  24.0 [0.58] 
PINCH1-/- 32 Gy  23.5 [0.58] 0.01  27.0 [2.6] 0.05 
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Table S3. Microarray data sets from Oncomine (www.oncomine.org) for analysis of PINCH1 

expression data in tumor tissue versus corresponding normal tissue. References are listed in 

Supplemental References. 

 

Tissue No. of studies Normal Tumor 
Adrenal 1 3 11 
Brain 4 37 162 
Breast 4 25 143 
Colon 4 66 97 
Esophagus 3 47 22 
Kidney 3 21 44 
Lung 7 99 364 
Ovary 4 16 196 
Pancreas 5 48 68 
Prostate 14 189 413 
Thyroid 1 8 8 
All 50 559 1528 

 

 

http://www.oncomine.org/
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Table S4. List of hits identified by mass spectrometry in anti-GFP and anti-Akt1 antibody pulldowns 

from EGFP-PINCH1 MEF. Hits identified in anti-GFP Ig IP from EGFP MEF served as a control and 

were excluded from further analysis performed on EGFP-PINCH1 MEF samples. 

 

anti-GFP Ig anti-Akt1 Ig N Protein 
accession 

number 

Gene name 
Number of 
matched 
peptides 

Sequence 
coverage 

% 

Number of 
matched 
peptides 

Sequence 
coverage 

% 
1 IPI00130185 PPP1ca 2 10 3 13 
2 IPI00876048 PPP1R12A 11 12 4 4 
3 IPI00229080 HSP90AB1 6 10 16 25 
4 IPI00759925 LIMA1 23 33 17 24 
5 IPI00116668 ILK 14 30 - - 
6 IPI00470003 Alpha-Parvin 14 36 - - 
7 IPI00555071 Rsu1 11 38 - - 
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