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DNA vaccines promote an immune response by providing antigen-encoding DNA to the recipient, but the
efficacy of such vaccines needs improving. Many approaches have considerable potential but currently induce
relatively weak immune responses despite multiple high doses of DNA vaccine. Here, we asked whether tar-
geting vaccine antigens to DCs would increase the immunity and protection that result from DNA vaccines.
To determine this, we generated a DNA vaccine encoding a fusion protein comprised of the vaccine antigen
and a single-chain Fv antibody (scFv) specific for the DC-restricted antigen-uptake receptor DEC205. Fol-
lowing vaccination of mice, the vaccine antigen was expressed selectively by DCs, which were required for
the increased efficacy of MHC class I and MHC class II antigen presentation relative to a control scFv DNA
vaccine. In addition, a DNA vaccine encoding an HIV gag p41-scFv DEC205 fusion protein induced 10-fold
higher antibody levels and increased numbers of IFN-y—producing CD4* and CD8" T cells. After a single i.m.
injection of the DNA vaccine encoding an HIV gag p41-scFv DEC205 fusion protein, mice were protected
from an airway challenge with a recombinant vaccinia virus expressing the HIV gag p41, even with 1% of the
dose of nontargeted DNA vaccine. The efficacy of DNA vaccines therefore may be enhanced by inclusion of

sequences such as single-chain antibodies to target the antigen to DCs.

Introduction

DNA vaccination is at the forefront of efforts aimed at develop-
ing vaccines against challenging infectious diseases, including HIV
AIDS as well as emerging strains of influenza and SARS (reviewed
in refs. 1-4). Innovations in vaccine design have improved the
immunogenicity of DNA vaccines, leading to licensure of 2 candi-
date DNA vaccines for nonhuman applications (reviewed in refs.
5,6). However, in humans and experimental animals, repeated and
high doses of DNA must be injected.

A fundamental initial step in vaccination is that the vaccine pro-
teins need to be taken up, processed, and presented by DCs, which
are antigen-presenting cells that initiate and control many aspects
of the immune response. Following intradermal or i.m. injection
of a plasmid DNA vaccine in mice, the encoded gene is expressed in
transfected keratinocytes and myocytes at the site of inoculation
(7) as well as a small number of DCs (8-12). Keratinocytes and
myocytes lack MHC class II and costimulatory molecules, which
renders them poorly effective at presenting antigen and priming
naive immune cells (reviewed in ref. 13), and they do not have ready
access to T cells in lymphoid tissues, as is the case for DCs (14, 15).
Therefore, it is thought that immune priming begins through the
function of a few transduced DCs and that antigen secreted from
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other long-lived transfected cells then boosts immunity (16-23).
We hypothesized that the weak immunogenicity of DNA vaccines
could be overcome by directly targeting the encoded vaccine pro-
tein to DCs, particularly during the later stages of immunization.

Recent studies have demonstrated that antigens can be targeted
selectively to DCs in vivo when antigen is incorporated into an
antibody against the DC endocytic receptor, DEC205/CD205 (24).
This targeting is accompanied by efficient antigen processing and
presentation on MHC class I and II products as well as strong and
protective T cell immunity (25, 26). Demangel et al. reported on
the capacity of a single-chain antibody to murine anti-DEC205
(scDEC) to target DNA vaccine antigens in mice (27). They
observed approximately a 2-fold increase in B and T cell responses
to a mycobacterial antigen but did not establish whether targeted
delivery of vaccine to DCs was taking place or whether the dose of
DNA vaccine could be reduced and maintain efficacy. As a result,
itis not clear whether the targeted delivery to DCs overcomes some
of the key obstacles to current DNA vaccines.

We have evaluated the incorporation of a scDEC antibody into
DNA vaccines. We will show that this approach greatly enhances
antigen presentation by DCs in lymphoid tissues relative to non-
targeted DNA vaccine in mice, and concomitantly, that single
and much lower doses of DNA are effective in inducing immu-
nity and protection.

Results

Construction and expression of scDEC DNA vaccines. To better target
DNA vaccines to DCs, a eukaryotic expression plasmid was con-
structed to encode scDEC fused to a vaccine protein. DEC20S5
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Figure 1

Design and characterization of antigen fused to single-chain antibody to DEC205. (A) Map of expression cassettes encoding vaccine protein
(Vac protein) fused to single-chain scDEC and scControl. Heavy-chain (H) and light-chain (L) cDNAs of each mAb were connected by an inter-
chain linker (ICL) and cloned in frame upstream of the cDNA for OVA, HIV gag fragments (p41, p24), or GFP in a eukaryotic expression plasmid
containing the human CMV immediate early promoter and a bovine growth hormone polyadenylation signal (pAd). LP, leader peptide; Tag, myc
and 6x histidine tag. (B) Binding to CHO cells expressing murine DEC205 (CHOmMDEC?205) or CHOneo control cells of recombinant single-chain
mADbs-OVA fusion proteins detected by an OVA-specific, FITC-labeled secondary antibody. (C) Right part shows an overlay of the binding of the
parental bivalent antibody (DEC-OVA) compared with scDEC-OVA. (D-F) Supernatants and lysates of 293T cells transfected with expression
plasmids for scDEC or scControl conjugated to either OVA, HIV gag p41, HIV gag p24, or empty expression plasmid (pcDNA3.1; Invitrogen)

were Western blotted using mAbs against OVA (D) or anti-HIV gag p24 (E and F).

is an antigen uptake receptor on DCs, and the open reading
frames for the variable regions of the light and heavy chains of
the parental anti-DEC20S5 antibody were fused to the protein
sequence. A control plasmid from a nonreactive antibody was
also constructed with different variable light- and heavy-chain
V regions (Figure 1A). cDNAs for OVA, HIV gag p41 (anti-p41)
and p24 (anti-p24), and GFP were cloned in frame with the
scDEC or the control antibody. To verify that the scDEC protein
retained the antigen-binding activity of the parental antibody,
we measured specific binding to Chinese hamster ovary (CHO)
cells stably expressing murine DEC205 receptor. Only super-
natants from scDEC-OVA-transfected 293T cells (Figure 1, B
and C) showed binding to DEC205-expressing CHO cells. When
we compared the DEC205-binding efficacy of the scDEC-OVA
relative to the parental bivalent antibody, both had strong and
specific binding ability to DEC-transfected CHO cells but not
to control CHO cells (Figure 1C). We also compared the expres-
sion of scDEC and scControl DNA using the GFP reporter and
found comparable expression in transiently transfected 293T
cells (Supplemental Figure 1, A and B; supplemental material
available online with this article; doi:10.1172/JCI34224DS1),
but only the scDEC-EGFP vaccine bound selectively to CHO
cells expressing mouse DEC205 (Supplemental Figure 1C).
Western blot analysis of supernatants and lysates of 293T cells
transfected with expression plasmids for different single-chain
antibodies conjugated to the different vaccine proteins was then
carried out and revealed comparable expression and secretion
of scDEC and scControl fusion proteins of the expected size
1428
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(Figure 1, D-F). Therefore scDEC fusion antibodies retain the
binding capacity of the parental anti-DEC205 antibody and are
secreted by transiently transfected cells.

Improved in vivo targeting of antigen to DCs using scDEC DNA vaccine.
To determine whether scDEC DNA vaccines would improve anti-
gen delivery to DCs in vivo, we used scDEC-OVA because sensi-
tive and valuable reagents are available to monitor the successful
processing and presentation of OVA on MHC class I and class II
in vivo. Graded doses of scDEC- and scControl-OVA DNA were
injected i.m. in combination with electroporation. It has previ-
ously been shown that electroporation enhances the efficacy of
DNA vaccination (28, 29). From 4 to 5 days after DNA injection,
OVA-specific, TCR transgenic T cells were labeled with CFSE and
transferred into the vaccinated mice. If OVA antigen were being
presented in vivo, these T cells would proliferate over the ensuing
3 days, yielding half the amount of the CFSE label per cell with
each cell division. In the case of scDEC-OVA, we found that the
majority of the TCR transgenic T cells went into cell cycle, i.e., both
CD8* MHC-I-restricted OT-I cells and CD4* MHC-II-restricted
OT-II cells. The OT-I cells responded to the DNA vaccine at all
doses, 3-100 ug, whereas the OT-II cells only showed proliferation
at the higher doses of DNA. This reflects the fact that OT-I cells
are unusually efficient in being able to recognize low pM doses of
specific OVA peptide. In contrast, a 100-ug DNA dose of scControl
OVA DNA was required to induce OT-I responses that were compa-
rable to those obtained with 3 ug of scDEC-OVA, and no prolifera-
tion was observed for CD4* OT-II T cells at any dose of scControl
OVA DNA (Figure 2A).
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Figure 2

Antigen presentation to OVA-specific T cells following in vivo targeting of DCs with OVA DNA fused to a single-chain antibody to DEC205. (A)
Mice were immunized i.m. with graded doses of DNA, and 4 days later, 2 x 106 CFSE-labeled CD8* OT-| or 3 x 106 CD4+ OT-Il TCR transgenic T
cells were injected i.v. At day 7, draining lymph node cells were harvested and cell division was evaluated by flow cytometry in CD4+ OT-Il cells
with Vae T cell receptor (20.1) antibody and in CD8+* OT-I cells with Vs 152" T cell receptor (MR9-4) antibody. (A) Control mice received similar
amounts of the scControl-OVA DNA vaccine. (B) As in A, but the experiments were performed with DEC--, TAP=-, or WT B6 mice using 30 ug
of each DNA vaccine. Representative results from 3 experiments are shown. (C) Longevity of in situ antigen presentation after vaccination with
30 ug DNA, then evaluation by antigen presentation to 2 x 10 OT-I T cells injected at the indicated time points. (D) scDEC-OVA targets antigens
to DCs after DNA vaccination. Mice were immunized with 30 ug of the indicated scFv DNA vaccines or backbone vector. 4 days later, CD11c*
and CD11c- cells were isolated and cocultured with CFSE-labeled OT-I T cells at the indicated APC to T cell ratios to determine CFSE dilution
in vitro at day 7.5 of the experiment. (E) CD11c-DTR mice were vaccinated with 30 ug scDEC-OVA or backbone vector and were depleted of
CD11c* DCs 4 days later by injection of 4 ng/g of DT (DT+); then CFSE-labeled OT-1 T cells were injected to monitor antigen presentation as in
A. C-E are representative of 2 experiments.

To prove that MHC class I presentation by scDEC-OVA was
DEC205 dependent, we performed similar experiments with
DEC205-deficient (DEC”-) mice and observed a lack of T cell prolif-
eration (DEC~/; Figure 2B). To prove that MHC class I presentation
by the scDEC-OVA was transporter for antigenic peptides-depen-
dent (TAP-dependent), we verified that TAP-deficient (TAP/-) mice
could notinduce OT-I T cell proliferation (Figure 2B).

To assess the duration of antigen presentation after scDEC-tar-
geted DNA vaccination, B6 mice were immunized with 30 ug DNA,
and CFSE-labeled OT-I TCR transgenic T cells were transferred 7,
14,21, and 28 days later. Antigen presentation was measured by
CFSE dilution by the transferred T cells in the draining inguinal
as well as mesenteric and iliac lymph nodes and spleen. As shown
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in Figure 2C, presentation to OT-I T cells persisted for 4 weeks in
the draining lymph nodes but decreased from week 1 to week 4.
Presentation in the mesenteric lymph nodes and spleen persisted
for 2 weeks and declined rapidly at weeks 3 and 4. Injection of
scControl-OVA resulted in only minimal presentation in the first
week (Figure 2C). Together, the data in Figure 2, A-C, indicate that
scDEC DNA vaccination improves the efficacy and duration of
antigen presentation in vivo by a DEC-dependent mechanism.

To establish that scDEC-OVA DNA vaccination targets DCs
in vivo, we first isolated CD11c* DC-enriched and CD11c” DC-
depleted cells from mice that were vaccinated with scDEC-OVA
or scControl-OVA DNA. Then we cocultured the cells with
CFSE-labeled OT-I TCR transgenic T cells as reporters for suc-
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Targeted vaccination induces enhanced antibody responses. Antigen-specific antibody titers were determined for each mouse in a group (n = 5)
from serum harvested at 3 or 5 weeks after vaccination with the indicated doses of DNA. (A) Titers of anti-OVA—specific isotype in B6 mice after
1 immunization with graded doses of DNA vaccine i.m. in combination with electroporation. (B) Titers of anti-HIV gag p41 isotypes in BALB/c
mice after 1 immunization with low doses of DNA vaccine i.m. in combination with electroporation. DNA vaccine type is displayed at the top.
Antibody titers are expressed as group mean + SD. Results are representative of 3 experiments.

cessful antigen presentation. We could only detect presentation
of the OVA peptide and consequent proliferation of the OT-I
TCR transgenic T cells from cocultures with CD11c* DCs and
not with CD11c -presenting cells (Figure 2D). In addition, no
proliferation was observed when we cocultured OT-I TCR trans-
genic T cells with CD11c* DCs from DEC205-deficient mice,
indicating that DEC205 was necessary for the uptake of the tar-
geted vaccine by CD11¢* DCs (Figure 2D). Finally, CD11c¢* DCs
isolated from mice treated with the control DNA vaccine only
induced background levels of proliferation (Figure 2D). We con-
clude that the targeted DNA vaccine delivered antigen to CD11c*
DCs in situ in a DEC205-dependent manner.

To investigate the role of DCs in targeted DNA vaccination in
vivo, we used a transgenic mouse (CD11c-DTR/GFP) that allows for
conditional ablation of CD11c* DCs in vivo after administration
of diphtheria toxin (DT) (30). These mice carry a transgene encod-
ing a fusion protein of the DT receptor and GFP under control of
the mouse CD11c promoter, allowing for depletion of DCs in vivo
upon injection of DT. The CD11¢c-DTR/GFP mice as well as trans-
gene-negative littermates and WT C57BL/6 mice were vaccinated
with 30 ug DNA i.m. and injected with DT on day 4 (4 ng/g body
weight of DT i.p.). 24 hours later, the mice each received 3 x 10°
CFSE-labeled TCR transgenic OT-1 T cells. Three days later, drain-
ing lymph node lymphocytes were evaluated for proliferation of
the T cells. As shown in Figure 2E, temporal ablation of CD11c*
DCs resulted in marked reduction in CFSE dilution. In contrast,
WT littermates lacking the CD11c-DTR/GFP transgene and treat-
ed similarly with DT behaved like WT B6 mice, with virtually all
the OT-I T cells going into cell cycle in mice following targeted
DNA vaccination. Thus, the ablation of DCs hampered the ability
of the targeted vaccine to induce OT-I T cell responses in vivo.

Targeted DNA vaccination improves antibody responses. To evaluate
whether scDEC-OVA vaccination would improve B cell respons-
es, we injected B6 mice with graded doses of the vaccine or
scControl OVA and measured anti-OVA antibodies. Another
control group received a dose of the backbone (empty) vector
pcDNA3.1 equivalent to the highest dose of DNA vaccine (data
not shown). At all doses of DNA, mice primed with scDEC-OVA
DNA produced OVA-specific IgG1 antibody titers at least 10
1430
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times higher than those of groups primed with scControl OVA
(Figure 3A). IgG2b and IgG2c titers were lower than IgG1, and
the differences between scDEC-OVA and scControl-OVA were less
than observed for IgG1 responses (Figure 3A).

We next tested to determine whether a single dose of scDEC-HIV
gag p41 could induce better gag-specific antibody responses in
BALB/c mice (Figure 3B). Six 8-week-old mice were injected once
with 3 and 9 ug doses of DNA i.m. in combination with electro-
poration. Five weeks later, serum was tested for HIV gag p41-spe-
cific antibodies. Again, at least 10-fold better antibody titers were
detected after a single injection of just 3 ug of the targeted vaccine,
and the increase in titers was greatest for the IgG1 subclass of anti-
bodies. Antibody responses due to the backbone vector (pcDNA3.1)
alone were insignificant (data not shown). Thus, DEC20S targeting
enhances the humoral responses to a DNA vaccine.

scDEC targeting improves HIV gag—specific T cell responses. To exam-
ine T cell immunity to HIV gag, we immunized mice with graded
doses of scDEC gag p41 and control DNA vaccine and measured
T cell responses with a library of 15-mer “mimetope” peptide stag-
gered every 4 amino acids along the HIV gag p41 sequence (26).
Multiparametric intracellular cytokine assays showed that CxB6
F1 mice generated T cell responses after vaccination with low
doses of the targeted vaccine (0.3 and 3 ug DNA) whereas con-
trols did not (Figure 4A). In contrast, at the higher doses that are
typically used during DNA vaccine experiments in mice (30 ug),
both scControl and scDEC vaccines performed similarly in induc-
ing IFN-y-producing, gag-specific T cells. Similar findings were
made with ELISPOT assays, including the fact that no IL-4- or
IL-10-producing cells were detectable (data not shown).

T cells producing multiple cytokines appear to be especially effec-
tive in protective immunity (31-33). We therefore examined the
quality of the T cell responses induced by DNA vaccination in terms
of the capacity of gag-specific T cells to secrete multiple cytokines
such as IFN-y, TNF-a, and IL-2. Fourteen days after immunization,
scDEC-targeted vaccination preferentially induced gag-specific
polyfunctional CD4" T cells, including triple cytokine producers,
at all doses of the vaccine tested (Figure 4B). In contrast, triple
producing cells were not detected after 1 dose of the scControl
DNA vaccine. More double cytokine-producing CD4" T cells
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Figure 4

scDEC DNA vaccine improves HIV gag—specific T cell responses. Graded doses of the scDECp41 DNA vaccine alongside scControl DNA were

administered i.m. in combination with electroporation to CxB6 F1 mice. 1

4 days later, the percentage of IFN-y*/TNF-a*/IL-2+ T cells in gated CD3*

splenic T cells was assessed using a gag p41 peptide pool mix. (A) IFN-y—secreting CD4+ and CD8* T cells among CD3* T cells in responses to

unrelated peptide or HIV gag p41 peptide pool mix. (B) Cytokine profile

of the primed CD4+ T cells 14 days after DNA vaccination. Cells secret-

ing 3 (arrows), 2, or 1 cytokine are indicated on the x axes. (C) Cytokine profile of the 3-ug DNA vaccine dose 28 days after vaccination as in B.
Data are representative of 2 experiments with 2 mice pooled in each experiment.

were also induced at all doses of the scDEC vaccine (Figure 4B).
The CD4" T cell responses to scDEC vaccine were broad since reac-
tivity was noted to peptides in p24 pools 1 and 4 and the p17 pool
(data not shown), as previously observed with anti-DEC antibody
immunization (26). Responses to the backbone DNA vector were
insignificant (data not shown). Likewise, at 28 days after vaccina-
tion (Figure 4C), scDEC-gag p41 induced cytokine-producing
CD4* and CD8" T cells, including T cells with a predominant pro-
duction of IL-2 as well as some double cytokine-producing T cells.
These T cells expressed high levels of CD44, as is characteristic
for memory T cells (not shown). These data indicate that scDEC
targeting of low doses of DNA improves the induction of broad T
cell-mediated immunity.
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Targeted DNA vaccination elicits protection at a mucosal surface. To
determine whether targeted vaccination produces long-lasting
protective immunity at a mucosal surface, we challenged BALB/c
and CxB6 F1 mice intranasally with recombinant vaccinia-gag
virus 3 months after a single dose of targeted and control vaccine,
using a wide range of DNA doses, i.e., 0.3, 3, and 30 ug per mouse.
Control mice vaccinated with the empty vector were not protected
relative to PBS-injected mice, and they lost weight and developed
high lung virus titers over 7 days (107-10% PFU/ml per lung; data
not shown). In contrast, all mice receiving graded doses of the
scDEC-targeted vaccine were protected, even with a single dose of
0.3 ug DNA, whereas only mice vaccinated with the highest 30-ug
dose of the scControl vaccine showed protection (Figure SA).
Number 4 1431
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A single, low-dose injection of DC-targeted DNA vaccine provides protective immunity to airway challenge with vaccinia gag virus. CxB6 F1 mice
received graded doses of scDEC and scControl HIV gag DNA vaccine, and after 3 months, they were challenged i.n. with vaccinia gag virus. (A)
lllustrative data of average weight (left panels) and mean + SD lung virus titers (right panels) after challenge. (B) Summary of data from a total
of 4 different experiments (5 mice per group), 2 each in BALB/c and BALB/c x C57BI/6 F1 mice (*P < 0.05).

Data from a total of 4 different experiments, 2 each in BALB/c
and BALB/c x C57Bl/6 F1 mice, are summarized in Figure 5B. Itis
evident that scDEC vaccine (Figure 5B) provides better and long-
lived protective immunity at lower (0.3 and 3 ug) but not higher
(30 ug) doses of DNA than the scControl (Figure 5B). Thus, the
targeting of protein within a DNA vaccine to DCs in situ enhances
protective efficacy by almost 100-fold.

Discussion

Our results directly show that DNA vaccines can be configured
to improve antigen presentation by DCs in vivo and that this
in turn improves immunity and lowers the dose of DNA vac-
cine that is required. Multiple strategies have been developed
to augment immune stimulation following DNA vaccination
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(reviewed in refs. 34-36). One approach is to include plasmids
that encode different types of immunostimulatory molecules,
such as cytokines (IL-2, IL-12, GM-CSF, flt-3L), chemokines
(MIP-10, SLC), and membrane costimulators (CD80, CD86)
(37-43). Another approach is for the DNA vaccine to encode
a fusion protein that allows the vaccine to target to specific
immune molecules that could enhance immunization, e.g.,
MHC class II, CTLA-4, Fc receptors, and chemokine receptors
(refs. 44-50; reviewed in ref. 6). A third, newer approach has been
for the DNA vaccine to target pattern recognition and “alarmin”
receptors to increase triggering of the innate immune system,
e.g., DEC205/CD205, TLRS, and HSP70 (27, 51, 52). This exten-
sive literature has repeatedly shown that the immune response
to DNA vaccines can be enhanced, but the findings have yet to
Volume 118
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prove that enhanced presentation of vaccine antigens by DCs is
being achieved or that the dose of DNA required for vaccination
can be greatly reduced.

To overcome these obstacles to improved DNA vaccines, we
made plasmids in which the vaccine protein was fused to a single-
chain antibody that could target the DEC20S receptor on DCs
following secretion from transfected muscle. The rationale origi-
nated in prior research showing that hybrid antibodies carrying
vaccine protein to target the DEC20S antigen uptake receptor
on DCs could greatly increase antigen presentation and immune
responses (24-26, 53-55). Here, we found that “hybrid” DNA vac-
cines, composed of scDEC205 or a single-chain Fv antibody (scFv)
control Ig fused to another protein, were both secreted well from
transfected cells. However, the introduction of an scDEC20S5 anti-
body sequence into the DNA vaccine led to improved delivery of
vaccine protein to CD11c* DCs in situ relative to scFv control Ig
and resulted in a large increase in the efficacy with which the vac-
cine induced T cell immunity to and protection against a chal-
lenge infection. Demangel et al. have previously reported on the
use of scDEC205 to improve DNA vaccination (27). However, their
study did not demonstrate targeting to DCs in lymphoid organs
in a receptor-dependent manner, and they did not report a marked
reduction in the dose of vaccine DNA that could elicit immunity,
including protective immunity. Our data indicate that the scDEC
vaccine greatly enhances, by about 100-fold, the delivery of vaccine
protein to DCs in vivo and allows for a corresponding reduction in
the dose of DNA required to induce protective immunity.

Transfected muscle cells at sites of DNA injection may contrib-
ute to vaccine immunogenicity (21, 56). However, we feel that our
results are best explained by the secretion of scFv anti-DEC vaccine
from transfected muscle or other cells and then presentation by
DCs targeted by the anti-DEC. This event is termed cross presen-
tation because muscle cells synthesize the vaccine antigen, which
then crosses into DCs for processing and presentation to T cells.
Cross priming acts as a major mechanism for the induction of T
cell responses following DNA vaccination (16, 17, 19, 20, 22, 23).

Hybrid aDEC antibody protein vaccines (24-26, 53-55) rep-
resent one strategy for preparing DC-targeted vaccines, but the
extension of this concept to DNA vaccines is limited by the need
to coexpress the heavy and light chains in vivo to form a func-
tional antibody within specialized antibody-producing B cells.
The use of scFv aDEC-antigen fusion plasmids allows the anti-
DEC antibody to be secreted in tandem with the vaccine fusion
protein from transfected non-B cells, and it allows for prolonged
and greatly improved presentation of vaccine by DCs in lymphoid
organs (Figures 1 and 2). In addition, we used an electroporation
instrument to facilitate the delivery of DNA following i.m. injec-
tion, as has been reported by many others (e.g., refs. 29, 57-60). A
newer finding is that electroporation may also make more DNA
available for detection by intracellular DNA sensors, thereby acti-
vating the production of cytokines as an innate reaction (61).
Thus, DNA electroporation in combination with DC targeting
could provide a much more efficient platform for developing
clinically effective DNA vaccines.

DCs are known to express several receptors with the potential to
enhance antigen uptake (62). To date, the DEC205/CD205 recep-
tor has been studied in the greatest detail in vivo and shown to
deliver many different proteins for presentation on both MHC
classIand II products (24-26, 53, 55). DEC205 is expressed at high
levels on a large fraction of DCs in the T cell areas of lymphoid
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organs, including human lymphoid tissues (15). However, other
uptake receptors such as DCIR2 are preferentially expressed on
different DC subsets with distinct antigen-presenting properties,
and these too need to be assessed in single-chain antibody-based
targeting vaccines (54). DEC20S5 targeting may be advantageous
because it targets a subset of DCs in mice that is specialized to pro-
cess antigens on MHC class I but also mediates improved immuni-
zation of MHC class II-restricted CD4" helper T cells (25, 26, 53).

Unlike protein-based DEC20S vaccines, which require the coin-
jection of additional DC maturation stimuli to induce T cell
responses (24-26, 53, 55), scDEC targeting in a DNA format induc-
es immunity with no additional external adjuvant (27), possibly
because the DNA itself provides some signals for DC maturation
(61). In this study, we constructed several single-chain antibody-
antigen fusion proteins that maintained the DEC205-binding
specificity of the parental antibody. Injection of the scDEC DNA
vaccine i.m. in combination with electroporation allowed antigen
to be targeted to DCs in a DEC205-dependent fashion, resulting
in a marked increase in presentation of antigen on MHC class I
and II products. It needs to be determined whether the efficacy of
scDEC-targeted vaccines can be further improved by the inclusion
of additional stimuli that increase DC numbers and maturation
state and/or improve the function of the responding T cells.

In summary, in vivo targeting of DNA-encoded vaccine pro-
teins to DCs with scFv to DEC205 has the following features:
(a) a precisely defined ratio of antigen to targeting antibody; (b)
absence of binding via Fc receptors; (c) relative ease of large-scale
production of DNA vaccine; and (d) increased immunogenicity
(antibody as well as CD4* and CD8" T cells) because of the com-
bination of DC targeting and stimulatory sequences within the
vaccine. We propose that DC targeting via DEC20S5 or perhaps
other DC receptors in the context of DNA vaccination will sig-
nificantly enhance efficacy and may be particularly valuable for
protection against diseases such as AIDS, in which broad-based
immune responses will be helpful.

Methods

Vector construction. To generate scDEC-OVA plasmids, the cDNA of the
heavy- and light-chain variable regions of the monoclonal antibody
NLDC145 to DEC20S were amplified by PCR from the plasmids DEC-
heavy HEL and DEC-k-HEL (24). Using overlap extension PCR with prim-
ers encoding an interchain linker (GGGGS)s TCCTCCGGAGGCGGTG-
GCTCAGGAGGTGGTGGGAGCGGTGGCGGCGGATCC), the heavy-and
light-chain cDNAs were fused and cloned into the pcDNA3.1 expression
plasmid (Invitrogen). A fragment containing the myc and histidine tags of
plasmid VP22/myc-his (Invitrogen) was subsequently cloned downstream
of the light chain. The OVA cDNA was amplified by PCR from plasmid
pcDNA-OVA-L (63) and cloned in frame between the light chain and the
tag, resulting in scDEC-OVA (Figure 1A). To generate scControl-OVA,
heavy- and light-chain variable region cDNAs of the III/10 control anti-
body (which is the same isotype as the NLDC145 antibody but does not
bind to DCs) (24) were also fused by overlap extension PCR and inserted
in scDEC-OVA, replacing the respective DEC variable regions. Constructs
were confirmed by sequence analysis. Similarly, HIV gag p24 and p41 were
amplified from the plasmid syngag (64) and inserted in place of the OVA
gene in the scFv vectors. For in vivo experiments, plasmid DNA was pre-
pared using the QIAGEN Endo-Free plasmid kit.

Cell lines, media, and antibodies. 293 cells, 293T cells (293ts/A1609), CHO
cells,and CHOmDEC20S5 cells were maintained in DMEM supplemented
with 10% FCS, penicillin, streptomycin, and glutamine. CV-1 cells were
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maintained in the same medium but with Geneticin in place of strepto-
mycin. Antibodies specific for the TCRs of the transgenic OT-I and OT-II
cells (VBs.1/5.2/MR9-4; Vai,/20.1) and to other cell surface markers (CD11c,
CD8a, and CD4) were purchased from BD Biosciences — Pharmingen.
Magnetic microbeads were from Miltenyi Biotec. Other antibodies includ-
ed rabbit anti-OVA (Chemicon), FITC-labeled anti-p24 (KC57-FITC; Coul-
ter) and HRP-conjugated monoclonal antibody to HIV gag p24 (Immu-
noDiagnostics), and FITC-labeled goat anti-rabbit and goat anti-mouse
polyclonal antibodies (BioSource).

SDS-PAGE and Western blot analysis. To assess production of scDEC and con-
trol antibody fusion protein, both the cell lysate and crude supernatants of
the 293 transfectants were resolved on 10% SDS-PAGE under reducing con-
ditions and blotted onto nitrocellulose (Amersham) by standard techniques.
The blots were blocked with 10% fat-free milk and then incubated with
rabbit anti-OVA polyclonal antibody (1:10,000; Chemicon) followed by an
anti-rabbit peroxidase conjugate (1:5,000). Bands were visualized with ECL
substrate (Amersham). For the detection of HIV gag p24 and p41, the cell
lysates and crude supernatants were similarly resolved on a 10% SDS-PAGE
and blotted with 1:7500 HRP-conjugated anti-p24 mAb.

DNA vaccination. BALB/c, CxB6 F1 mice were obtained either from
Charles River, Taconic, or Harlan and maintained under specific-patho-
gen free conditions and used at 6 to 10 weeks under the guidelines of the
Rockefeller University Institutional Animal Care and Use Committee. All
experiments committee. Mice were injected with DNA i.m. in combina-
tion with electroporation in the anterior tibialis muscles of both hind legs.
In brief, the mice were anesthetized with 1.25 mg/mouse Nembutal. The
skin overlying the anterior tibialis muscles of the hind legs was shaved and
sterilized with ethanol swabs. DNA vaccine dissolved in 0.95% NaCl was
then injected i.m. followed immediately by electroporation using a 2-nee-
dle array electrode pair (Genetronics). The distance between the electrodes
was 5 cm, and the array was inserted parallel to the muscle fibers. 8 electric
pulses of 200 V/cm? were delivered at 1-second intervals using a Bio-Rad
gene pulser. Alternatively, DNA delivery and electroporation were achieved
using an Ichor device (Ichor Medical Systems).

T cell transfer. CD8* or CD4* T cells were prepared from spleen and lymph
nodes of OT-I or OT-II mice, respectively, by negative selection using hybrid-
oma supernatants directed against MHC-II, F4/80, B220, NK1.1, and CD4 or
CDS8 followed by goat anti-rat Dynabeads (Dynal). Purified OT-I and OT-II
cells, 107 cells/ml, were incubated with S uM CFSE (Molecular Probes) for
10 minutes at 37°C. An equal volume of FCS was added, and the cells were
washed 2 times with PBS/0.1% BSA and twice with PBS. 2 x 10° labeled
OT-I and 3 x 10° labeled OT-II cells were injected i.v. into B6 recipients
that had been vaccinated 4-5 days previously either with scDEC-OVA or
scControl-OVA DNA vaccines. After 3 days, cell suspensions of draining
lymph nodes and spleen were stained for Vfs.i/s> and CD8 (OT-I) or Vai,
and CD4 (OT-II) using mAbs from BD Biosciences. The CFSE fluorescence
intensity of OT-I and OT-II cells was then evaluated by multicolor flow
cytometry using a FACScalibur (BD Biosciences) with subsequent analysis
of data in CELLQuest (BD Biosciences) or FlowJo (Tree Star).

Assessment of DC targeting. CS7BL/6(B6), TAP--, DEC/-, OT-II, and OT-I
mice were obtained from Charles River and maintained under standard
conditions in the Rockefeller University animal facility. Four to five days
after the injection of DNA vaccine, DCs were isolated from lymph nodes
(popliteal, inguinal, axillary, brachial, mesenteric) and spleen. In brief, sin-
gle-cell suspensions were prepared with 400 U/ml collagenase D (Roche)
for 25 minutes at 37°C. The cells were incubated with microbeads that
had been coated with anti-mouse CD11c antibodies for 30 minutes at 4°C.
CD11c* (DC-enriched) and CD11c cells were separated by application of a
magnetic field. The isolated DCs were added in graded doses to the CFSE-
labeled OT-I cells (0.2 uM CFSE/107 splenocytes for 10 minutes at 37°C;
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350,000 cells per well) at a DC:T cell ratio of 1:1, 1:3, and 1:9 in a final vol-
ume of 200 wl RPMI 1640 culture medium containing 5% FBS, 100 U/ml
penicillin streptomycin mixture, 0.25 mg/ml Fungizone, 10 mM HEPES,
and 55 uM B-mercaptoethanol. Total cell numbers in each well were nor-
malized by adding an appropriate number of DCs from naive mice. Three
and one-half days later, OT-1 T cells were evaluated for proliferation by
CFSE dilution. Similarly CD11¢-DTR/GFP, transgene-negative littermates,
or WT C57BL/6 mice were injected with 30 ug of DNA i.m. in combination
with electroporation. Five days later, the mice were injected i.p. with 4 ng/g
body weight of DT, and 24 hours later, the mice each received 3 x 10°
CFSE-labeled TCR transgenic OT-1 T cells. Three days later, draining
lymph node lymphocytes were evaluated for proliferation of the T cells.

Serum antibody titers. For the detection of HIV gag p41-specific antibod-
ies, high protein-binding ELISA plates were coated overnight at 4°C with
5 ug/ml of gag p41 protein in PBS. Plates were washed 3 times with PBS-
Tween 20 (0.02%) and blocked with PBS-BSA 1% for 2 hours at room tem-
perature. Serum antibody titers were then determined as described (53),
with the titer being the last dilution showing an OD4os greater than 0.1.

T cell responses to scDNA vaccines. To determine the breadth of HIV gag-
specific T cell responses, bulk splenocytes were restimulated in vitro with
peptide pools spanning the entire gag p41 protein (26). For the HIV gag-
specific IFN-y/IL-2 ELISPOT assays, ELISPOT plates (MAIPS; Millipore)
were coated overnight either with anti-mouse IFN-y or IL-2 capture anti-
bodies (BD Biosciences — Pharmingen). Bulk splenocytes were then cul-
tured for 18 hours at 37°C with 5% CO; in the presence of 2 uM of HIV
gag p41 peptide pools as previously described (26). Plates were developed
with anti-IFN-y biotinylated antibody (BD Biosciences) and spots visual-
ized with avidin-horseradish peroxidase (Vector Laboratories), followed by
DARB as substrate (Invitrogen). Spots were counted in an ELISPOT reader
(Autoimmun Diagnostika GmbH). For multiparametric cytokine assays,
bulk splenocytes were restimulated either with an H-2Kd-restricted peptide
(2 ug/ml; AMQMLKETI, p24 197-205), the entire HIV gag p41 peptide
pool mix, a negative control influenza HA peptide mix, or medium alone
in the presence of 2 pg/ml of anti-CD28 (clone 37.51) for 6 hours, adding
10 ug/ml of Brefeldin A (Sigma-Aldrich) for the last 4 hours to accumulate
intracellular cytokines. Cells were stained as described (26), but dead cells
were excluded using live/dead fixable dead cell stain kit (Aqua LIVE/DEAD;
Invitrogen). After blocking Fcy receptors, the cells were stained with anti-
bodies CD3-Pacific Blue, CD8-FITC, CD4-percp, CD44-Alexa Fluor 750
(CD27-PE), and Aqua LIVE/DEAD stain for 20 minutes at 37°C. Cells were
washed, fixed (Cytofix/Cytoperm Plus; BD Biosciences), permeabilized with
PermWash and stained with antibodies to IFN-y (Alexa Fluor 700), TNF-a
(Cy7-PE), and IL-2 (APCs) (eBioscience) for 15 minutes at room tempera-
ture. We used a BD LSRII with data analysis in FlowJo (Tree Star Inc.).

Vaccinia gag protection assays. Nembutal-anesthetized mice were challenged
with 2.5 x 10* (B6 mice not shown), 5 x 10* (BALB/C), and 1 x 105 (CxB6 F1)
PFUs of infectious virus by the intranasal route, in 35 ul in PBS with Mg/Ca.
The weight of each animal (groups of 5) was determined daily for 7 days
after challenge. Then the lungs were removed and homogenized in transport
medium (0.1% gelatin in PBS) and stored in duplicates at -80°C prior to
virus titration. Lung virus titers of individual mice in each group were deter-
mined by plaque assay on monolayers of CV-1 cells as described (26).

Statistics. Postchallenge mean vaccinia lung virus titers and mean percent-
age changes in weight were compared between vaccination groups using one-
tailed Student’s ¢ test. Differences were considered significant at P < 0.05.
Statistical analysis was performed using Prism 3 (GraphPad Software).
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