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Somatic genetic alterations in cancers have been linked with response to targeted therapeutics by creation
of specific dependency on activated oncogenic signaling pathways. However, no tools currently exist to sys-
tematically connect such genetic lesions to therapeutic vulnerability. We have therefore developed a genom-
ics approach to identify lesions associated with therapeutically relevant oncogene dependency. Using inte-
grated genomic profiling, we have demonstrated that the genomes of a large panel of human non-small cell
lung cancer (NSCLC) cell lines are highly representative of those of primary NSCLC tumors. Using cell-based
compound screening coupled with diverse computational approaches to integrate orthogonal genomic and
biochemical data sets, we identified molecular and genomic predictors of therapeutic response to clinically
relevant compounds. Using this approach, we showed that v-Ki-ras2 Kirsten rat sarcoma viral oncogene homo-
log (KRAS) mutations confer enhanced Hsp90 dependency and validated this finding in mice with KRAS-
driven lung adenocarcinoma, as these mice exhibited dramatic tumor regression when treated with an Hsp90
inhibitor. In addition, we found that cells with copy number enhancement of v-abl Abelson murine leukemia
viral oncogene homolog 2 (ABL2) and ephrin receptor kinase and v-src sarcoma (Schmidt-Ruppin A-2) viral
oncogene homolog (avian) (SRC) kinase family genes were exquisitely sensitive to treatment with the SRC/ABL
inhibitor dasatinib, both in vitro and when it xenografted into mice. Thus, genomically annotated cell-line
collections may help translate cancer genomics information into clinical practice by defining critical pathway
dependencies amenable to therapeutic inhibition.

Introduction here referred to as lesions) will thus provide the genetic landscape
The dynamics of ongoing efforts to fully annotate the genomes  of human cancer in the near future. The medical implications
of all major cancer types are reminiscent of those of the Human  of these endeavors are exemplified by the success of molecularly
Genome Project. The analysis of somatic gene copy number targeted cancer therapeutics in genetically defined tumors: the
alterations and gene mutations associated with cancer (both ERBB2/Her2-targeted (where ERBB2 is defined as v-erb b2 eryth-
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roblastic leukemia viral oncogene homolog 2, neuro/glioblastoma-derived
oncogene homolog [avian]) antibody trastuzumab shrinks tumors
in women with ERBB2-amplified breast cancer (1); the ABL/KIT/
PDGFR (where ABL is defined as v-abl Abelson murine leukemia
viral oncogene homolog and KIT is defined as v-kit Hardy-Zuckerman
4 feline sarcoma viral oncogene homolog) inhibitor imatinib induces
responses in patients with chronic myeloid leukemia carrying the
BCR/ABL (where BCR is defined as breakpoint cluster region) trans-
location (2, 3) as well as in patients with gastrointestinal stromal
tumors and melanomas bearing mutations in KIT (4) or PDGFRA
(5); and finally, EGFR-mutant lung tumors are highly sensitive to
the EGFR inhibitors gefitinib and erlotinib (6-8). In most cases,
such discoveries were made after the completion of clinical trials;
as yet no robust mechanism currently exists that permits system-
atic identification of lesions causing therapeutically relevant onco-
gene dependency prior to initiation of such clinical trials.

The use of cancer cell lines allows systematic perturbation
experiments in vitro, yet the validity and clinical interpretability of
these widely used models have been questioned. In some notable
instances, pathways may lose function when grown in culture (9).
In addition, cell lines are frequently thought to be genomically dis-
arrayed and unstable and therefore likely poorly representative of
primary tumors. Furthermore, the genetic diversity of histopatho-
logically defined classes of tumors is often substantial, e.g., the
clinical tumor entity non-small cell lung cancer (NSCLC) com-
prises EGFR- and KRAS-mutant (where KRAS is defined as v-Ki-ras2
Kirsten rat sarcoma viral oncogene homolog) lung adenocarcinomas as
well as KRAS-mutant squamous-cell lung cancers. Thus, any rep-
resentative preclinical model would need to capture the nature of
lesions of primary tumors as well as their distribution in the his-
topathologically defined cohort.

Recent reports have credentialed the use of cancer cell lines in
preclinical drug target validation experiments (10-13). Building on
the foundation of these studies, we have now established a cell-line
collection that enables systematic prediction of drug activity using
global profiles of genetic lesions in NSCLC. Given the genomic
diversity of a particular cancer type, we reasoned that in-depth pre-
clinical analyses of activity of cancer therapeutics in tumor cells
would require both thorough genomic analysis of a large cell-line
collection of a single tumor entity and high-throughput cell-line
profiling, followed by genomic prediction of compound activity.

We set out to systematically annotate the genomes of a large
panel of NSCLC cell lines in order to determine whether such a
collection reflects the genetic diversity of primary NSCLC tumors.
We further determined the phenotypic validity of this collection
and analyzed drug activity as a function of genomic lesions in a
systematic fashion. Finally, we confirmed the validity of our pre-
dictors in vitro and in lung cancer mouse models. Such comple-
mentary efforts may provide a framework for future preclinical
analyses of compound activity, taking into account the multitude
of genetic lesions in histopathologically defined cancer types.

Results

A genomically validated collection of NSCLC cell lines. Eighty-four
NSCLC cell lines were collected from various sources (Supple-
mental Table 1; supplemental material available online with this
article; doi:10.1172/JCI37127DS1) and formed the basis for all
subsequent experiments. Cell lines were derived from tumors rep-
resenting all major subtypes of NSCLC tumors, including adeno-
carcinoma, squamous-cell carcinoma, and large-cell carcinoma.
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The genomic landscape of these cell lines was characterized by
analyzing gene copy number alterations using high-resolution
SNP arrays (250K Sty1). We used the statistical algorithm Genomic
Identification of Significant Targets in Cancer (GISTIC) to distin-
guish biologically relevant lesions from background noise (14). The
application of GISTIC revealed 16 regions of recurrent, high-level
copy number gain (inferred copy number > 2.14) and 20 regions of
recurrent copy number loss (inferred copy number < 1.86) (Supple-
mental Tables 2 and 3). Overall, we identified focal peaks with a
median width of 1.45 Mb (median 13.5 genes/region) for amplifi-
cations and 0.45 Mb for deletions (median 1 gene/region). These
regions contained lesions known to occur in NSCLC (e.g., deletion
of LRP1B [2q], FHIT [3p], CDKN2A [9p]; amplification of MYC [8(],
EGFR [7p] and ERBB2 [17q]; Figure 1A and Supplemental Table 2).
Furthermore, within broad regions of copy number gain, we also
identified amplification of TITFI (14q) and TERT (Sp) (Figure 1A
and Supplemental Table 2), recently identified by large-scale
genomic profiling of primary lung adenocarcinomas (15-17).

Analysis of homozygous deletions as well as loss of heterozygos-
ity (LOH) is typically hampered by admixture of nontumoral cells
in primary tumors. The purity of cell-line DNA permitted identifi-
cation of previously unknown homozygous deletions and regions
of LOH, including LOH events resulting from uniparental disomy
(e.g., copy-neutral events) (Supplemental Table 4). In this analysis,
known genes such as MTAP (9p) and LATS2 (13q) were altered by
homozygous deletions (18, 19) and we found what we believe are
novel homozygous deletion of genes such as TUBA2 (Supplemental
Table 4). Of note, most of these regions could also be identified in
primary NSCLC tumors as deleted (15); however, inferred copy num-
bers only inconstantly showed LOH or homozygous deletions, indi-
cating admixture of normal diploid DNA (Supplemental Table 4).
Thus, while a recent large-scale cancer profiling study (15) enabled
insight into the genomic landscape of lung adenocarcinoma, the use
of pure populations of tumor cells further afforded discovery of pre-
viously unrecognized regions of homozygous deletions and LOH.

We next compared the profile of significant amplifications and
deletions in this cell-line collection with that of a set of 371 pri-
mary lung adenocarcinomas (15). This comparison revealed a strik-
ing similarity between the 2 data sets (Figure 1A) but not between
NSCLC cell lines and gliomas or melanomas (Supplemental Fig-
ure 1, A and B). A quantitative analysis of similarity by comput-
ing correlations of the false discovery rate (q value) confirmed the
similarity of primary lung cancer and lung cancer cell lines (r=0.77)
and the lack of similarity of lung cancer cell lines and primary glio-
mas (14) (r=0.44), melanoma cell lines (11) (r = 0.44), or ovarian
tumors (r =0.38; Supplemental Figure 1C). As a control, repeated
random splitting of the lung cancer cell-line data and computation
of internal similarity resulted in correlation coefficients between
0.82 and 0.86, whereas we found no correlation with normal tissue
(r=0.0195; Supplemental Figure 1C). These results demonstrate
that the genomic copy number landscape of NSCLC cell lines
reflects that of primary NSCLC tumors, while tumors or cell lines
of other lineages show a much lower degree of similarity (20, 21).
Furthermore, the distribution of oncogene mutations in the cell
lines (Supplemental Table 5) was similar to that in primary NSCLC
tumors, with a high prevalence of mutations in the KRAS and EGFR
genes (22-25) and rare occurrence of phosphoinositide-3-kinase,
catalytic, o polypeptide (PIK3CA) and v-raf murine sarcoma viral
oncogene homolog B1 (BRAF) mutations (Figure 1B). These results
further validate our cell-line collection on a genetic level.

Volume 119

Number 6  June 2009



technical advance

A FDR g values FDR g values
2 o P oA A P o D
» b@‘b & qo,ﬁ 050 S Qefb R (oofb »
Chr A& ~% A7 b o Chr 7 &7 A7 A7 A%

.
2q22.1-LRP1B —,
3p14.2-FHIT —5

.ﬂ,.a 1g21.2-RAB13 (ARNT)

. ? —— 3q26.2-(PIK3CA)
4 _____|__5p15.33-TERT*
s 5 ——5p15.2-TRIO
6 6
8p23.3-(CSMD1) _7 7 — 7p11.2-EGFR
e = [ J921-MET"
9p23-(PTPRD) —& : ~ 8024.21MYC

9p21.3-(CDKN2A/B)*

—11q13.3-CCND1
— 12p11.23-(KRAS)

12q14.1-CDK4

e——— "
" 14q13.3-MBIP/(TITF1)

i 7 E — 17q12-ERBB2"*
o T ——
B e
B
100
2
> 80 M Cell lines
5 [ Primary tumors
£ 60
E
o 40
(%]
=
o
©
@
a .
NS
& @
& & & & &
C _@QS\‘\\'\\(‘Q
l Aol
B mRenal
T i R
| E—— e e . | ILUng

Figure 1

Genomic validation of 84 NSCLC cell lines. (A) Chromosomal copy number changes of NSCLC cell lines are plotted against those of 371 primary
NSCLC tumors. The g values (false discovery rates) for each alteration (x axis) are plotted at each genome position (y axis). Left panel shows
chromosomal losses (cell lines, purple; primary tumors, dark blue); right panel shows chromosomal gains (cell lines, red; primary tumors, blue).
Genomic positions corresponding to even-numbered chromosomes are shaded; dotted lines indicate centromeres; green lines, g value cutoff
(0.25) for significance. Genes represent known targets of mutation in lung adenocarcinomas. Putative targets near peaks are given in paren-
theses. Genes identified by GISTIC using stringent filtering criteria for peak border detection are marked by asterisks. (B) Oncogene mutations
present in NSCLC cell lines (black bars) are plotted according to their relative frequencies in comparison with primary lung tumors (gray bars)
(22-25). (C) Transcriptional profiles of primary renal cell carcinomas (orange) and corresponding cell lines (red); primary lung tumors (dark
green) and lung cancer cell lines (light green); primary lymphomas (blue) and lymphoma cell lines (purple) were analyzed by hierarchical cluster-
ing. To reduce noise, probe sets were filtered prior to clustering (coefficient of variation from 1.0 through —10.0, present call rate, 20%; absolute
expression greater than 100 in more than 20% of samples).

The availability of both copy number alteration and oncogene
mutation data of the NSCLC cell lines enabled us to analyze the
interactions of both types of lesions (Supplemental Figure 2). Hier-
archical clustering of lesions robustly grouped both mutations and
amplification of EGFR in 1 subcluster (ratio Q of observed vs. expect-
ed cooccurrence: Q =4.38, P=0.001), while KRAS mutations consis-
tently grouped in a distinct cluster. These findings corroborate prior
observations in vivo in which mutations in KRAS and EGFR were
mutually exclusive while EGFR mutation and EGFR amplification
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frequently cooccurred (23, 26, 27). Moreover, these results suggest
that these mutations influence the particular signature of genomic
alterations in the affected tumors. Finally, in unsupervised hierar-
chical cluster analyses of gene expression data, primary lung cancer
specimens (28) and lung cancer cell lines shared 1 cluster (Figure
1C), while renal cell carcinomas (29) and lymphomas (30) as well as
the corresponding cell lines clustered in a separate group.

In summary, in-depth comparative analysis of orthogonal
genomic data sets of a large panel of NSCLC cell lines and primary
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Figure 2

Robustness of phenotypic properties of EGFR-mutant lung cancer cells in vivo. (A) The first 2 principal components (PC1 and PC2) distinguish
cell lines with mutated (mut) EGFR (red dots) and WT EGFR (blue dots) (n = 54). (B) The signature (fold change greater than 2; absolute differ-
ence, 100; P < 0.01) of EGFR-mutant cell lines (n = 8/54) was used for hierarchical clustering of 123 primary adenocarcinomas (35) annotated
for the presence (EGFR ™, red bars) or absence (EGFRWT, dark blue bars) of EGFR mutations. (C) Probability of survival was estimated for all
123 primary adenocarcinomas with known EGFR mutation status following grouping according to relative abundance of 337 RNA transcripts
identified as differentially expressed between EGFR-mutant and EGFR WT cell lines. EGFR-mutant tumors (n = 13) were excluded from survival

analyses. Survival probabilities are depicted as Kaplan-Meier survival

estimate curves. (D) The same analysis was performed using 86 lung

tumors from Beer et al. (37) with available survival data. Two groups were formed according to relative abundance of the EGFR mutation—specific
genes, and survival analysis was performed as in D. (E) The association between presence (amplification, green; mutation, red; deletion, yellow)
of genetic lesions identified in the cell lines and sensitivity of the respective cell lines to treatment with the EGFR inhibitor erlotinib was analyzed
by Welch’s t test and Fisher’s exact test. Significant lesions are marked by gray (P < 0.05) or black (P < 0.0001) boxes.

tumors demonstrates that these cell lines reflect the genetic and
transcriptional landscape of primary NSCLC tumors.

EGER mutations define phenotypic properties of lung tumors in vitro
and in vivo. Activated oncogenes typically cause a transcriptional
signature that can be used to identify tumors carrying such onco-
genes (31, 32). However, we consistently failed to identify a gene
expression signature characteristic of EGFR-mutant tumors (33,
34) using a gene expression data set of 123 primary lung adenocar-
cinomas (35) annotated for mutations in EGFR (data not shown).
We therefore reasoned that the cellular purity of our cell lines
(n = 54 analyzed on U133A) might enable the determination of
such a signature and the application of this signature in primary
tumors. We applied principal component analyses on the variable
genes and found a remarkable grouping of all EGFR mutated cell
lines (n = 8/54), with a significant dissociation already in the first
principal component (Welch’s ¢ test on the distribution of eigenval-
ues: P=0.0005) contributing 14.5% to the overall variance (Figure
2A). Similar results were obtained by hierarchical clustering (data
not shown). Using genes differentially expressed in EGFR-mutant
cell lines (including T790M) as a surrogate feature (Supplemen-
tal Table 6), all of the EGFR-mutant primary tumors (35) were
grouped in a distinct cluster (P = 0.00001) when performing hier-
archical clustering (Figure 2B). This result was also recapitulated
when selecting genes differentially expressed in erlotinib-sensitive
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(GIso < 0.1 uM, n=5/54vs. Glsp > 2 uM, n = 45, where Glso indicates
half-maximal growth inhibitory concentration) cell lines (Supple-
mental Figure 3A). Furthermore, patients with tumors express-
ing the signature of EGFR mutated cell lines had better overall
survival than those whose tumors did not (Figure 2C) (36). The
power of our EGFR™ signature to predict survival was confirmed,
employing the data published by Beer and colleagues (Figure 2D)
(37). This effect was even observed when excluding EGFR-mutant
tumors (n = 13) from the analysis (Figure 2C). Thus, expression
signatures extracted in vitro can be used to identify biologically
diverse tumors in vivo (38).

Others have recently characterized a transcriptional signature
of EGFR-mutant NSCLC using a small set of cell lines (39). How-
ever when analyzing primary lung adenocarcinomas with the sig-
nature described by Choi et al., EGFR-mutant samples were ran-
domly distributed across the data set (Supplemental Figure 3B).
This finding further highlights the importance of using large
cell-line collections in order to represent the overall genomic
diversity of primary tumors.

Recent studies have linked the presence of EGFR mutations in
lung adenocarcinomas to clinical response to the EGFR inhibitors
erlotinib and gefitinib (6-8). However, retrospective studies aimed
at determining predictive markers for EGFR inhibition yielded
heterogeneous results, implicating EGFR mutations and/or
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EGFR amplifications among others as predictive of response or
patient outcome (40-42). We set out to systematically identify
genetic lesions associated with sensitivity to erlotinib by includ-
ing all global lesion data from our genomics analyses rather than
focusing on EGFR-associated lesions. We established a high-
throughput cell-line screening pipeline that enables systematic
chemical perturbations across the entire cell-line panel followed
by automated determination of Glso values (43) to determine
erlotinib sensitivity for all cell lines. We next analyzed the distri-
bution of genetic lesions in erlotinib-sensitive compared with
insensitive cell lines (Supplemental Tables 5 and 7) and further
compared the mean sensitivity of cell lines with and without
the respective genetic lesions. In both analyses, EGFR muta-
tions were the best single-lesion predictor of erlotinib sensitiv-
ity (Figure 2E and Supplemental Table 7; Fisher’s exact test;
P=6.9 x 10). Furthermore, we found a less stringent association
with amplification of EGFR (Fisher’s exact test; P = 1.4 x 104);
however, only EGFR mutations were significant predictors of
erlotinib sensitivity when we adjusted for multiple hypothesis
testing using Bonferroni’s correction (data not shown). We next
used signal-to-noise-based feature selection combined with the
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K-nearest-neighbor (KNN) algorithm (44, 45) to build a multile-
sion predictor of erlotinib sensitivity. The best performing multile-
sion predictor comprised EGFR mutations, amplification of EGFR,
and lack of KRAS mutations (Figure 2E and Supplemental Table
7), which have all been implicated in determining responsiveness of
NSCLC patients to EGFR inhibitors (6-8, 27, 40, 41, 46). We note
that in our data set, as in previously published reports (6-8, 27, 40,
41, 46), EGFR amplification and mutation were correlated, whereas
KRAS mutations were mutually exclusive with either lesion (Sup-
plemental Figure 2). Thus, our observation confirms the overall
predominant role of EGFR mutations in predicting responsiveness
to EGFR inhibition, and it provides an explanation for the finding
of EGFR amplification as being predictive of response as well. Our
findings also corroborate prior clinical reports establishing KRAS
mutations as a resistance marker for EGFR inhibition therapy.
Together, these results imply that essential transcriptional and
biological phenotypes of the original tumors are preserved in the
cell lines, a necessary requirement for application of such collec-
tions as proxies in preclinical drug target validation efforts.
Differential activity of compounds in clinical development in NSCLC cell
lines. Having validated the cell-line collection by demonstrating its
Volume 119 1731
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Figure 4

Hierarchical clustering of compound activity uncovers mutated EGFR
as a target for dasatinib activity. (A) Displayed is a hierarchical cluster
of cell lines and compounds, clustered according to Glso values (red,
high compound activity; white, low compound activity) after logarithmic
transformation and normalization. 77 cells reached full compound cov-
erage. The presence (black) or absence (gray) of selected lesions is
annotated in the right panel. (B) Correlation of activity of compounds to
presence of amplifications (red) and deletions (blue) as well as onco-
gene mutations (mut) was used for hierarchical clustering. Putative
target genes inside and bordering (*) the region defined by GISTIC are
annotated. (C) Upper panel shows that binding mode of erlotinib (white)
to WT EGFR. Dasatinib (pink) is modeled into the ATP-binding site of
EGFR. The 2-amino-thiazole forms 2 hydrogen bonds with the hinge
region of the kinase. Lower panel shows that the chloro-methyl-phenyl
ring of dasatinib binds to a hydrophobic pocket near the gatekeeper
Thr790 and helix C and will clash with the Met side chain of the EGFR
drug-resistance mutation T790M. (D) Upper panel shows that Ba/F3
cells ectopically expressing mutant EGFR with (delEx19 + T790M) or
without (delEx19) the T790M mutation were treated for 12 hours with
the either dasatinib or erlotinib, and phospho-EGFR and EGFR levels
were detected by immunoblotting. Lower panel shows that the same
cells were treated for 96 hours with either dasatinib or erlotinib and
viability was assessed. Growth inhibition relative to untreated cells (y
axis) is shown as a function of compound concentrations.

genomic and phenotypic similarity to primary NSCLC tumors,
we reasoned that adding complex phenotypic data might elicit
additional insights into the impact cancer genotypes have on cell
biology phenotypes. In our initial pilot screening experiment, we
profiled all cell lines against erlotinib and subsequently extended
our assay to 11 additional inhibitors that were either under clini-
cal evaluation or showed high activity in preclinical models; these
compounds target a wide spectrum of relevant proteins in cancer
(Supplemental Figure 4). We treated all cell lines with these com-
pounds and determined Glso values (Gl,s respectively; Supplemen-
tal Table 5). The resulting sensitivity patterns (Figure 3) revealed
that while some of the compounds exhibited a pronounced cyto-
toxic activity in a small subset of cell lines (e.g., erlotinib, vande-
tanib, VX-680), others were active in most of the cell lines, with only
a minority being resistant [e.g., 17-(allylamino)-17-demethoxygel-
danamycin (17-AAG)]. Only 2 cell lines (<2%) were resistant to all
of the compounds (Supplemental Table 5), suggesting that most
NSCLC tumors might be amenable to targeted treatment. Overall,
these observations are highly reminiscent of patient responses in
clinical trials in which limited subsets of patients experience par-
tial and, rarely, complete response while the majority of patients
exhibit stable disease, no change, or progression.

Identification of relevant compound targets by similarity profiling. As
an initial approach to identification of shared targets of inhibi-
tors, we performed hierarchical clustering based on the similarity
of sensitivity profiles (Figure 4A) and based on the correlation
between sensitivity and genomic lesion profiles (Figure 4B). Erlo-
tinib and vandetanib exhibited the highest degree of similarity,
pointing to mutant EGFR as the critical target of vandetanib in
NSCLC tumor cells (Figure 4, A and B) (47, 48). The high degree
of correlation (r=0.91; P < 0.001) of cell-line GIs values for both
compounds as well as structural modeling of vandetanib binding
in the EGFR kinase domain, which revealed a binding mode iden-
tical to that of erlotinib, further corroborate this notion (Supple-
mental Figure SA). This model predicted that binding of both
compounds would be prevented by the T790M resistance muta-
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tions of EGFR (48-50); accordingly, murine Ba/F3 cells ectopically
expressing erlotinib-sensitizing mutations of EGFR together with
T790M (51) were completely resistant to erlotinib and vandetanib
(Supplemental Figure S, B and C).

In addition to the ERBB2/EGEFR inhibitor lapatinib, vandetanib,
and the irreversible EGFR inhibitor PD168393 (52), the SRC/ABL
(where SRC is defined as v-src sarcoma [Schmidt-Ruppin A-2] viral
oncogene homolog [avian]) inhibitor dasatinib (53) shared a clus-
ter with the EGFR inhibitor erlotinib, although at a much lower
potency than erlotinib (Figure 4, A and B). Molecular modeling of
dasatinib binding to EGFR predicted a binding mode similar to
that of erlotinib (Figure 4C), with a steric clash of erlotinib and
dasatinib with the erlotinib resistance mutation T790M (49, 50, 54,
55) (Figure 4C). We therefore formally validated EGFR as a relevant
dasatinib target in tumor cells by showing cytotoxicity as well as
EGFR dephosphorylation (56) elicited by this compound in Ba/F3
cells ectopically expressing mutant EGFR but not in those coex-
pressing the T790M resistance allele (Figure 4D). Thus, large-scale
phenotypic profiling coupled to computational prediction formal-
ly validated a relevant tumor-cell target of an FDA-approved drug
using a systematic unbiased approach. It is noteworthy that a trial
of dasatinib in patients with acquired erlotinib resistance is cur-
rently ongoing (trial ID: NCT00570401; htep://clinicaltrials.gov/
ct2/show/NCT00570401?term=NCT00570401&rank=1; based on
previously reported biochemical findings (54) and our results, we
predict limited clinical activity in those patients in whom erlotinib
resistance is due to the EGFR resistance mutation T790M.

Supervised learning identifies predictors for inhibitor responsiveness. We
have shown that hierarchical clustering can identify compounds
with overlapping target specificities within a screening experiment.
We now set out to extend our analyses to additional computational
approaches to predict inhibitor responsiveness from global lesion
data in a systematic fashion. To this end, we applied supervised
learning methods as we did for erlotinib (see above). Applying this
method, we identified robust, genetic lesion-based predictors for
the majority of the tested compounds (Supplemental Table 7).

UO126 is a MEK inhibitor that also showed enhanced activity
in a subset of the lung cancer cell-line collection. Here, the super-
vised approach identified chromosomal gains of 1q21.3 affect-
ing the genes ARNT and RAB13 as being robustly associated with
UO126 sensitivity (Fisher’s exact test, copy number threshold
2.14, P = 0.02; Supplemental Figure 6 and Supplemental Table
7). In order to validate this finding in an independent data set,
we made use of the NCI-60 cancer cell-line panel (57) in which
hypothemycin was used as a MEK inhibitor (12). This cross-plat-
form validation revealed that 1q21.3 gain predicted sensitivity
to MEK inhibition in both data sets (Fisher’s exact test, P =0.03,
NCI-60 collection; Supplemental Figure 6).

In our initial cluster analysis, we found that KRAS mutations
correlated with sensitivity to the Hsp90 inhibitor 17-AAG, a gel-
danamycin derivative (Figure 4B). Recapitulating this observation,
we found KRAS mutations to be predictive of 17-AAG sensitivity,
even when applying our KNN-based prediction approach (Fish-
er’s exact test, P = 0.029; Figure 5A and Supplemental Table 7).
Confirming this observation in an independent cell-line model,
we found the distribution of geldanamycin sensitivity and KRAS
mutation in the NCI-60 cell-line collection to be strikingly similar
to that observed in our panel (P =0.049; Figure SA).

In 17-AAG-sensitive cells, Hsp90 inhibition led to robust induc-
tion of apoptosis (Supplemental Figure 7A). In order to gain mech-
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KRAS mutations predict response to inhibition of Hsp90 in vitro and in vivo. (A) The sensitive and resistant cell lines were sorted according to
their Glso values and annotated for the presence of KRAS mutations (asterisks and black columns). Bar height represents the respective Glso
values. The association of KRAS mutations and 17-AAG sensitivity (Glso < 0.07 uM = sensitive; Glso > 0.83 uM = resistant; according to the
lower and upper 25th percentiles) was calculated by Fisher’s exact test for the lung cancer data set (upper panel) and for the NCI60 data set
(lower panel). (B) Upper panel shows that whole-cell lysates of the indicated KRAS WT and KRAS mutated cell lines treated with different con-
centrations of 17-AAG were analyzed for levels of c-RAF, KRAS, cyclin D1, and AKT by immunoblotting. Lower panel shows that extracts of the
indicated cells treated with either control (C) or 0.5 uM (H322 and Calu-6) or 1 uM (H2122) of 17-AAG were subjected to coimmunoprecipitation
with antibodies to either KRAS (top) or Hsp90 (bottom); immunoconjugates were analyzed for levels of Hsp90 (top) or KRAS (bottom) by immu-
noblotting. Noncontiguous bands run on the same gel are separated by a black line (H2122). WB, Western blot. (C) Displayed are coronal MRI
scans of lox-stop-loxKFASG12D mice before and after 7 days of treatment with either 17-DMAG or vehicle. The areas of lung tumors were manually
segmented and measured on each magnetic resonance slice, and total tumor volume reduction was calculated for all mice treated with 17-DMAG

(n = 4) and placebo (n = 3). SD of tumor volume in the cohort of treated and untreated mice was calculated and is depicted as error bars.

anistic insight into KRAS dependency on Hsp90 chaperonage, we
first confirmed the specificity of our KRAS antibody (Supplemen-
tal Figure 7C). Using conditions under which EGFR coprecipitated
with Hsp90 in EGFR-mutant cells (Supplemental Figure 7B) (58),
we found KRAS to be bound to Hsp90 as well (Figure 5B). How-
ever, while 17-AAG treatment depleted mutant EGFR from Hsp90
(Supplemental Figure 7B), KRAS binding to Hsp90 was not affected
by this treatment (Figure 5B). Furthermore, cellular KRAS protein
levels were also not reduced by 17-AAG (Figure 5B). These findings
are surprising, as other oncogenes, such as EGFR or BRAF, known
to be dependent on Hsp90 chaperonage are depleted from the com-
plex after treatment with 17-AAG (58, 59). However, reduction of
viability of KRAS-mutant cells treated with 17-AAG is accompanied
by depletion of c-RAF and AKT (60) (Figure 5B). Since both c-RAF
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and AKT are known Hsp90 clients (59, 61), we hypothesize that this
observation might rely on the activation of the AKT and RAF/MEK/
ERK signaling pathways by mutant KRAS (62, 63).

To further validate the power of KRAS mutations to predict
response to Hsp90 inhibition, we employed a lox-stop-loxkRASG12D
mouse model that enables the study of KRAS-driven lung adenocar-
cinomas in vivo (64). Mice with established lung tumors induced by
nasal inhalation of adenoviral Cre (64) were either treated with the
water-soluble geldanamycin Hsp90 inhibitor 17-(dimethylamino-
ethylamino)-17-demethoxygeldanamycin (17-DMAG) or placebo.
Whereas no tumor shrinkage was observed in the placebo-treated
mice after 1-week treatment (Figure S5C and Supplemental Figure
8), substantial regression of established tumors was observed in 3
out of 4 mice receiving 17-DMAG, with a tumor volume reduction
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Identification of functionally relevant targets for dasatinib activity. (A) Left panel shows that cell lines with copy number gain involving at least
1 gene encoding dasatinib target are labeled with asterisks and black columns. The probability of these cells being dasatinib sensitive was
calculated by Fisher’s exact test. In right panel, dasatinib Glso values are shown as box plots (representing the 25th to 75th percentile; whisker
representing the 95th percentile; dots representing outliers) for cell lines with (TESP+ 1 gene) and without (TESP- 1 gene) copy number gain of
dasatinib target genes (Wilcoxon test). (B) H322M cells harboring amplified SRC were either left untreated or transduced with an empty vector
control (H322Meont) or with shRNA targeting SRC (H322MSRCkd) After puromycin selection, levels of SRC in H322M cells transduced with the
indicated vectors were analyzed by immunoblotting (top). The H322MSRCkd Janes were run on the same gel but were noncontiguous, as indicated
by the white line. Viability was quantified by cell counting. Error bars represent SD between different experiments. (C) H322M cells were trans-
duced with vectors encoding either active SRC or active SRC with a gatekeeper mutation SRC (T341M). Stable cells were treated with dasatinib
for 96 hours. Viability is shown as percentage of untreated controls. Error bars indicate SD of 3 independent experiments. (D) Dasatinib-sensitive
(TESP+; H322M) or -resistant cells (TESP-; A549) were grown s.c. in nude mice. After 14 days of treatment (vehicle, dasatinib), tumor volumes
were measured as diameters. SD of tumor volume in the cohort of treated and untreated mice was calculated and is depicted as error bars.

of up to 80% (Figure 5C and Supplemental Figure 8). Although
responses were transient as those seen in 17-DMAG-treated trans-
genic mice with EGFR-driven lung carcinomas (data not shown),
these findings validate our observation that KRAS mutation pre-
dicts response to Hsp90 inhibition in vivo.

Compound target gene enrichment predicts sensitivity. We have used
similarity profiling and supervised learning approaches that led
to the identification of predictive markers based on significant
lesions found in our data set as defined by GISTIC. However, the
advantage of statistically defining relevant lesions in a given data
set limits the utility of lesions occurring at low frequency and/ or
amplitude to be used as predictors for compound sensitivity.
We therefore developed an additional approach, denoted Target-
Enriched Sensitivity Prediction (TESP), which enables inclusion of sta-
tistically underrepresented yet biologically relevant lesions.

Amplification of drug-target genes has been demonstrated to
predict vulnerability to target-specific compounds in ERBB2-
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amplified breast cancer and EGFR-amplified lung cancer (1,
46). We therefore speculated that chromosomal copy number
alterations of biochemically defined drug targets could be used
for prediction of sensitivity to other tyrosine kinase inhibitors
as well. To this end, we used tyrosine kinase inhibitor targets
defined by the quantitative dissociation constant as determined
in quantitative kinase assays (65). As a proof of principle, we
determined whether copy number gain in EGFR is associated
with sensitivity to erlotinib (40). In our systematic approach,
cell lines inhibited by erlotinib at clinically achievable dosages
(up to 1 uM) were highly enriched for amplification of EGFR
(P =0.00023; Supplemental Figure 9A). We next tested our pre-
diction model for lapatinib, a specific inhibitor of ERBB2 and
EGFR, clinically approved for ERBB2-positive breast cancer
(66). Again, we observed cell lines inhibited by lapatinib (n = 82)
below clinically achievable dosage of 1 uM to be significantly
enriched in the subgroup of cell lines with amplification of
Volume 119 Number 6
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ERBB2 or EGFR (Fisher’s exact test, P =0.009; data not shown).
Thus, TESP enables discovery of clinically relevant genotype-
phenotype relationships.

Encouraged by these findings, we set out to test our approach for
compounds inhibiting a wide range of kinases, such as dasatinib
(65). We determined the distribution of GIso values of cell lines with
chromosomal copy number gain (copy number > 3) affecting at
least 1 or 2 of either one of the genes encoding the most biochemi-
cally sensitive dasatinib targets and compared these to the distri-
bution of Glsp values of cells without copy number gain at these
genomic positions (Figure 6A, Supplemental Table 8, and Supple-
mental Figure 9B). As hypothesized, these groups were significant-
ly distinct in the distribution of Glso values (P =1.8 x 10-3 when
1 gene was affected and P =4.6 x 10-3 when 2 of the target genes
were affected by copy number gain; Figure 6A and Supplemental
Figure 9B). In particular, this predictor comprised copy number
gain at the loci of gene family members of ephrin receptor kinases
(EPHA3, EPHAS, and EPHAS), SRC kinases (SRC, FRK, YESI, LCK,
and BLK), and ABL2, suggesting that NSCLC cells harboring such
lesions might be exquisitely sensitive to therapeutic inhibition
of the encoded proteins. The probability that cell lines with copy
number gain at either 1 or 2 of these genes will be sensitive to dasat-
inib treatment (Glso < 100 nM) increases up to 5.6-fold (gain of 1
gene) and 15.8-fold (gain of 2 genes), respectively, when compared
with cells without copy number gain at these loci (Figure 6A and
Supplemental Figure 9B). In contrast, copy number gain involving
loci encoding biochemically less sensitive dasatinib targets failed to
show enrichment of sensitive cell lines (data not shown).

In cells with copy number gain of biochemically defined dasatinib
target genes, dasatinib treatment led to robust induction of apopto-
sis (data not shown). Importantly, copy number gain of at least one
of either of these genes is present in 12.9% (copy number > 3) of sev-
eral hundred primary lung adenocarcinomas (15) (data not shown),
thus emphasizing the potential clinical relevance of our predictor.

In the dasatinib-sensitive cell-line H322M harboring amplified
SRC, dasatinib treatment led to dephosphorylation of SRC at low
nanomolar doses, paralleling growth inhibition at similar concen-
trations (Supplemental Figure 9C). In order to determine whether
the genes in our dasatinib predictor are causatively linked with the
activity of dasatinib, we silenced SRC by lentiviral shRNA in H322M
cells (Figure 6B). When compared with parental cells or cells express-
ing the control vector, H322M-SRC-knockdown (H322MSRCk) cells
showed a massive reduction in cellular proliferation (Figure 6B)
and increase in cell death (data not shown). In order to further vali-
date activated SRC as the relevant dasatinib target in H322M cells,
we expressed an activated allele of SRC together with a sterically
demanding mutation at the gatekeeper position of the ATP-binding
pocket (T341M) (67); this mutation and the analogous mutations
in Ber-Abl and EGER (see above) induce on-target drug resistance
(67) by displacing the compound from the ATP-binding pocket. As
hypothesized, expression of the T3141M gatekeeper mutation but
not of SRC alone rescued dasatinib-induced cell death in H322M
cells (Figure 6C). These results formally validate SRC as the relevant
dasatinib target in SRC-amplified NSCLC cells.

We also validated EPHA3 as a relevant target in H28 cells with
gain of EPHA3 by showing decreased viability of these cells upon
stable knockdown of EPHA3 (Supplemental Figure 10).

We next transplanted cells with or without copy number gain
of SRC into nude mice. Mice were treated with either dasatinib
or placebo on a daily application schedule. Again confirming our
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in-vitro observations, robust tumor shrinkage was observed in
mice transplanted with cells harboring copy number gain of SRC
(H322M) (Figure 6D) receiving dasatinib. In contrast, no tumor
shrinkage was observed in mice transplanted with cells predicted
to be resistant against dasatinib (A549) and in all mice treated with
placebo (Figure 6D). We consistently failed to grow EPHA3-ampli-
fied H28 cells in nude mice; HCCS1S cells were therefore chosen
as another model of NSCLC with gain of EPHA3. Dasatinib treat-
ment of established HCCS515 tumors also induced significant
tumor shrinkage (data not shown).

Together, these results show that in NSCLC, copy number gain
of ephrin receptor or SRC family member genes and ABL2 may
render tumor cells dependent on these kinases, thus exposing a
vulnerability to therapeutic inhibition with dasatinib.

Discussion
Here, we show that diverse analytical approaches of multiple
orthogonal genomic and chemical perturbation data sets perti-
nent to a large collection of cancer cell lines afford insights into
how somatic genetic lesions impact cell biology and therapeutic
response in cancer. Such data sets provide a rich source for dif-
ferent computational approaches that each yield complementary,
accurate, and valid predictors of inhibitor sensitivity. The basis for
such predictions is a panel of genomically annotated NSCLC cell
lines that is representative of the genetic diversity, the transcrip-
tional profile, and the phenotypic properties of primary NSCLC
tumors. The overall functional biological validity of our approach
is supported by the observation that EGFR mutations are the
strongest predictor of sensitivity to the EGFR inhibitor erlotinib.
Others have similarly observed high activity of EGFR inhibitors in
EGFR-mutant NSCLC cell lines (6, 13, 68), supporting the validity
of our unbiased computational approach employing systematic
global measurements of genetic lesions.

Applying systematic similarity profiling using computationally
defined significant genetic lesions, we also identified predictors
for compounds currently in clinical use or trials. Specifically, in
an unbiased manner, we confirmed EGFR mutations not only to
predict sensitivity to EGFR inhibitors (erlotinib, PD168393, van-
detanib) (6-8, 47, 52) but also to the SRC/ABL inhibitor dasatinib
(54, 56). We formally demonstrated that EGFR is the relevant target
of dasatinib in EGFR-mutant cells by showing the lack of activity
of this compound in Ba/F3 cells expressing the T790M resistance
allele of EGFR. Thus, exploring multiple orthogonal genomic
and chemical data sets enabled the formal definition of a relevant
tumor-cell target of an FDA-approved drug.

In addition, we performed supervised identification of predictors
for drug sensitivity. A noteworthy finding is the role of KRAS muta-
tion as a predictor of sensitivity to 17-AAG. Independent valida-
tion of the predictor for an Hsp90 inhibitor in a transgenic murine
lung cancer model strengthens the robustness of our approach.
Given the high prevalence of cancer patients with mutated KRAS
and their unfavorable prognosis, this finding might be of clini-
cal importance, as Hsp90 inhibitors (e.g., 17-AAG, IPI-504, NVP-
AUY922) are currently under clinical evaluation.

Finally, our compound target-enrichment approach for predic-
tion of sensitivity led to the observation of exquisite vulnerabil-
ity of cells with copy number gain of ephrin receptor and SRC
family genes as well as ABL2 to dasatinib treatment. As a proof
of principle we validated our prediction model in great depth for
the relevance of SRC amplification for dasatinib activity in vitro
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and in vivo. Thus, copy number gain affecting one of these genes
may render tumor cells dependent on the encoded kinases, thereby
defining potential biomarkers for successful treatment of NSCLC
patients with dasatinib, an FDA-approved drug.

In summary, we have established a genomically, phenotypically,
and functionally validated tool for studying drug activity mecha-
nisms in the laboratory. Our results strengthen the notion that
multiple orthogonal data sets pertinent to large cancer cell-line
collections may offer an as-yet-unmatched potential for explor-
ing the cell-biological impact of novel compounds in genomi-
cally defined cancer types. Such cell-line collections may advance
molecularly targeted treatment of cancer by providing a tool for
preclinical molecular drug target validation on the basis of the
genetic lesion signature characteristic of individual tumors.

Methods
Cells. The cell-line collection generated by A.F. Gazdar, J. Minna, and col-
leagues (69, 70) formed the basis of this collection. Further cell lines were
obtained from ATCC, DSMZ (German Collection of Microorganisms and
Cell Cultures, Germany), and our own or other cell culture collections.
Details on all cell lines are listed in Supplemental Table 1, including pro-
viders and culture conditions. Cells were routinely controlled for infection
with mycoplasma by MycoAlert (Cambrex) and were treated with antibiot-
ics according to a previously published protocol (71) in case of infection.
SNP arrays. Genomic DNA was extracted from cell lines using the Pure-
gene kit (QIAGEN) and hybridized to high-density oligonucleotide arrays
(Affymetrix) interrogating 238,000 SNP loci on all chromosomes except Y,
with a median intermarker distance of 5.2 kb (mean 12.2 kb). Array experi-
ments were performed according to the manufacturer’s instructions. SNPs
were genotyped by the Affymetrix Genotyping Tools software, version 2.0.
SNP array data of 371 primary samples were obtained from the Tumor
Sequencing Project (processed data file viewable in GenePattern’s SNP
viewer: dataset.snp; http://www.broad.mit.edu/cancer/pub/tsp/) (15). We
applied what we believe is a novel and general method for GISTIC (14) to
analyze the data sets. In brief, each genomic marker was scored according
to an integrated measure of the prevalence and amplitude of copy number
changes (and only prevalence in the case of LOH), and the statistical signifi-
cance of each score was assessed by comparison with the results expected
from the background aberration rate alone. The GISTIC algorithm was run
using 2 different pairs of copy number thresholds: copy number 4 (ampli-
fications); 1 (deletions); and copy number 2.14 (amplifications); 1.87 (dele-
tions) to reflect focal and broad events, respectively. For the sake of simplic-
ity, we refer to these settings using only the amplification threshold.
Detection of homozygous deletions. For identification of homozygous dele-
tions, SNP data were filtered for 5 coherent SNPs exhibiting copy numbers
of less than 0.5. The analysis was focused on focal losses, excluding entire
chromosomal arms. Information about genes located in a region of homo-
zygous deletion was based on hg17 build of the human genome sequence
from the University of California Santa Cruz (http://genome.ucsc.edu).
Analysis of cooccurring lesions. The analysis was performed computing
ratios of observed versus expected cooccurrence frequency of individual
lesions. Hierarchical clustering of mutation data combined to quantita-
tive copy number changes that were dichotomized was performed using
the reciprocal cooccurrence ratio as distance measure with average linkage
method. As the adequate threshold for occurrence of copy number lesions
depends on the overall level of copy number alteration for that specific
lesion, the sum of these ratios for 3 distinct thresholds was used.
Mutation detection. Mutation status of known oncogene mutations in
the genes EGFR, BRAF, ERBB2, PIK3CA, NRAS, KRAS, ABLI, AKT2, CDK4,
FGER1, FGFR3, FLT3, HRAS, JAK2, KIT, PDGFRA, and RET was determined
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by mass-spectrometric genotyping. Mutation status of these genes for all
cell lines was published previously (22). In addition, the genes EGFR, BRAF,
ERBB2, PIK3CA, KRAS, TP53,STK11, PTEN, and CDKN2A were bi-direction-
ally sequenced following PCR amplification of all coding exons.

Expression arrays. Expression data for 54 of the cell lines were obtained
using Affymetrix U133A arrays. RNA extraction, hybridization, and scan-
ning of arrays were performed using standard procedures (35). CEL files
from U133A arrays were preprocessed using the dChip software (htp://
biosunl.harvard.edu/complab/dchip/; built date May S, 2008). We com-
pared the cell lines with cell lines and primary tumors from lung can-
cer (28), renal cell carcinomas (29, 72), and lymphoma (30, 73) data sets
obtained from GEO (http://www.ncbi.nlm.nih.gov/geo/) by hierarchical
clustering. Data were processed by standard procedures; normalization
was performed in dChip. For comparison of NSCLC cell lines (U133A) and
primary tumors, we used data on adenocarcinomas from Bhattacharjee
and colleagues generated on U95Av2 arrays (35). We selected genes that we
found differentially expressed between cell lines with mutant EGFR and
WT EGFR (fold change between groups >2, 90% CI; absolute difference >
100, P < 0.01) and between erlotinib-sensitive and erlotinib-resistant cell
lines (erlotinib-sensitive [Glso < 0.1 uM] vs. erlotinib-resistant [Glso > 2 uM],
fold change > 2, 90% CI; absolute difference > 100, P < 0.005). For principal
component analysis, the R language for statistical computing was used.
Variable transcripts were identified using the following filtering criteria:
coefficient of variation 1.9 through 10, 40% present call rate. The first prin-
cipal component described 14.5% of the overall variance, the second 9.6%,
and the third 8.2%. Using a cutoff of 1400 in the eigenvalue, samples were
grouped according to the first principal component.

Cell-based screening. All compounds were purchased from commercial sup-
pliers or synthesized in house, dissolved in DMSO, and stored at -80°C.
Cells were plated into sterile microtiter plates using a Multidrop instrument
(Thermo Scientific) and cultured overnight. Compounds were then added
in serial dilutions. Cellular viability was determined after 96 hours by mea-
suring cellular ATP content using the CellTiter-Glo Assay (Promega). Plates
were measured on a Mithras LB 940 Plate Reader (Berthold Technologies).
Glso values were determined from the preimage under the growth inhibition
curve, where the latter was smoothed according to the logistic function with
the parameters appropriately chosen. For these analyses, we have established
a semiautomated pipeline as what we believe to be a novel R package (43).

Lesion-based prediction of compound sensitivity. For lesion-based prediction of
sensitivity, 3 different approaches were applied. First, the most sensitive and
most resistant samples were chosen according to their sensitivity profile.
Where the sensitivity profile of the corresponding compound did not allow
a clear distinction between resistant and sensitive cell lines, groups were
defined by the 25th and 75th percentiles. We used Fisher’s exact test to eval-
uate the association between the activity of the compound and the presence
of significant lesions as defined by GISTIC. For this purpose, the cell-line
panel was divided according to the presence of each lesion. The logarithmi-
cally transformed Gl values pertinent to each group were now compared
by a 2-sample Welch’s  test. In order to avoid an artificially low variance, the
Welch’s t tests were based on a fixed variance determined as the mean of the
variances that were clearly distinct from zero (>0.1). Details of this proce-
dure are presented in the publication by Solit and colleagues (12).

In a next step, multilesion predictors of sensitivity were calculated
using feature selection, with subsequent validation by a KNN algorithm
with a leave-one-out strategy (45), in which the same choice of samples
was used as above for Fisher’s exact test: For all but 1 sample, genetic
lesions strongly discriminating between sensitive and resistant cell lines
were selected and the prediction was validated by the remaining left-out
sample. Copy number data were dichotomized to ensure a better compa-
rability with the mutation data. Five different thresholds were used to
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dichotomize the copy numbers: 2.14, 2.46, 2.83, 3.25, and 4 for amplified
loci; and 1.87, 1.62, 1.41, 1.23, and 1 for deletions. The collection of fea-
tures and the threshold for the dichotomization were selected for which
the leave-one-out validation showed best performance and was taken as
the best combined predictor to the respective compound. As a measure
to select the setting with the largest predictive strength, the Youden index
(sensitivity + specificity - 1) was used.

For example, the best erlotinib single gene predictor was obtained when
the lesion data were dichotomized using the thresholds 3.25 and 1.23,
respectively. Cell lines with a GIso of less than 0.07 uM were considered
sensitive. For the predictor, the same cutoff values were used. Best per-
formance in the leave-one-out cross validation was obtained using 15 fea-
tures, k = 3 neighbors, and the cosine-based metric. Due to the problem of
multiple hypothesis testing, the significance of the above Welch’s ¢ tests as
well as Fisher’s exact tests should be understood in an explorative rather
than confirmative sense.

The NCI-60 cancer cell-line panel was used for validation of our find-
ings (http://dtp.nci.nih.gov/mtargets/mt_index.html). Since the MEK
inhibitor UO126 and the Hsp90 inhibitor 17-AAG were not covered by
the collection of pharmacological data, we analyzed the association of the
respective lesions to hypothemycin (MEK inhibitor) and to geldanamycin
(17-AAG is a geldanamycin derivate) instead. Significance of association
was analyzed by Fisher’s exact test. Due to strongly discordant Glsg val-
ues, the cell lines HOP62 and A549 were excluded from the analysis with
respect to the Hsp90 inhibitors. The thresholds for 1q21.3 amplification
were set according to the overall distribution of copy number changes in
the respective data sets (2.7 corresponding to 33% of the NSCLC cell lines;
2.4 corresponding to 33% of the NCI-60 collection).

All Fisher’s exact tests, Welch’s ¢ tests (all 2-tailed), and Wilcoxon tests
were performed using R version 2.7.1 (http://www.wpic.pitt.edu/WPIC-
CompGen/hclust/hclust.htm). A level of significance of 5% was chosen.
For cluster analysis, the R routine “hclust” was used.

Structural modeling of compound binding. The crystal structures of dasat-
inib bound to ABL kinase (pdb code 2IVU; ref. 74) and vandetanib
bound to the RET kinase (pdb code 2IVU; ref. 75) were aligned to the
kinase domain of EGFR bound to erlotinib (pdb code 1M17; ref. 76)
using PyMOL software, 1.1beta (DeLano Scientific LLC). Based on the
structural alignment of ABL with EGFR, the binding mode for dasatinib
in EGFR is identical to that of the dasatinib-Abl complex. Figures of the
structures were prepared using PyMOL.

Western blot analyses. Whole-cell lysates were prepared in NP40 lysis buffer
(50 mmol/1 Tris-HCI, pH 7.4, 150 mmol/I NaCl, 1% NP40) supplemented
with protease and phosphatase inhibitor I and II cocktails (Merck) and
clarified by centrifugation. Proteins were subjected to SDS-PAGE on 12%
gels, except where indicated. Western blotting was done as described previ-
ously (77). The EGFR (no. 2232), the AKT (no. 9272), and the phosphor-
SRC (Tyr*'¢) (no. 2101) antibodies were both purchased from Cell Signal-
ing Technology. The SRC (GD11) antibody was purchased from Millipore.
The Hsp90 antibody (16F1) was purchased from Stressgen (Assay Designs).
The phospho-EGFR (Tyr!%8) antibody was purchased from BioSource
(Invitrogen). The cyclin D1 (DCS-6), the c-RAF (C-20), and the actin (C-11)
antibody were purchased from Santa Cruz Biotechnology Inc. The KRAS
(234-4.2) antibody was purchased from Calbiochem.

Immunoprecipitation. For the detection of complexes of Hsp90 with KRAS
or EGFR and vice versa, whole-cell lysate (0.5-1 mg) in NP40 lysis buf-
fer was incubated with Agarose A/G Plus preconjugated with the Hsp90
or KRAS antibody (see Western blot analyses). Immunoprecipitates were
washed in NP40 lysis buffer, boiled in sample buffer, and subjected to SDS-
PAGE followed by Western blotting using an anti KRAS, Hsp90, or EGFR
antibody to detect complex formation.
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Apoptosis assays. Cells were plated in 6-well plates after 24 hours of
incubation, treated with 17-AAG for 72 hours, and finally harvested
after trypsinization. Then cells were washed with PBS, resuspended in
annexin V binding buffer, and finally stained with annexin V-FITC and
propidium iodide. FACS analysis was performed on a FACSCanto flow
cytometer (BD Biosciences), and results were calculated using FACSDiva
Software, version 5.0.

Transfection and infection. Replication-incompetent retroviruses were pro-
duced from pBabe-based vectors by transfection into the Phoenix 293-TL
packaging cell line (Orbigen) using the calcium precipitation method.
Replication-incompetent lentiviruses were produced from pLKO.1-puro
based vectors containing the shRNA insert (http://www.broad.mit.edu/
node/563) by cotransfection of 293-TL cells with pMD.2 and pCMVd.8.9
helper plasmids using reagent Trans-LT (Mirus). Cells were infected with
viral supernatants in the presence of polybrene. After 24 hours, medium
was changed and cell lines were selected with 1-2 ug/ml puromycin, from
which stable transduced clonal cell lines were derived.

Site-directed mutagenesis. All mutations (Y5S30F; T341M) were introduced
into the c-SRC ORF with the QuikChange XL I Mutagenesis Kit (Strata-
gene) following the instructions of the manufacturer. Oligonucleotides
covering the mutations were designed with the software provided by Strat-
agene, and each mutant was confirmed by sequencing.

17-DMAG treatment in LSL-KRAS mice. The lox-stop-lox-KRAS (LSL-
KRAS) mouse lung cancer model has been described elsewhere (64). Seven
mice were imaged by MRI at 12 to 20 weeks after adeno-CRE treatments
to document initial tumor volume. The mice were then divided into 17-
DMAG (LC Laboratories) and placebo treatment groups, with 4 and 3
mice in each group, respectively. 17-DMAG was formulated in saline and
given through tail-vein injection at 20 mg/kg/d dosing schedule. Mice were
imaged by MRI after 1 week of drug treatment and sacrificed for further
histological analysis thereafter. The protocol for animal work was approved
by the Dana-Farber Cancer Institute Institutional Animal Care and Use
Committee, and the mice were housed in a pathogen-free environment at
the Harvard School of Public Health.

MRI scanning and tumor volume measurement. Mice were anesthetized with
1% isoflurane; respiratory and cardiac rates were monitored with BioTrig
Software, version BT1 (Bruker BioSpin). Animals were imaged in the coro-
nal planes with a rapid acquisition with relaxation enhancement (RARE)
sequence (Tr = 2000 ms; TE effect = 25 ms, where Tr = pulse repetition time
and TE = minimum echo time), using 17 x 1 mm slices to cover the entire
lung. Matrix size of 128 x 128 and field of view (FOV) of 2.5 x 2.5 cm? were
used for all imaging. The areas of lung tumors were manually segmented
and measured using Image] software (version 1.33; http://rsbweb.nih.gov/
ij/) on each magnetic resonance slice. Total tumor volume was calculated
by adding tumor areas from all 17 slices (78). Note that MRI cannot clearly
distinguish tumor lesions and postobstruction pneumonia that is induced
by bronchial tumors of this particular tumor model.

Xenograft models. All animal procedures were in accordance with the Ger-
man Laws for Animal Protection and were approved by the local animal
protection committee and the local authorities (Bezirksregierung Kéln).
Tumors were generated by s.c. injections of 5 x 10 tumor cells into nu/nu
athymic male mice. When tumors had reached a size of about 50 mm3,
animals were randomized into 2 groups, control (vehicle) and dasatinib-
treated mice. All controls were dosed with the same volume of vehicle.
Mice were treated daily by oral gavage of 20 mg/kg dasatinib. The vehicle
used was propylene glycol/water (1:1). Tumor size was monitored every 2
days by measuring perpendicular diameters. Tumor volumes were calcu-
lated from the determination of the largest diameter and its perpendicular
diameter according to the equation [tumor volume = a x (b2/2), where
a = tumor width and b = tumor length].
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