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The integrity of the endothelial monolayer is essential to blood vessel homeostasis and active regulation of
endothelial permeability. The FGF system plays important roles in a wide variety of physiologic and patho-
logic conditions; however, its role in the adult vasculature has not been defined. To assess the role of the FGF
system in the adult endothelial monolayer, we disrupted FGF signaling in bovine aortic endothelial cells and
human saphenous vein endothelial cells in vitro and in adult mouse and rat endothelial cells in vivo using
soluble FGF traps or a dominant inhibitor of all FGF receptors. The inhibition of FGF signaling using these
approaches resulted in dissociation of the VE-cadherin/p120-catenin complex and disassembly of adher-
ens and tight junctions, which progressed to loss of endothelial cells, severe impairment of the endothelial
barrier function, and finally, disintegration of the vasculature. Thus, FGF signaling plays a key role in the

maintenance of vascular integrity.

Introduction

Vascular homeostasis is a complex process that includes growth
of new vessels and maintenance of the existing vasculature. While
the process of new vessel growth is beginning to be understood,
relatively little is known about maintenance of the existing vas-
culature. In particular, while suppression of VEGF signaling
results in regression of the tumor vasculature and certain types
of normal fenestrated vasculature such as tracheal cartilage cap-
illary network, most arterial and venous vasculature types do not
seem affected, suggesting that a different growth factor might
be involved (1, 2). We hypothesized that the FGF family may be
involved in this process given FGFs ability to inhibit apoptosis
and induce formation of tightly sealed capillaries (3, 4).

The FGF family consists of 22 structurally related polypeptide
growth factors (5). Most FGFs are broad-spectrum mitogens and
stimulate various cellular functions including migration, prolif-
eration, and differentiation. These activities are critical to a wide
variety of physiological as well as pathological processes including
angiogenesis (6), vasculogenesis (7), wound healing (8), tumori-
genesis (9), and embryonic development (10).

The FGFs produce their effects in target cells by signaling
through cell-surface tyrosine kinase receptors. These FGF recep-
tors (FGFRs) comprise 4 receptor tyrosine kinases designated
FGFR1, FGFR2, FGFR3, and FGFR4. All are transmembrane pro-
teins containing 2 or 3 extracellular Ig-like domains, a transmem-
brane domain, and an intracellular tyrosine kinase domain (11).
Alternative splicing of the carboxyterminal half of the Ig domain
III produces 2 to 3 isoforms (Ila through IIlc) in all FGFRs, with
the exception of FGFR4. While IIIb and IIlc isoforms are type I
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transmembrane receptor tyrosine kinases, the Illa splice variant
encodes a truncated protein that cannot independently transduce
extracellular signals. This alternative splicing event is regulated
in a tissue-specific manner and dramatically affects ligand-recep-
tor-binding specificity (12, 13).

Study of the biological role of the FGF system in adult tissues
has been complicated by the great redundancy among FGFs and
by an indispensable role played by Fgfr'l and Fgfr2 in normal devel-
opment, since the disruption of either gene leads to early embry-
onic death due to abnormal somite formation in the case of Fgfrl
and the failure of early postimplantation development in the case
of Fgfr2 (11). Thus, little is known regarding the role FGFs play in
the adult vasculature. Recent studies have suggested that FGFR2
is involved in regulation of endothelial migration (14) and that
signaling through myocardial FGFR1 and -R2 is important for
coronary arterial development (15).

To investigate the role played by FGFs in the postdevelopmental
stage, we elected to employ a systemic expression of soluble FGFR-
IgGFc (sFGFRs) chimeras capable of binding either extensive FGFs
(sFGFR1IIIc and sFGFR3IIIc) or a limited subset of FGF family
members (sSFGFR3IIIb). Alternatively, we used a dominant nega-
tive construct (FGFR1DN) capable of inhibiting signaling of all 4
FGFRs (16). We then examined the effect of FGF signal silencing
on the vasculature and on the endothelium per se in vivo as well as
invitro. We found that suppression of FGF signalingled to the loss
of endothelial cell-cell contact due to decoupling of p120-catenin
from VE-cadherin and subsequent disruption of adherens and
tight junctions in both arteries and veins. This in turn resulted in
increased vascular permeability and loss of vessel integrity. Thus,
FGFs play a major role in the maintenance of vascular integrity in
the existing adult vasculature.

Results

Inhibition of FGF signaling with sFGFR traps. To suppress FGF sig-
naling in adult mouse vasculature, we employed adenovirus-
mediated systemic expression of SFGFRs (17) similar to a pre-
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Validation of the sFGFR system. (A) sFGFR blocks FGF-induced Erk1/2 phosphorylation in vitro in a dose-dependent manner. Ad-GFP and
Ad-sFGFR1lllc were transduced in BAECs and stimulated with indicated concentration of FGF1 for 10 minutes. Total cell lysates were subjected
to Western blotting. p-Erk1/2, phospho-Erk1/2; t-Erk1/2, total Erk1/2; VP, viral particles. (B) sFGFRs effectively inhibit FGF1-induced Erk1/2
activation. Ad-Null, Ad-sFGFR1lllc, Ad-sFGFR3IIIb, and Ad-sFGFRS3Ilic were transduced in BAECs and stimulated with FGF1 for 5 minutes.
(C) sFGFR3IlIb does not inhibit FGF2-induced Erk1/2 activation. Ad-Null and Ad-sFGFRs were transduced in BAECs and stimulated with FGF2
for 5 minutes. (D) Plasma expression levels of sFGFR in mice. Ad-Null (control) or Ad-sFGFR1lllc (5 x 100 viral particles) was injected into
C57BL/6 mice, and blood samples were taken at indicated time points. sSFGFR levels were measured using an ELISA system detecting human
IgG-Fc. Data are shown as mean + SD, n = 4 in each group. (E) Tissue distribution of sSFGFR. After 10 days of Ad-Null (control) or Ad-sFGFR1lllc
injection (5 x 1010 viral particles), tissue samples were collected and total protein was extracted. Thereafter, ELISA assays detecting human IgG-
Fc were performed. Data are shown as mean + SD, 4 animals in each group. (F) Body weight change after injection of sFGFR. Ten-week-old
C57BL/6 mice were injected with adenoviruses (5 x 100 viral particles), and body weight was measured weekly. Data are shown as mean + SD,

n =4in each group. *P < 0.05, Student’s t test.

viously utilized anti-VEGF strategy (18). Three FGFR splicing
isoforms were chosen: FGFR11IIIc, FGFR3IIIb, and FGFR3IIlc.
FGFR11IIc binds EGF1, -2, -4, -5, -6, and -8, while FGFR3IIIb
binds predominantly FGF1 and with lower affinity FGF9 and -20.
FGFR3IIIc has broad binding specificity to FGF1, -2,- 4, -8, -9,
-17,and -20 (13). The ability of these FGF traps to neutralize
FGF activation was tested in bovine aortic endothelial cells
(BAECs) following transduction with different amounts of
adenoviruses encoding sFGFRs. A dose-dependent suppres-
sion of FGF1-induced Erk1/2 phosphorylation was observed in
BAECs transduced with Ad-sFGFR1IIIc (Figure 1A). Whereas
all sSFGFRs inhibited FGF1-induced Erk1/2 phosphorylation,
sFGFR3IIIb, which does not bind FGF2, did not inhibit FGF2-
induced Erk1/2 activation (Figure 1, B and C).
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To achieve systemic expression of these traps in mice, adenovirus-
es encoding sFGFR1IIIc and sFGFR3IIIb constructs were injected
iv.into C57BL/6 mice, and circulating levels were determined using
ELISA. High plasma levels of both constructs were detected start-
ing 3-4 days after injection and were maintained for approximately
3 weeks (Figure 1D). Once expressed, sSFGF traps exhibited uniform
distribution and were detected in similar amounts in various mouse
tissues (Figure 1E). Mice exposed to sSFGFR1IIIc-Fc traps failed to
gain weight while the traps were expressed, resuming weight gain
when the expression declined (Figure 1F). This is consistent with
a known role of angiogenesis in adipose tissue formation and
maintenance (19). To minimize the possibility that inflammation/
immune responses elicited by adenoviruses may confound the out-
come, we used the Fc construct with a mutation that eliminates
October 2008
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Figure 2

Impaired vascular integrity in mice lacking FGF signaling. (A) Increased vascular permeability and impaired endothelial morphology in sFGFR1llic
mouse. Ten days after adenoviral injection in C57BL/6 mice, the trachea vasculature was stained for CD31 (red). Green represents microspheres
in the extravascular space. Scale bars: 20 um (left panels); 10 um (right panels). (B) sFGFR1lllc increases vascular permeability in the muscle.
Ad-Null (control) or Ad-sFGFR was injected in C57BL/6 mice, and 14 days later, Evans blue dye was injected i.v. The adductor group muscles
were harvested for quantitation. Data are shown as mean + SD (n = 4). *P < 0.05, control vs. sFGFR1lllc by t test. (C) Inhibition of FGF signaling
in the heart and lung increases vascular permeability. Ad-Null (control), Ad-sFGFR was injected in C57BL/6 mice, and 10 days later, Evans blue
dye levels were examined in the heart and lung. Data are shown as mean + SD for n = 7, control; n = 8, sFGFR1llic; n = 4, sFGFR3Illb; n = 4,
sFGFRSIllc. *P < 0.05, vs. control by t test. (D) Increased vascular permeability in Ad-sFGFR1llic-treated nude mouse. NU/NU nude mice
(Charles River Laboratories) were subjected to trachea CD31. Junctional CD31 staining observed in control (arrows) is completely absent in the
Ad-sFGFR1llic-treated trachea vasculature. Scale bars: 20 um (left panels); 10 um (right panels). (E) Hemorrhage observed in Ad-sFGFR1lllc—
treated mouse lung and heart. Ten days after adenoviral injection in nude mice, lung and heart were harvested for H&E staining. Upper panels
show lung sections and lower panels show heart sections. Black arrows indicate myocardial hemorrhage. Original magnification, x400.

Fc receptor binding (20). Moreover, nude mice injected with either
null or sFGFR1IIIc adenoviruses had no change in body weight
(Ad-Null, control, 33.94 + 1.03 g; sFGFR1IIIc, 32.88 + 0.48 g at
8 weeks) despite high plasma levels of sSFEGFR11IIIc (64.2 + 18.3 ug/ml
at week 4) that persisted for at least 8 weeks (25.8 + 5.9 ug/ml at
week 8). This strongly argues that an inflammatory response, if any,
had no effect on impact seen with the other sFGFR traps.
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Disruption of endothelial FGF signaling affects vessel integrity and perme-
ability. The tracheal vasculature is known to be disrupted by a sys-
temic expression of circulating VEGF traps (1). Following systemic
expression of sSFGFR1IIIc, we observed a loss of vascular integrity
in the tracheal circulation as demonstrated by extravasation of
100 nm i.v.-injected microsphere particles that was not present in
mice exposed to the control adenovirus (Figure 2A). To further
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characterize this loss of vascular integrity, we evaluated vascular
permeability in normal C57BL/6 mice following systemic expres-
sion of either sSFGFR1IIIc, sSFGFR3IIIb, or a control construct. In
agreement with the observed loss of tracheal vasculature integrity,
there was a substantial increase in Evans blue dye retention in the
skeletal muscle in mice exposed to sSFGFR1IIIc but not sSFGFR3IIIb
virus and control mice (Figure 2B). The same Evans blue assay
demonstrated a significant increase in permeability in both myo-
cardial and pulmonary tissue in sFGFR1IIIc- and sFGFR3IIIc-
exposed but not control or sFGFR3IIIb mice (Figure 2C).

To assess the effect of prolonged suppression of FGF signaling,
nude mice were injected with Ad-FGFR1IIIc-Fc. After 8 weeks of
exposure of sSFGFR1IIIc trap, the mortality rate was 15.3%, unlike
C57BL/6 mice, which showed very little mortality. Histological
examination showed disrupted vascular integrity in the tracheal
circulation (Figure 2D) and scattered areas of arterial thrombosis
and hemorrhage in the lungs and heart (Figure 2E).

To obtain an insight into the cause of this loss of vascular integ-
rity, arterial endothelium of a normal rat femoral artery was exposed
in vivo to either the Ad-FGFR1DN or Ad-Null virus. FGFR1 domi-
nant negative construct (FGFR1DN), a cytoplasmic truncated form
of mouse FGFRI1IIIc, is capable of suppressing signaling of all 4
FGFRs by heterodimerizing with other FGFR isoforms (16, 21).

Two days after viral transduction, enface VE-cadherin staining
demonstrated normal endothelial morphology in the artery exposed
to Ad-Null, while there was a loss of endothelial cell-cell contacts in
the artery exposed to FGFR1DN (Figure 3A). Five days later, the
majority of endothelial cells in the Ad-FGFR1DN-exposed artery
appeared round and not in contact with each other, indicating a fur-
ther loss of cell-cell contact (Figure 3A). Remarkably, endothelial cells
were no longer aligned along the axis of the blood flow, suggesting
the loss of either the ability to sense the shear stress or to respond
to it. Similar findings, albeit somewhat less dramatic, were observed
both in the arterial and venous systems of mice with systemic expres-
sion of the sSFGFR1IIIc-Fc trap, suggesting that the FGF inhibition
effect is not restricted to the arterial vasculature (Figure 3B).

Scanning electron microscopy (SEM) confirmed the loss of cell-
cell contacts (Figure 4B). Furthermore, several areas of the arte-
rial segment exposed to FGFR1DN demonstrated a complete loss
3358
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Figure 3

In vivo effect of FGF inhibition in the
endothelium. (A) Enface prepara-
tion of the rat femoral artery trans-
duced with Ad-Null or Ad-FGFR1DN
(10° PFUs). Segments of arteries
were transduced with adenovi-
ruses and stained for VE-cadherin
(red) and maximum intensity pro-
jection of 1-um Z-Stack sections is
shown. At day 5, endothelial cells
lost cell-cell contacts and gaps
formed between cells. Scale bars:
10 um. (B) Mouse carotid artery
and jugular vein exposed to sys-
temic Ad-Null or Ad-sFGFR1lllc
viruses. Segments of arteries were
stained for VE-cadherin, and maxi-
mum intensity projection of 1-um
Z-Stack sections is shown. Scale
bars: 20 um.
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Ad-Null
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of endothelial lining, leading to the exposure of the underlying
basement membrane and platelet adhesion (Figure 4B). To further
evaluate the appearance of endothelial junctions, we employed
transmission electron microscopy. Whereas endothelial junc-
tions exposed with control virus were tightly sealed (Figure 4C),
FGFR1DN-transduced endothelium demonstrated open junc-
tions and detachment of endothelial cells (Figure 4, D-F)

To further examine the effect of suppression of endothelial FGF
signaling on permeability, we carried out in vitro studies using
both FGFR1DN and sFGFRs. Ad-FGFR1DN transduction of
BAEC or exposure of these cells to sSFGFR1IIIc or sSFGFR3IIIc trap
resulted in a significant decrease in transendothelial impedance
compared with control cells 48 hours later (Figure 5, A and B).
Furthermore, the Ad-FGFR1DN-transduced monolayer was per-
meable to 70 kDa and 2000 kDa (2 MDa) dextran, suggesting the
presence of large gaps in the monolayer (Figure SC). Exposure of
the mature BAEC monolayer to sFGFR1IIIc but not FGFR3IIIb
traps also significantly increased permeability to 70 kDa and 2
MDa dextran (Figure SD).

FGF signaling is required for maintenance of adherens junctions. The
2 types of junctions found in the endothelium and contributing
to structural stability are adherens and tight junctions (22). Many
reports support the idea that tight junction organization is largely
dependent on the formation of adherens junctions. In some cellular
systems, blocking adherens junctions inhibits the correct organiza-
tion of tight junctions (23). Adherens junctions play a critical role not
only in regulation of vascular permeability but also in maintenance of
vessel stability (24). Since VE-cadherin is the principal protein regu-
lating formation of adherens junctions in endothelial cells, we evalu-
ated its expression in Ad-FGFR1DN-transduced endothelial cells in
vitro. BAEC monolayers were transduced when fully confluent atan
MOI ensuring approximately 30%-50% transduction to avoid pos-
sible toxic adenoviral effects. In cells expressing the dominant nega-
tive construct, regular VE-cadherin staining at adherens junctions at
the cell periphery showed interruptions that correlated with gaps in
the monolayer by phase contrast or differential interference contrast.
No such changes were observed in Ad-GFP-transduced cells (Figure
6A). Exposure to the Ad-FGFR1IIIc-Fc-encoded trap led to a similar
loss of junctional VE-cadherin expression (Figure 6B).
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Figure 4

Effect of FGF inhibition in the endothelium: electron microscopy analyses. (A) SEM analysis
of rat femoral arteries transduced with Ad-Null. The arterial wall shows ridges formed due
to contractions in the underlying smooth muscle cells (top panel, scale bar: 50 um). Higher
magnification detail of the Ad-Null-infected artery demonstrates the continuous endothelial
monolayer (bottom panel, scale bar: 10 um). (B) SEM analysis of Ad-FGFR1DN-trans-
duced rat femoral artery. The area with remaining endothelial cells is shown (left panels,
scale bars: 50 um [top]; 10 um [bottom]). Endothelial cells are swollen and have lost con-
tacts with neighboring cells. Underlying matrix layer is partially exposed (white arrows). Area
demonstrating severe loss of the endothelium with exposure of the subjacent basement
membrane is also shown (right panels, scale bar: 50 um [top]). Higher magnification shows
a few cells, presumably platelets by size, adhering to the vessel wall (white arrowheads)
(right panels, scale bar: 10 um [bottom]). (C) Transmission electron microscopy analysis
of Ad-Null-transduced rat femoral artery (day 2). Adjacent endothelial cells form a tightly
sealed junction indicated by black arrows. Scale bar: 500 nm. (D) Ad-FGFR1DN-trans-
duced artery (day 1). Scale bar: 2 um. Inset: a gap is formed between endothelial cells.
Arrow (inset) indicates open cell-cell junction. Scale bar: 500 nm. (E) Ad-FGFR1DN-trans-
duced artery (day 2) shows an open endothelial junction (black arrows). A platelet (PLT)
adheres to the open space and extends a cellular process (white arrowhead). Scale bar:
500 nm. (F) Ad-FGFR1DN—transduced artery showing a wide gap in the endothelium (black
arrow) and an EC detaching from the basement membrane. Scale bar: 2 um.
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In order to examine these cells more closely,
we employed SEM to examine Ad-GFP- and
Ad-FGFR1DN-transduced endothelial
monolayers in vitro. Ad-GFP-expressing
monolayer appeared continuous with rare
gaps that normally occur in endothelial cells
in culture (Supplemental Figure 1C). Con-
versely, Ad-FGFR1DN-expressing monolayers
demonstrated a sharp increase in the num-
ber and size of gaps within the monolayer
(Supplemental Figure 1C) as soon as 24 hours
after transduction that was then followed by
a progressive disassembly of the monolayer.
Since the data presented above suggested
that FGFs serve to protect vascular integrity,
we measured endothelial cell monolayer per-
meability in vitro after FGF and VEGF expo-
sure. In agreement with previous results (25),
exposure to VEGF-A markedly decreased
monolayer impedance. In contrast, exposure
to FGF1 slightly but significantly increased
impedance (and thus reduced permeabil-
ity) (control, 1652.68 + 58.3 ohms; FGF1:
1776.08 + 48.62 ohms at 8 hours, P < 0.05). Fur-
thermore, pretreatment with low concentra-
tion of FGF prevented VEGF-induced increase
of monolayer permeability (Figure 8A). More-
over, while under conditions in which a con-
fluent endothelial monolayer was maintained
without serum supplementation, VEGF-A
rapidly disassembled adherens junctions as
demonstrated by movement of VE-cadherin
from cell-cell contacts into the cytosol (Figure
8B). However, such an effect was not observed
with FGF1 treatment (Figure 8B). Thus, these
experiments demonstrate that FGF signaling
regulates endothelial permeability and vascu-
lar integrity in vitro and in vivo.

FGF inhibition disrupts VE-cadberin—based junc-
tional complex. To further analyze VE-cadherin
expression, the presence of plasma membrane
and total cell VE-cadherin was assessed by West-

The same cells also demonstrated a loss of tight junctions as
demonstrated by zonula occludens-1 (ZO-1) staining (Figure
7A). The effect of suppression of FGF signaling on cell membrane
VE-cadherin expression was not limited to the arterial endothe-
lium, as transduction of human saphenous vein endothelial
cells (HSVECs) with Ad-FGFR1DN demonstrated a similar loss
of VE-cadherin from cell-cell junctions (Figure 7B). Further-
more, quantitative analysis of FGFR1DN-transduced cells con-
firmed visual observations. The number of cells with interrupt-
ed junctional VE-cadherin staining increased as the viral dose of
Ad-FGFR1DN but not Ad-GFP increased, while overall cell den-
sity remained unaltered, suggesting that the effect of FGF sig-
naling disruption on VE-cadherin expression is not due to cell
loss (Supplemental Figure 1, A and B; supplemental material
available online with this article; doi:10.1172/JCI35298DS1).
Moreover, Western blotting demonstrated no increase in caspase
3 cleavage in FGFRI1DN-expressing endothelial cells compared
with controls (Supplemental Figure 1D).
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ern blotting of Ad-FGFR1DN- and Ad-GFP-transduced BAECs
following cell surface biotinylation. The Ad-FGFR1DN BAECs
demonstrated significant loss of plasma membrane VE-cadherin
(Figure 9A) even though total cell expression of VE-cadherin or
other adherens junction proteins such as f-catenin and p120-
catenin as well as tight junction protein ZO-1 were unchanged
(Figure 9B). There was increased cytoplasmic VE-cadherin stain-
ing in Ad-FGFR1DN cells, suggesting VE-cadherin redistribution
to the cytosol (Supplemental Figure 1B).

The expression of N-cadherin, which is known to control
VE-cadherin levels in endothelial cells, was not changed either
in the biotinylated (cell surface) or total protein fraction in
FGFRI1DN cells (Figure 9A) (26). Furthermore, endothelial cell
adhesion to smooth muscle cells, thought in part to be medi-
ated by N-cadherin, was not affected by FGF inhibition in vitro
(Supplemental Figure 2A). Finally, subendothelial distribution
of N-cadherin was unchanged in the vasculature exposed to
sFGFR1IIIc adenovirus (Supplemental Figure 2B).
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Increased endothelial permeability in cells lacking FGF signaling. (A) Endothelial monolayer permeability evaluated with ECIS system. Imped-
ance was measured every 5 minutes for 48 hours after the onset of adenoviral transduction. After adenoviral exposure, cell culture medium was
changed to normal growth medium. n = 3 in each group, P < 0.05, control versus FGFR1DN or sFGFR1llic at 48 hours (B) ESIS analysis using

various sFGFR adenoviruses. After adenoviral exposure, medium was

replaced with normal growth medium. n = 3 in each group, P < 0.05,

control versus sFGFR1lllc or sFGFR3Illc at 48 hours (C) Transwell tracer experiment using high (2 MDa) and low (70 kDa) molecular weight
dextran. Full confluent BAECs on the Transwell chambers were transduced and dextrans were added in the upper chamber. Fluorescent val-
ues in the lower chamber were measured at indicated time points using a fluorescent microplate reader. Three independent experiments were

performed. One representative experiment is shown as mean + SD for n

= 3in each group; *P < 0.05 by Student’s t test, control vs. FGFR1DN.

AU represents relative intensity of fluorescence. (D) Transwell tracer experiment using Ad-sFGFRs. Data are shown as mean + SD forn = 3 in

each group; *P < 0.05 by Student’s t test, control vs. sFGFR1lllc.

VE-cadherin/p120-catenin binding plays an important role in
retention of VE-cadherin at cell-cell contacts and maintenance of
vascular integrity (27). Treatment with FGF1 resulted in increased
VE-cadherin/p120-catenin association as demonstrated by VE-cad-
herin immunoprecipitation followed by Western blotting with an
anti-p120-catenin antibody (Figure 9C). In contrast, expression of
the FGFR1DN construct led to a marked decrease in VE-cadherin/
p120-catenin association while VE-cadherin/fB-catenin association
was not disrupted (Figure 9D). A similar result was observed fol-
lowing BAEC treatment with tyrosine phosphatases inhibitor
pervanadate (PV) (Figure 9D). Thus, VE-cadherin stability, which
is known to be mediated by VE-cadherin-p120-catenin complex
formation, is affected by the shutdown of FGF signaling.

Discussion

By using complimentary approaches to shut down endothelial FGF
signaling in various physiologic settings and different vascular beds,
we observed dissolution of VE-cadherin/p120-catenin complex and
loss of endothelial adherens and tight junctions in vitro and in blood
vessels in vivo. This in turn led to increased permeability and tissue
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hemorrhage due to the loss of vascular integrity. Thus, continuous
FGF signaling appears to play a critical role in the maintenance of
vascular integrity and regulation of basal permeability. Furthermore,
our study demonstrates that the maintenance of vascular integrity is
a dynamic process, requiring active signaling events.

Although FGFRs are essential for normal development, the
role played by the FGF/FGFR system in adult vasculature has not
been studied due to early lethality of Fgfrl and Fgfr2 knockout
mice (11) and great redundancy of the FGF family (5). To over-
come these obstacles, we employed 3 FGF traps that effectively
inactivate either a wide (FGFR1IIIc-Fc and FGFR3IIIc) or a lim-
ited (FGFR3IIIb-Fc) range of FGF family members. In addition to
providing an alternative to FGFR1DN-dependent inactivation of
FGF signaling, traps allow differentiation of contribution from
different FGFs to endothelial signaling.

Both FGFR1DN and sFGFR1IIIc induced similarly severe effects
including loss of endothelial cell-cell contact and marked increase
in permeability. The effects were considerably less pronounced with
the FGFR3IIIb trap, implying that FGF1, -9, and -20 by themselves
are not critical to ongoing vascular integrity maintenance or that
Volume 118
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they can be compensated for by other FGF family members. This is
in agreement with a mild phenotype observed in the Fgfl-/-/Fgf2-/-
double knockouts (28). FGF9 knockout results in sex reversal and
poor development of lung parenchyma but no vascular defects (29,
30), while FGF20 knockout has not been reported. As sSFGFR3IIIc
induced effects similar to those observed with sFGFR1IIIc, it is
likely that FGF ligands that bind both isoforms, i.e., FGF2, -4,
and -8, are proximal candidates for this vascular integrity main-
tenance effect. Interestingly, Fgf47/~ or Fgf8/- mice are embryonic
lethal, with the Fgf47/~ embryo being defective in inner cell mass
proliferation after implantation and the Fgf8-/- embryo showing
gastrulation defects (31, 32), while Fgf8 compound heterozygous
mice exhibit defective aortic arch artery formation (33).

The effect of suppression of FGF signaling is similar in arterial
and venous vascular beds, implying that ongoing FGF signaling
is required equally throughout the vascular system to maintain
structural integrity.

As N-cadherin is implicated in mediating mural cell adhesion
to endothelial cells (34) and is known to associate with FGFR in
cancer cells, thereby modulating FGF signaling activities (35), we
investigated whether inhibition of FGF signaling has affected

The Journal of Clinical Investigation

http://www.jci.org

research article

Ad-Null

Figure 6

Junction proteins are absent from
cell-cell contacts in cells lacking
FGF signaling. (A) Immunostaining
of quiescent and fully confluent
endothelial monolayer. BAECs
were transduced with Ad-GFP or
Ad-FGFR1DN-GFP using low
MOI (10 and 25, respectively)
to limit the number of trans-
duced cells and minimize virus-
mediated toxicity. Cells were
stained for VE-cadherin (red)
and B-catenin (green) 24 hours
later. The Ad-FGFR1DN-GFP
vector has a bidirectional pro-
moter encoding both GFP and
FGFR1DN, thus marking trans-
duced cells with GFP (shown in
white). Note the loss of VE-cad-
herin and p-catenin staining at
cell-cell contacts of FGFR1DN-
GFP-transduced cells. Arrow
points to the gap between neigh-
boring FGFR1DN-GFP—-trans-
duced cells. Scale bars: 20 um.
(B) Immunostaining of quiescent
endothelial monolayer (BAECs)
transduced with Ad-Null or Ad-
sFGFR1lllc. Cells were stained
for VE-cadherin (red), p120-
catenin (green), and DAPI (blue).
sFGFR was secreted in the medi-
um; the effect is not limited to the
transduced cells. Arrows indicate
gaps between endothelial cells.
Scale bars: 20 um.

Ad-sFGFR1lllc

N-cadherin expression and/or function. We found that neither
total N-cadherin expression nor its plasma membrane levels nor
its perivascular localization nor endothelial cell attachment to
smooth muscle cells were affected by suppression of FGF signal-
ing. Furthermore, since total cellular expression of VE-cadherin
was not affected by FGF inhibition, it is unlikely that downregu-
lation of N-cadherin, which has been shown to result in loss of
VE-cadherin and p120-catenin expression (26), is the reason for
the observed VE-cadherin dysfunction in these settings.
VE-cadherin/p120-catenin/f-catenin interaction is the key event
in formation of adherens junctions, linking to actin cytoskeleton
and regulation of permeability (22). The critical role played by
p120-catenin in the cadherins’ adhesive function is well estab-
lished. For the maintenance of normal epithelial morphology,
E-cadherin/p120-catenin interaction is essential and cadherin-
mediated adhesion is impaired as a direct consequence of p120
insufficiency (36). Moreover, p120-catenin controls cadherin turn-
over, thereby regulating cadherin levels. p120-catenin knockdown
by siRNA results in dose-dependent elimination of multiple cad-
herins including VE-cadherin in endothelial cells and a complete
loss of cell-cell adhesion (37). Regulation of VE-cadherin stability
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and internalization is critical to controlling endothelial permeabil-
ity and barrier function. p120-catenin inhibits VE-cadherin endo-
cytosis via a mechanism that requires direct interactions between
p120-catenin and the VE-cadherin juxtamembrane domain (38).
Src activation is an important event in triggering VE-cadherin
internalization and adherens junction disruption. VEGF has
been known to increase endothelial permeability in an Src-depen-
dent manner by disassembling VE-cadherin-based junctions (39).
However, the identity of Src substrate(s) in adherens junctions is
still under active debate. In fact, many adherens junction proteins
(VE-cadherin, B-catenin, y-catenin/plakoglobin, and p120-catenin)
become tyrosine phosphorylated downstream of VEGFR2 upon
VEGEF stimulation (40), leading to dissociation of endothelial cell-
cell contacts in vitro. Moreover, recent reports demonstrate that
multiple tyrosine residues in the VE-cadherin cytoplasmic tail can
be phosphorylated by Src activation under certain experimental
conditions (41-43); however, the role and biological relevance of
each tyrosine phosphorylation is not firmly established at this point.
One interesting observation is that Src inhibitor Csk binds to the
phosphorylated Y85 site of VE-cadherin, thus potentially inhibiting
Src activity and preventing disruption of the VE-cadherin complex
(44). Furthermore, a study demonstrated that a serine residue (S°%)
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Figure 7

Tight junction and venous
cells are similarly affected by
FGF signaling inhibition. (A)
Immunostaining of quiescent
endothelial monolayer (BAECSs)
transduced with Ad-GFP or Ad-
FGFR1DN-GFP. Cells were stained
for VE-cadherin (red) and ZO-1
(green). The Ad-FGFR1DN-GFP
vector has a bidirectional promoter
encoding both GFP and FGFR1DN
as described above (GFP signal
is shown in white). Arrows indi-
cate reduced VE-cadherin and
Z0-1 staining and gaps between
endothelial cells. Scale bars: 20 um.
(B) Immunostaining of quiescent
venous endothelial monolayer.
HSVECs were transduced with
Ad-GFP or Ad-FGFR1DN-GFP and
stained for VE-cadherin (red) and
p120-catenin (green) 24 hours later.
Note loss of VE-cadherin and p120-
catenin staining at cell-cell contacts
and formation of intercellular gaps
of FGFR1DN-GFP-transduced cells
(white arrows). Scale bars: 20 um.

also becomes phosphorylated as a consequence of VEGF-induced
Src activation, leading to VE-cadherin internalization (45). On the
other hand, p120-catenin, originally identified as an Src substrate,
is differentially phosphorylated by Src and Fyn, thus controlling
RhoA affinity to p120-catenin and potentially RhoA activity (46).
It has been also shown that p190RhoGAP transiently interacts with
p120-catenin, which is required for localized inhibition of Rho and
adherens junction formation (47). Therefore, given this complex and
poorly understood nature of VE-cadherin regulation, it is difficult
to identify the proximal event triggering VE-cadherin/p120-catenin
dissociation in the absence of FGF signaling.

Both VEGF and FGF families are potent angiogenic growth fac-
tors. However, certain functional differences among blood vessels
generated by these factors have long been noted. Whereas VEGF-
induced angiogenesis is often accompanied by vascular leakage,
FGFs induce growth of nonleaky vessels. At the morphological level,
VEGF-induced capillaries have fenestrations, whereas FGF-induced
ones are tightly sealed (4). Our data demonstrated that treatment
of normal endothelial cells with FGF1 leads to a further increase in
VE-cadherin/p120-catenin binding, which may explain the molecu-
lar basis of morphological and functional differences of blood ves-
sels generated by these growth factors. Furthermore, the FGF system
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Figure 8

FGF treatment maintains EC junctions and decreases endothelial
permeability in vitro. (A) ECIS permeability assay using conflu-
ent monolayer. BAECs are matured to full confluency and the
medium was replaced to 1% BSA in EBM-2 (Cambrex). FGF1
(1 ng/ml) or 1% BSA/EBM-2 was added at the indicated time
point (arrow). Six hours later, VEGF-A (25 ng/ml) or 1% BSA/
EBM2 was added at the indicated time point (arrow). At 6 hours,
FGF treatment significantly increased monolayer impedance
compared with the control treatment. (B) FGF treatment does
not induce junction disruption on endothelial cell monolayers.
BAECs are matured to full confluency, starved with 1% BSA in
EBM-2 for 48 hours, and treated with either FGF1 (50 ng/ml) or
VEGF (80 ng/ml) for 30 minutes Note with this condition, VEGF
rapidly disrupts endothelial cell junctions (white arrows) whereas
FGF treatment maintains junctions similar to those in the control
monolayer. Scale bars: 20 um.

may counteract the VEGF-induced VE-cadherin disassembly, thus
playing a critical role in the maintenance of vascular homeostasis.

Thus, our data suggest that FGF-VEGF signaling balance lies
at the center of regulation of permeability. At a functional level,
this is illustrated by opposite effects of these growth factors on the
endothelial monolayer (Figure 8A).

The disassembly of intercellular junctions due to internalization
of VE-cadherin from the cell plasma membrane fully explains the
phenotype in mice with deficient endothelial FGF signaling. The
progressive loss of endothelial cells from the surface of a normal
artery exposed to Ad-FGFR1DN is consistent with reduced sur-
vival of endothelial cells with a homozygous VE-cadherin deletion
and antibody-mediated VE-cadherin disruption (24, 48). Further-
more, loss of VE-cadherin cell surface expression has been shown
to be critical for disassembly of newly formed blood vessels (49).

In summary, we demonstrate that FGF signaling in endothelial
cells is required for the maintenance of endothelial homeostasis
and vascular integrity. In the absence of FGF signaling, VE-cad-
herin undergoes p120-catenin decoupling, leading to the loss of
adherens and tight junctions, increased vascular leakiness, and dis-
assembly of the existing vasculature. These results demonstrate the
vital role of FGF signaling in maintenance of vascular integrity.

Methods

Gene construction. The mouse FGFR1 (flg) A341-733 cDNA clone was a gift
from A. Mansukhani (New York University, New York, New York, USA).
The truncated form of FGFR1 lacking the cytoplasmic part of the recep-
tor (FGFR1DN) encodes the entire extracellular 2 Ig domains with 32
amino acids of the intracellular region (50). To design sFGFR constructs,
extracellular parts of mouse FGFR1DN ¢cDNA (FGFR1IIIc isoform), mouse
FGFR3IIIb, and mouse FGFR3IIIc cDNA (gift from D. Ornitz, Washington
University in St. Louis School of Medicine, St. Louis, Missouri, USA) were
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amplified by PCR with 5’ HindIII and 3' BamHI sites, respectively. After
restriction enzyme digestion, PCR products were fused in frame to the
hinge-CH,-CHj region of human IgG1 (CDM?7B-/CDS3-Ig expression vector)
(20). FGFR1DN and sFGFR cDNAs were subcloned into an adenovirus
shuttle vector, and nonreplicative, recombinant adenovirus vectors were
generated and propagated to high titer.

Antibodies. Antibodies used for immunoprecipitation, Western blotting, and
immunofluorescence include anti-phospho- and total Erk1/2, anti-p-catenin,
and anti-caspase-3 (Cell Signaling Technology), anti-VE-cadherin (Santa
Cruz Biotechnology Inc. and Research Diagnostics Inc.), anti-p120-catenin
(BD Biosciences — BD Transduction Laboratories), anti-ZO-1 (Invitrogen),
N-cadherin (Zymed Laboratories Inc.), and anti-B-tubulin (Sigma-Aldrich).

Cell culture and adenoviral transduction. BAECs and HSVECs were cultured at
37°Cin 5% CO; in EGM-2 MV medium (Cambrex) or MCDB-131 complete
medium (VEC Technologies Inc.), respectively, and precoated with fibro-
nectin (10 ug/ml) unless otherwise specified. Adenoviral vectors were trans-
duced at an MOI of 10-100 PFUs/cell for Ad-FGFR1DN or 50-200 viral
particles/cell for Ad-sFGFRs. The infection medium was replaced 4-6 hours
later with the normal growth medium.

Western blotting and immunoprecipitation. The procedure described previ-
ously was applied with small modifications (51). In brief; cells were washed
twice with ice-cold Ca?" and Mg?* PBS and lysed in RIPA buffer: 50 mM
Tris-HCI, pH 7.4, 150 mM NacCl, 1% NP40, 0.5% sodium deoxycholate,
0.1% SDS, 2 mM CaCl,, 1x complete protease inhibitor mixture (Roche),
and 1 mM sodium orthovanadate. For Erk1/2 phosphorylation studies, to
obviate possible quenching of signal that occurs when probing the same
protein using different antibodies on the same membrane, the identical
samples were run in duplicate and membranes were blotted with either
phospho-Erk1/2 or total-Erk antibody.

For immunoprecipitation, samples were precleared on protein A/G beads
(Calbiochem) for 1 hour at 4°C. VE-cadherin was immunoprecipitated
from 500 ug of extract using 2 ug of anti-VE-cadherin antibody followed
Number 10 3363
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FGF dependence on VE-cadherin/p120-catenin interaction and VE-cadherin plasma membrane retention. (A) Decreased cell surface VE-cad-
herin in Ad-FGFR1DN-transduced BAECs. Quiescent BAECs were transduced with Ad-GFP or Ad-FGFR1DN and the monolayer was treated
with biotin to label cell surface proteins. Biotinylated proteins were subjected to Western blot analysis and probed for VE-cadherin or N-cadherin.
Total cell lysates from the same samples were also analyzed by Western blotting to evaluate total protein expression. (B) Western blot analy-
sis of expression of junction proteins. Transduced BAECs were harvested at the indicated time points, and total cell lysates were analyzed by
Western blotting. (C) Effect of FGF treatment on VE-cadherin interaction with catenins. BAEC monolayers were maintained in 0.5% FBS basal
medium for 24 hours and then stimulated with FGF1 (50 ng/ml) for the indicated times. Total cell lysates were immunoprecipitated with anti—
VE-cadherin antibody and blotted with p120-catenin, 3-catenin, or VE-cadherin antibody. (D) FGFR signaling requirement for VE-cadherin inter-
action with catenins. Subconfluent BAEC monolayer (~70% confluency) was transduced with Ad-GFP or Ad-FGFR1DN, and cells were grown
to form mature junctions. At indicated time points, total cell lysates were prepared and immunoprecipitated with VE-cadherin antibody followed
by immunoblotting with p120-catenin, -catenin, or VE-cadherin antibody. As the monolayer forms mature junctions, VE-cadherin/p120-catenin
interaction increases (Ad-GFP), whereas this interaction was decreased in Ad-FGFR1DN—treated cells. Nontransduced cells were treated with
100 uM PV for 10 minutes prior to cell lysis, showing disrupted VE-cadherin/p120 interaction.

by 20 ul of protein A/G beads. Beads were washed 5 times using cold PBS,
boiled in SDS-PAGE loading buffer, and resolved by SDS-PAGE. Where
indicated, cells were treated prior to lysis with 100 uM PV for 5 minutes at
37°C to inhibit tyrosine phosphatases.

Immunofluorescence. Immunocytochemistry was performed with a stan-
dard procedure using antibodies described above. In brief, cells were fixed
with 2% paraformaldehyde and permeabilized with 0.1% Triton X-100.
Incubation with the primary antibody was followed by incubation with
Alexa Fluor-conjugated secondary antibodies (Invitrogen). Samples were
examined under a Zeiss LSM 510 confocal microscope.

Biotinylation of cell surface protein. Twenty-four hours after adenovirus
transduction, cells were washed twice with ice-cold PBS and incubated
with 0.5 mg/ml sulfo-N-hydroxysuccinimide ester long-chain biotin
(Pierce Biotechnology) in PBS, pH 7.4, for 15 minutes at 4°C. The bioti-
nylation reaction was quenched with ice-cold 1% BSA-PBS. Cell lysate was
incubated with immobilized NeutrAvidin (Pierce Biotechnology) at 4°C
to separate biotinylated proteins.

Ad-sFGFR infection and measurement of sSFGFR in mouse blood and tissue. All
animal experiments were performed under a protocol approved by the
Institutional Animal Care and Use Committee of Dartmouth College.

Wild-type male C57BL/6 mice or male NU/NU mice (Charles River labo-
ratories) were injected with 5 x 100 viral particles from the tail vein in
conjunction with 10 uM antennapedia peptide (52) (gift from W.C. Sessa,
Yale University School of Medicine, New Haven, Connecticut, USA). Plas-
ma and tissue levels of SFGFRs were measured using a human IgG ELISA
quantitation kit (Bethyl Laboratories Inc.).

Permeability assays. 0.5% Evans blue dye (200 ul) was injected into the ret-
roorbital space and was allowed to circulate for 30 minutes. The mice were
then sacrificed, blood was drained by perfusion with saline, and the gas-
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trocnemius muscle, lungs, and heart were excised and dried at 55°C. Evans
blue dye in tissues was extracted with formamide for 24 hours at 55°C and
its fluorescence at 607 nm was measured by a fluorescent reader (BioTek).

Transwell tracer experiments with fluorescent dextran were performed
using the HTS Fluoroblok 24-well Transwell system (1.0 wm pore; BD).
BAECs (2 x 10*) were plated on a Transwell insert membrane coated with
10 ug/ml fibronectin. The monolayer was matured until full confluence
and transduced with adenoviruses. Thereafter, 2 MDa FITC-dextran was
added in the upper chamber and the fluorescence of the lower chamber
was measured at fixed time points.

Transendothelial electrical resistance, an index of endothelial cell bar-
rier function, was measured in real time using an electric cell-substrate
impedance sensing (ECIS) system (Applied BioPhysics) (53). BAECs (5 x 10*
per well) were plated on sterile 8-chambered gold-plated electrode arrays
(8W10E) precoated with fibronectin (10 ug/ml) and grown to full conflu-
ence. Immediately after adenoviral transduction, the electrode arrays were
mounted on the ECIS system within an incubator (37°C, 5% CO,) and con-
nected to its recorder device. Monolayer resistance was recorded for 50 hours
in 5-minute intervals. After 6-hour exposure to adenovirus, viral-containing
medium was replaced with normal growth medium (EGM-2 MV).

Adenoviral transduction and enface VE-cadberin staining of artery. Adenovirus
(10° PFUs) premixed with the 10 uM antennapedia peptide (52) was trans-
duced in the rat femoral artery as described previously (54). The artery was
excised and cut open longitudinally to expose the endothelium. The arterial
segment was placed with the endothelial side up and fixed with tungsten pins
(Fine Science Tools). After fixation with 2% paraformaldehyde in PBS, stan-
dard immunostaining was performed using anti-VE-cadherin (Santa Cruz
Biotechnology Inc.) and Alexa Fluor 568-conjugated anti-goat antibody
(Invitrogen). Using a Zeiss LSM 510 confocal microscope, 20-30 Z-Stack
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1-um oprtical sections were acquired and projected to a single image plane.
To examine the effect of SFGFR, wild-type mice were infected (5 x 101% viral
particles with 10 uM antennapedia) and the carotid artery and jugular vein
were stained for VE-cadherin and visualized as described above.

Mouse trachea vasculature studies. Sites of leakage in mouse tracheal blood
vessels were visualized using 100 nm extravasated green fluorescent polymer
microspheres (Duke Scientific Corp.) as described previously (55). In brief,
10 days after injection of control or sFGFR1IIIc adenovirus, anesthetized
mice received 20 ul (4 x 10! particles) i.v. injection of fluorescent micro-
spheres. Two minutes later, intravascular microspheres were removed from
the bloodstream by perfusion of 1% paraformaldehyde in PBS for 2 minutes
at a pressure of 120 mmHg. Tracheas were removed from mice and immer-
sion fixed for an additional 2 hours, and then the vasculature was incubated
with anti-CD31 antibody (Chemicon) and subsequently with Cy3-conju-
gated goat anti-hamster IgG (Jackson ImmunoResearch). Trachea whole
mounts were examined using a Zeiss LSM 510 confocal microscope.

Electron microscopy: cells. BAECs were grown to confluence on fibronectin-
coated 12-mm glass coverslips at which point they were transduced with
either Ad-GFP or Ad-FGFR1DN-GFP as described. After 24 hours, the cells
were fixed (30 minutes, room temperature [RT]) in 2% glutaraldehyde in
0.1 M sodium cacodylate, rinsed (2 x 10 minutes, RT) in 0.1 M sodium cac-
odylate, and postfixed (1 hour, RT, in dark) in 1% OsO4in 0.1 M sodium
cacodylate. The cells were dehydrated in graded ethanols, critical point dried
using a Samdri-795 Critical Point Dryer (Tousimis), coated with a 3-nm
amorphous osmium layer in an OPC-60 Osmium Plasma Coater (Filgen),
mounted on stubs, and examined at high voltage in an XL-30 ESEM-FEG
microscope (FEI Co.) using secondary electron detection.

Electron microscopy: artery specimens. The right femoral artery of male rats
was used for epigenetic expression via local adenoviral delivery, as described
above. The femoral artery segments that were treated with either Ad-Null or
Ad-FGFR1DN as well as the contralateral control segments were removed,
rinsed in PBS, and cut open longitudinally. The artery fragments were
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opened flat with the endothelium facing upwards, pinned down using fine
tungsten pins, and fixed (1 hour, RT) in 2% glutaraldehyde. At all times
during these procedures, the tissue was submerged in liquid. The arteries
were then processed for electron microscopy as described for the cells.
Statistics. Statistical analysis was carried out using a 2-tailed Student’s ¢

test. Results were considered significant at P < 0.0S.
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