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Cellular and genetic diversity in the
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Intratumor genetic heterogeneity is a key mechanism underlying tumor progression and therapeutic resis-
tance. The prevailing model for explaining intratumor diversity, the clonal evolution model, has recently been
challenged by proponents of the cancer stem cell hypothesis. To investigate this issue, we performed combined
analyses of markers associated with cellular differentiation states and genotypic alterations in human breast
carcinomas and evaluated diversity with ecological and evolutionary methods. Our analyses showed a high
degree of genetic heterogeneity both within and between distinct tumor cell populations that were defined
based on markers of cellular phenotypes including stem cell-like characteristics. In several tumors, stem cell-
like and more-differentiated cancer cell populations were genetically distinct, leading us to question the valid-
ity of a simple differentiation hierarchy-based cancer stem cell model. The degree of diversity correlated with
clinically relevant breast tumor subtypes and in some tumors was markedly different between the in situ and
invasive cell populations. We also found that diversity measures were associated with clinical variables. Our
findings highlight the importance of genetic diversity in intratumor heterogeneity and the value of analyzing

tumors as distinct populations of cancer cells to more effectively plan treatments.

Introduction

With rare exceptions, human malignancies are thought to originate
from a single cell, yet by the time of diagnosis, most tumors dis-
play startling heterogeneity in cell morphology, proliferation rates,
angiogenic and metastatic potential, and expression of cell surface
molecules (1, 2). This heterogeneity is in part caused by epigenetic
and morphological plasticity, including variability for stem cell-like
and more-differentiated cell characteristics, but there is also strong
evidence for the existence of genetically distinct clones within the
same tumor. This intratumor clonal heterogeneity has been report-
ed for a wide range of malignancies, ranging from hematopoietic
cancers to different types of solid tumors (3-7). Among others, the
existence of clonal heterogeneity was documented in breast car-
cinomas using a variety of molecular and cytological techniques,
both within primary tumors (8-10) and between matched primary
tumors and distant metastases (9, 11). It is widely hypothesized
that intratumor clonal heterogeneity underlies therapeutic resis-
tance (2, 3). Supporting this hypothesis, the extent of the intratu-
mor clonal heterogeneity measured based on FISH and TP53 and
CDKN2A mutation data was associated with higher risk of tumor
progression in esophageal carcinoma (4).

Despite the importance of intratumor genetic heterogeneity in
tumor progression and therapeutic resistance, currently there are
no established methods for the quantitative assessment of intratu-
mor diversity at the cellular level that could be used as a biomarker
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for establishing the prognosis of cancer patients and predicting
the risk of therapeutic resistance. Furthermore, methods for the
combined analysis of phenotypic and genetic diversity at the sin-
gle-cell level in situ in tissue sections are also lacking.

Here we report the development of methods that can be used for
the quantitative description of intratumor heterogeneity in prima-
ry human tumors. We also show the utility of these methods for
assessing genetic diversity of stem cell-like and more-differenti-
ated breast cancer cells during progression from in situ to invasive
carcinoma. Furthermore, we correlate diversity measures of breast
carcinomas with clinical variables such as tumor grade.

Results
Combined measurement of phenotypic and genetic diversity at single-cell
resolution. We previously characterized stem cell-like CD44* and
more-differentiated CD24" breast cancer cells from multiple
tumors and determined that even within the same tumor, the 2
cell populations have distinct molecular and functional proper-
ties (10). These discrete characteristics are in part determined by
epigenetic programs that might change during tumor progression
(10, 12, 13). We also found evidence for genetic divergence between
CD44" and CD24" breast cancer cells in one short-term primary
culture derived from a pleural effusion sample (10).

To further investigate intratumor genetic and phenotypic het-
erogeneity in relation to stem cell-like and more-differentiated cell
characteristics during progression from in situ to invasive breast car-
cinoma, we performed combined immunofluorescence staining and
FISH (iFISH) (14) analyses of 15 invasive breast tumors of different
subtypes containing both in situ and invasive components in the
same section (Supplemental Table 1; supplemental material avail-
able online with this article; doi:10.1172/JCI40724DS1). In iFISH,
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immunofluorescence staining and FISH are used to define variability
for phenotypic traits and copy number alterations, respectively. Six
of the tumors were HER2*, 4 luminal A, and 5 basal-like, as defined
by immunohistochemical analyses of estrogen and progesterone
receptors (ER and PR), HER2, CKS5/6, and EGFR (15). Stem cell-like
and more-differentiated breast cancer cells were categorized based on
positivity for the CD44 and CD24 cell surface markers, respectively.

First, we analyzed the tumors for the expression of CD24 and CD44
by immunohistochemistry to ensure that both cell populations were
well represented on the slides to be used for iFISH. We observed high
variability for the expression of these 2 markers both among and
within tumors. Consistent with our prior studies (16), CD24" breast
cancer cells were infrequently detected in basal-like tumors, whereas
the frequency of CD44" cells was highest in basal-like and lowest in
HER2' cases. Thus, in basal-like tumors, we categorized breast cancer
cells as CD44-and CD44" populations. The frequency of CD24" and
CD44" tumor cells was also highly variable in different regions of the
same tumor (Supplemental Figure 1). To quantitatively assess this
variability, we measured topological diversity of the tumor subtypes
and histologies by determining the frequency of CD44* and CD24*
cells in 4 independent quadrants of each tumor. Despite the high
variability in the frequencies of these 2 cell types within some tumors
(Supplemental Table 2 and Supplemental Figure 2), no significant
differences were detected when the ratio of CD24* to CD44" cell fre-
quencies was compared across all 15 cases (P =0.91).
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Invasive Figure 1

: Cellular and genetic diversity in breast
cancer defined by iFISH analysis. A
representative example (tumor 2) of
HER2+ invasive ductal breast carci-
noma with adjacent DCIS displaying a
high degree of diversity for the expres-
sion of HER2, CD44, and CD24 and for
copy number gain of ERBB2 and 8q24
based on immunohistochemical staining
and iFISH, respectively. CD24 showed
membrano-cytoplasmic expression in
invasive tumor cells but apical mem-
branous expression in DCIS. In iFISH,
blue corresponds to CD24 or CD44
immunofluorescence; ERBB2 and
8q24-specific probes are red; and cen-
tromeric probes (chromosomes 17 and
8 for ERBB2 and 8924, respectively)
are green. Faint green and yellow are
background autofluorescence. Scale
bars: 10 um; original magnification,
x400 (immunohistochemistry) and
%600 (iFISH).

CD24/ERBB2
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Next, we performed interphase iFISH analyses using 3 BAC
probes localized to different chromosomal regions for each tumor.
BAC clones were selected for each tumor subtype corresponding to
commonly gained regions based on our previous SNP array stud-
ies (17) (Supplemental Table 3). Variability for chromosome 8q24
copy number was evaluated in all tcumors, since this locus is often
altered in all breast tumor subtypes. Basal-like tumors were also
analyzed for chromosome 12p13 and 10p13, luminal A tumors
for 11q13 and 16p13, and HER2* tumors for 17q21 (ERBB2) and
1q32. Each pair of probes (BAC and corresponding centromeric
probe) was evaluated individually using serial sections in each
tumor, and the ratio of BAC to centromeric probe was determined
and used for further calculations. Visual inspection of the iFISH
images demonstrated variable copy numbers in different areas of
some tumors (Figures 1 and 2, Supplemental Figure 3). In a lumi-
nal A tumor (tumor 10), clear evidence of clonal evolution during
the in situ-to-invasive breast carcinoma transition was detected,
as a CD24*CD44" subclone with high 11q13 copy number gain in
ductal carcinoma in situ (DCIS) became the dominant clone in the
invasive areas (Figure 2). Interestingly, this 11q13 BAC includes the
CCND1 gene encoding for cyclin D1; thus, amplification of this
locus might explain the significantly higher rate of cellular pro-
liferation (defined by the percentage of cells positive for the Ki67
marker) seen in the invasive (30% Ki67* cells) compared with the in
situ (2% Ki67" cells) areas of this tumor (Supplemental Table 1).
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Number2  February 2010



technical advance

DCIS Invasive

CD24/11g13

€D24/11q13

Tumors are composed of populations of cancer cells with distinct proper-
ties. To obtain a quantitative measure of genetic heterogeneity in
distinct tumor cell populations, we recorded copy number data
for both BAC and centromeric probes in 100 individual CD24*
or CD44" tumor cells in both invasive and in situ areas (a total of
400 individual cancer cells/tumor were evaluated) (Supplemental
Table 4). Because we used 4-um sections for iFISH (cutting nuclei
approximately in half), it is possible that some chromosomal
regions may not be well represented in the section and thus would
not be detected by FISH. However, this sampling bias is expected
to be the same in all cell populations analyzed. To ensure that the
observed tumor cell diversity was not due to technical variability
stemming from FISH procedures, we also determined BAC and
centromeric probe counts in 100 normal stromal cells adjacent to
tumors on the same slide for each probe as control (Supplemental
Table 5 and Supplemental Figure 4).

Copy number ratios of the 8q24 BAC and chromosome 8 centro-
meric probes depicted using box plots demonstrated substantial
variability across cell and tumor types (Figure 3A). Importantly,
CD24" and CD44" tumor cells displayed discordant copy number
638
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Figure 2

Clonal evolution during in situ to invasive breast carcinoma progres-
sion detected by iFISH. iFISH analyses using 11q13/CCDN1 (red)
and chromosome 11 centromeric probe (green) in a luminal A subtype
breast cancer (tumor 10). In the invasive areas, both CD44+ and CD24+
tumor cells (blue) display high-level amplification, whereas in adjacent
DCIS, this is restricted to a subset of CD24+CD44+ tumor cells (dotted
line), with the majority of the tumor demonstrating normal copy number
for this locus. iFISH analysis of adjacent sections using 8924 (red)
and chromosome 8 centromeric probe (green) demonstrates normal
(2n) copy numbers for 8g24 in both DCIS and invasive areas. Faint
green and yellow are background autofluorescence. Yellow spots and
lines are autofluorescent collagen fibers. Scale bars: 10 um; original
magnification, x600.

ratios both within the same histology as well as between the in situ
and invasive areas of some tumors. To further explore the distri-
bution of copy number ratios within each cell type and tumor, we
used histograms and kernel density estimates (18) (Figure 3B). The
latter is a nonparametric way of estimating the probability density
function of a random variable, providing a method to estimate the
density function of the population from data obtained for 100 cells
in each cell type, with minimal assumptions. Visualization of can-
cer cell population diversity using these approaches further high-
lighted the pronounced genetic heterogeneity within and between
populations of CD24" and CD44" cells in the same histology as
well as between in situ and invasive components. Similar observa-
tions were made using all other BAC probes (Supplemental Fig-
ures 5-10). Thus, despite the uniform expression of CD24 or CD44
in a subset of tumor cells, these 2 cell populations are genetically
highly heterogeneous and as a consequence of this, they are likely
to display variability for biological and functional traits including
tumor-initiating potential and response to therapeutic agents.
Numerical indices of tumor cell diversity. To express the observed genet-
ic diversity as a numerical value that can potentially be a clinically
useful biomarker predicting the risk of progression or response to
treatment, we applied diversity measures from the ecology and evo-
lution sciences (19) to our copy number data. These diversity mea-
sures estimate the number and distribution of species in a certain
geographical area or environmental niche. In our context, a species is
a cancer cell population defined by a unique value of the iFISH mea-
surement specifying the ratio of gene-specific BAC and centromeric
probes. Hence, a region of a tumor containing cancer cells with 3
different copy number ratios is interpreted to contain 3 distinct “spe-
cies.” We used the Shannon index as a measure of diversity
H=-YpIn(p) (Equation 1)
where p; is the frequency of species 7 in the tumor sample. This index
is borrowed from information theory, where it specifies the informa-
tion content of a message, and can be used to summarize the diversity
of a population by a single number. An alternative measure of diver-
sity, Simpson’s index, was also used. For discussion of the relative
advantages of Shannon index versus Simpson’s index, see Methods.
We calculated the Shannon diversity index for 8q24 copy num-
ber gain in both CD24" and CD44" cell populations in the inva-
sive and in situ areas of each tumor. A scatter plot of these Shan-
non indices suggested 2 distinct diversity groups (Figure 4A). We
exploited this pattern by identifying 2 clusters for each probe and
then testing whether these clusters are distinct by using the para-
metric bootstrap method (20) (Table 1). In the HER2* and luminal
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A tumor subtypes, the diversity of 8q24 copy number as measured
by the Shannon index fell into 2 significantly distinct groups; cell
populations in one group had a lower diversity index than those
in the other group. Whereas the 2 groups were equally large for
luminal A tumors, the group with lower diversity contained fewer
samples in HER2* tumors. Interestingly, the Shannon index of the
low-diversity group of luminal A tumors was essentially the same
as that of normal cells (Figure 4A and Supplemental Figure 4).
Basal-like tumors formed a single group with diversity measures
similar to the group with high diversity in the other 2 subtypes
(Figure 4A). To ensure that the observed tumor cell diversity was
not due to technical issues associated with iFISH, we also defined
the diversity indices of normal stromal cells adjacent to tumors
on the same slide and found low and non-variable diversity for
each of the chromosomal regions analyzed (Supplemental Figure
4). These data suggest that the Shannon index might be used as a
clinically useful biomarker that further refines breast tumor sub-
types according to their diversity.
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In most tumors, the 4 distinct cell populations (i.e., CD24*
and CD44" cells in DCIS and invasive areas) had similar diver-
sity scores for each of the 3 BAC probes analyzed; however, in
some cases, CD24" and CD44" cells displayed divergent scores in
the same histology or between DCIS and invasive regions (Fig-
ure 4A and Supplemental Figures 5-10). Interestingly, in all but
1 tumor with deviating scores, the invasive areas (both CD24*
and CD44" cells) showed higher diversity potentially due to the
larger number of tumor cells in invasive compared with in situ
tumors and their exposure to more varied environmental con-
ditions (e.g., interaction with various stromal cells that cannot
occur in DCIS, because the stroma and tumor epithelial cells are
physically separated from each other by the myoepithelial cell
layer and the basement membrane).

To further define the abundance of unique cancer cells in the
tumor samples, we used rank-abundance plots (also called Whit-
taker plots) (21) as graphical measures of diversity (Figure 4B and
Supplemental Figures 5-10). In these graphs, species are plotted in
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sequence from the most to least abundant on the horizontal axis,
and their frequencies are indicated on the vertical axis; hence, a
steep slope corresponds to a population dominated by a few abun-
dant species. These data again indicated that luminal A tumors
are composed of a few dominant cancer cell populations, whereas
basal-like and HER2* cases more frequently contain a wider array
of less abundant tumor cell types.

Associations between diversity indices and bistopathologic charac-
teristics of tumors. To further investigate differences in diversity
among breast tumor subtypes, the distribution of the Shannon
index for 8q24 copy number gain was explored by a heatmap
(Figure SA) and pairwise scatter plots (Supplemental Figure 11).
The heatmap suggested that luminal A and basal-like tumors
were mostly characterized by higher diversity in the invasive and
in situ components, respectively, whereas the HER2* subtype
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was not uniquely characterized by either category. CD44" cells
were more diverse within invasive relative to in situ areas of the
tumors, whereas CD24" cells showed higher diversity in in situ
compared with invasive components. These observations were
confirmed by the dendrogram depicting the hierarchical cluster-
ing of the tumors. The dendrogram displaying the clustering of
the diversity of distinct cell populations and invasive and DCIS
areas across tumors revealed a strong cluster of the areas (i.e.,
invasive and DCIS) and weaker subclusters of the cell popula-
tions (i.e., CD24" and CD44" cells). Pairwise scatter plots did not
reveal any further associations that were not obvious from the
heatmap and dendrograms (Supplemental Figure 11).

Next, we used a hierarchical model with the copy number ratio
as the outcome; tumor subtype, histology, and cell type as the
covariates; and the tumor as a random effect (see Methods and
Number 2
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Table 1
Cluster analysis of diversity indices

Probe Shannon index
Cluster 1 Cluster 2 P
Mean n Mean n

8024 (basal-like) 2.309 12 1.495 8 0.696
8024 (HER2+) 1.903 17 0.861 6 0.008
8024 (luminal A) 1.698 8 0.535 8 0.001
1932 1.458 13 1.03 10 0.713
16p13 1.572 4 0.7 12 0.004
11913 1.41 6 0.733 10 0.170
10p13 1.348 5 1.061 14 0.893

technical advance

Simpson’s index

Cluster 1 Cluster 2 P

Mean n Mean n

0.851 16 0.656 4 0.009
0.819 14 0.426 9 0.006
0.773 12 0.282 4 0.003
0.716 18 0.535 5 0.488
0.74 4 0.417 12 0.003
0.672 10 0.401 6 0.297
0.662 15 0.492 4 0.901

Cluster analysis of all probes using Shannon and Simpson’s indices as measures of diversity. Shannon and Simpson’s indices were calculated for each
probe and cell type and clustered into 2 groups using k-means clustering. Significant differences between the 2 clusters were assessed using the paramet-
ric bootstrap method of McLachlan (20). Rows list probe names, while columns indicate mean values, the number of samples in clusters 1 and 2, and the
P values of their comparison using Shannon and Simpson’s indices. P values are corrected for multiple testing.

Supplemental Table 6). This model allowed us to determine the
joint effects of the covariates on the distribution of the copy num-
ber ratio. We identified significant differences between CD44- and
CD44* cells in the DCIS portion of basal-like tumors (P = 0.001)
for 8q24 copy number gain and between CD24* and CD44" cells
in the invasive ductal carcinoma (IDC) portion of HER2* tumors
(P =0.002) for 1932 copy number gain. These differences might
indicate the divergent evolution of the 2 distinct cell populations
at different stages of tumor progression.

We found that tumor cell populations differed not only in
copy number gain and diversity with regard to a single probe
across CD24* and CD44" cell populations in invasive and in situ
areas and tumor subtypes (Figures 3 and 4) but also with regard
to different probes in a single tumor (Figure 5B). The relative
presence and diversity of copy number gains for different chro-
mosomes may be used for mapping the evolutionary history
of tumors. Interestingly, in a HER2" tumor, the abundance of
tumor cells with 8q24 copy number gain was lower in invasive
compared with DCIS areas, whereas the opposite was observed
for 17q21/ERBB2 gain (Figure 5B).

To determine whether the diversity of each tumor with regard to
8924 copy number gain correlates with histopathologic features
of the tumors (e.g., tumor grade, nuclear pleomorphism, extent
of intra- and peri-tumoral DCIS, necrosis, and proliferation rate),
we analyzed associations using a rank-sum test (Supplemen-
tal Table 7). We found that several variables were highly associ-
ated (Supplemental Table 7). The most significant correlations
(Table 2) were detected between DCIS CD24" cell diversity as mea-
sured by the Shannon index and the extent of intra- and peritu-
moral DCIS, DCIS necrosis, and extensive intraductal component
(EIC). These findings imply that larger tumor cell population size
and hypoxia might increase intratumor genetic diversity. Once the
P values were corrected for multiple testing, none of the associa-
tions were statistically significant due to small sample size. Hence,
the associations can only be interpreted as suggestive evidence,
and confirmation in a larger sample set is needed.

Discussion

Tumors are highly heterogeneous and dynamic (2). The cell popula-
tions, both normal and cancer, composing the tumor continuous-
ly evolve, posing a major challenge for effective cancer treatment.
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Thus, to understand the clinical behavior of tumors, it is essential
to define the various cancer cell populations they contain and to
determine how these populations behave together as a whole.

Targeting cancer cells with specific mutations, currently the
most favored approach for cancer treatment, inevitably selects
for resistant clones. Often these resistant cells already exist
in the primary tumor at the time of diagnosis (22-24) but go
undetected due to the limited sensitivity of the methods cur-
rently used. Examples include the emergence of MET-amplified
tumors in lung cancer patients resistant to EGFR inhibitors (25)
and the relapse of chronic myelogenous leukemia (CML) follow-
ing imatinib mesylate treatment due to mutations in BCR-ABL
that confer resistance (26). Thus, there is a pressing need for the
development and application of techniques that allow the quan-
titative definition of intratumor diversity at the single-cell level
in archived clinical samples.

Here we have applied a new approach for the analysis of intra-
tumor diversity based on FISH and immunofluorescence staining
for selected markers specific for the phenotype of interest in com-
bination with ecological and evolutionary methods for data analy-
sis. Because both of these experimental methods are routinely used
in diagnostic pathology laboratories and both data collection and
its mathematical evaluation can fairly easily be automated, our
approach can directly be translated into clinical practice.

Using breast cancer as an example, we have shown that applica-
tion of ecological and evolutionary methods to genetic and phe-
notypic data collected on populations of individual cancer cells
demonstrated a high degree of heterogeneity for chromosomal
alterations in cancer cells homogeneous for markers associated
with stem cell-like and more-differentiated epithelial cell traits
and between in situ and invasive areas of the same tumors. These
findings are inconsistent with the hypothesis that CD24* more-
differentiated luminal epithelial breast cancer cells are the direct
progeny of CD44* stem cell-like breast cancer cells. Thus, a sim-
ple hierarchical differentiation-based cancer stem cell model (27)
does not appear to be applicable for breast carcinomas. Further-
more, our results also show that both stem cell-like and more-dif-
ferentiated cancer cell populations evolve during tumor progres-
sion. Even if CD24 and CD44 are not specific markers for stem
cell-like and more-differentiated breast cancer cells, the degree of
genetic diversity we observed within tumors is inconsistent with
Volume 120 641
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Figure 5

Diversity for different chromosomal probes in
breast tumor subtypes and their association
with histopathologic features. (A) Hierarchi-
cal clustering of tumor samples based on the
Shannon index for the 8924 probe. Heatmap
and dendrograms displaying relatedness
of cell types and tumor samples based on
their Shannon indices. Red and yellow cor-
respond to high and low diversity, respec-
tively, whereas white represents median
levels. Tumor names are colored according
to subtype: red, basal-like; pink, HER2+; and
blue, luminal A. The color key indicates the
correlation between diversity and colors.
(B) Differences in diversity for different chro-
mosomal regions in the same tumor. Histo-
grams of copy number ratios in 4 distinct cell
types for 3 different chromosomal probes
are depicted in 2 individual tumors.

and signaling pathways (28). Thus, the
clinical behavior, including therapeutic
resistance and recurrence, of the tumor
is determined by the combined behav-
ior of the tumor as a whole; it must be
regarded as a complex system composed
of highly variable individual cells.

Intratumor heterogeneity is not limited
to markers associated with differentiation
states but is likely to be a general feature
of all measurable characteristics, includ-
ing gene expression, mutation, and epi-
genetic modification patterns. Indeed,
prior studies analyzing the expression of
various genes including estrogen receptor,
cytokeratins, and HER2 in DCIS and inva-
sive breast carcinomas have demonstrated
a high degree of diversity in a subset of
tumors (29). The intratumor heterogene-
ity of several of these markers that are used
for the categorization of breast tumors
into major subtypes (e.g., luminal, HER2",
and basal-like) reflects the imperfection of
such classification schemes.

Intratumor heterogeneity has also been
reported for mutations in tumor suppres-
sor (TP53) and oncogenes (RAS, PIK3CA)
inbreastand other tumor types (3,4, 7, 30),
demonstrating a continuous selection
process within tumors that drives their
evolution. Because several of these mutant
genes are targets of new molecular-based
cancer therapy, assessing their heteroge-
neity within tumors prior to treatment is
important for the design of more effective
combinatorial treatment approaches.

Another interesting question pertains to the underlying mecha-
nisms that maintain and promote intratumor heterogeneity. At
this point, we can only speculate on these, since there is limited
experimental evidence, especially in human tumors. With rare
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Table 2
Associations between diversity and histopathologic variables

Clinical variable Category n Median Q1-03
Tumor stage 1 10 1.67 0.59-2.23
2 5 1.28 0.65-1.37
Nuclear 1 1 0.48 0.48-0.48
pleomorphism 2 4 0.64 0.62-0.83
3 10 1.7 1.36-2.23
Intratumoral DCIS 0 4 1.12 0.56-1.85
1 11 1.37 0.64-1.98
Peritumoral DCIS 0 3 1.28 0.90-1.33
1 12 1.64 0.62-2.23
DCIS necrosis 0 3 0.57 0.53-0.61
1 12 1.64 1.12-2.23
EIC 0 14 1.33 0.59-1.72
1 1 2.27 2.27-2.27
IDC ER 0 11 1.67 1.33-2.23
1 4 0.61 0.55-0.64

Significant associations between histopathologic variables and the diversity of

CD24+ cells in the DCIS portion of the tumors as measured by the Shannon

The columns list the histopathologic variables, category of each variable (defined in
Supplemental Table 2), number of samples (n), median values, interquartile range
(Q1-Q8), and uncorrected P values for the associations between histopathologic
variables and CD24+ cell diversity in the DCIS areas of the tumors determined by
Kruskal-Wallis test. Once the P values are corrected for multiple testing, none of the

comparisons are significant.

exceptions, tumors initiate from a single transformed cell, and
multiple rounds of clonal expansion are required to produce
a clinically symptomatic tumor. During this expansion phase,
genetic and epigenetic instability, which is a common feature of
most tumors, produces a wide range of tumor cell variants with
favorable traits that natural selection acts on. In solid tumors,
spatial restrictions lead to the generation of separate niches in
different parts of the tumor that favor the outgrowth of cancer
cells with different characteristics. This spatial restriction might
also promote cooperation among tumor cell populations, as has
been demonstrated in colon cancer based on mathematical model-
ing supported by some experimental observations (5). Due to the
importance of these issues for effective cancer treatment, further
studies are required to better understand the sources of intratu-
mor diversity and their consequences.

In summary, in this study we have demonstrated the power of
analyzing tumors as ecosystems and suggest that quantitative
measures of intratumor diversity might be clinically useful bio-
markers predicting prognosis and response to treatment.

Methods

Tissue specimens and cell cultures. Fifteen cases of invasive breast tumors
with DCIS component were selected from files from 2005-2007 in the
Department of Pathology, Seoul National University Bundang Hospi-
tal, according to protocol B-0909-083-002, approved by the Institutional
Review Board of Seoul National University Bundang Hospital. The use
of these tissue samples for experiments was approved by the Institu-
tional Review Board of Dana-Farber Cancer Institute under protocol
98-229. All tissue samples were deidentified; thus, patient consent
was not required. Of the 15 cases, 2 were in the same patient as col-

lision tumors. The T47D human breast cancer cell line was obtained
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from ATCC, cultured and treated with colcemid, harvested,
and used for metaphase chromosome spread preparations
according to standard protocols (31).

P BAC probes. BAC clones were obtained from Invitrogen and
0.04 labeled with SpectrumOrange or SpectrumGreen using a Nick
Translation Kit (Abbott Molecular) according to the manufac-
turer’s recommendation, whereas a PathVysion HER-2 DNA
0.04 probe kit (Abbott Molecular) was used for ERBB2. Each BAC
probe was tested in metaphase FISH analyses using the T47D
breast cancer cell line to confirm their proper chromosomal

0.01 localization (data not shown).
Immunohistochemical and iFISH analyses. iFISH analysis was
0.01 performed essentially as previously described, with minor
modifications (14), using monoclonal antibodies against
0.01 CD44 and CD24 (CD44, clone 156-3C11, 1:200 and CD24,
clone SN3b, 1:100; LabVision). FISH signal enumeration was
0.01 performed using a fluorescence microscope with single- and
triple-band pass filters in intact, non-overlapping nuclei to
0.04 avoid variability in scoring due to the inaccurate recognition

of cell boundaries and probe hybridization. Frequency of cells
and FISH signal were counted by a single pathologist to mini-
¢ mize variability due to inter-observer bias. However, to ensure
index. reproducibility, some slides were counted by other individuals,
with essentially the same results.

Diversity measures. The Shannon index, or information
entropy, describes the information content of a message and
can be used to estimate diversity in a biological sample. One
shortcoming of the Shannon index is that it confounds spe-
cies richness and evenness. To overcome this problem, we
additionally applied Simpson’s index to our data and tested our conclu-

sions for robustness to the diversity measure used.

D= Yp?

i

(Equation 2)

where p; is the frequency of species 7 in the tumor sample. Simpson’s index
measures the probability that two individuals randomly sampled from a
population belong to the same species. A high value indicates low diversity.
We used (1 - D), a number between 0 and 1 that increases with increasing
diversity of the sample, as an indicator of diversity, representing the prob-
ability that 2 randomly sampled individuals belong to different species.
As compared to the Shannon index, Simpson’s index has the advantage of
having a clear biological and probabilistic interpretation as well as return-
ing a number between 0 and 1, while the Shannon index can take any non-
negative value. The disadvantage of Simpson’s index is that it is dominated
by the most abundant species in the population. When comparing our
data analyzed with the Shannon versus Simpson’s index, we found very few
qualitative differences (Table 1 and Supplemental Figures 5-10 and 12).
Statistics. We used box plots, histograms, and kernel density estimates to
present and visually compare the distribution of copy number ratios for
CD24" and CD44" cancer cell populations in invasive and in situ areas. The
bin sizes and the bandwidth for the Gaussian kernel of the density estimate
were automatically chosen using Scott’s algorithm (32). Shannon and
Simpson’s indices are estimated by substituting the sample proportions
in the definitions, and their sampling variability was assessed by forming
bootstrap samples within each tumor, cell population (CD24* and CD44%),
and histology (invasive and in situ). Since scatter plots of both Shannon
and Simpson’s indices suggested the presence of 2 distinct groups, the
k-means algorithm with Euclidian distance was used to form 2 clusters
(33). Because this algorithm always identifies a given number of clusters
(k=2 1in our case), we also tested whether the resulting clusters are statisti-
Volume 120 643
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cally distinct. For this purpose, we used the parametric bootstrap method,
representing the null hypothesis with a single normal distribution and the
alternative as a mixture of 2 normal distributions with different location
and scale parameters (20). The intracumor dependence of the observations
(the possibility that 2 observations from the same area within each tumor
are not probabilistically independent) is taken into account in the cluster-
ing algorithm by scaling the Euclidian distance by (1 - p), where p, the
intratumor correlation between copy number ratios, was estimated using
the method of Shrout and Fleiss (34).

Correlations between clinical data and tumor diversity indices were
explored only for the 8q24 copy number gain, because only this probe
was analyzed in all 15 tumors. Rank correlations between the Shannon
index for each of the cell population-tumor area combinations and vari-
ous clinical parameters were estimated and tested for statistical signifi-
cance using the rank-sum test with an exact reference distribution. Pvalues
were adjusted for multiple comparisons, where noted, using the resam-
pling-based min-P algorithm (35). The intra-class correlation of the cell
types from the same patient (4 each) was estimated to be 0.01 (36). In all
subsequent analyses, the cell types from the same patient were treated as
independent. Additionally, we used a heatmap to represent the joint distri-
bution of the 4 Shannon indices for each tumor, along with dendrograms
showing how the columns and the rows of the heatmap are hierarchically
clustered. The joint distribution of Shannon indices were further explored
using pairwise scatter plots for each bivariate subset.

The distribution of the copy number ratios across various tumor types,
cell types, and histologies were compared using a hierarchical model, with
cells recognized as nested in tumors. A variance components model was
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