Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration

You-Yang Zhao,1,2 Yidan D. Zhao,1,2 Muhammad K. Mirza,1,2 Julia H. Huang,1,2 Hari-Hara S.K. Potula,1,2 Steven M. Vogel,1,2 Viktor Brovkovich,1,2 Jason X.-J. Yuan,3 John Wharton,4 and Asrar B. Malik1,2

Pulmonary hypertension (PH) is an unremitting disease defined by a progressive increase in pulmonary vascular resistance (PVR) and vascular remodeling, which without treatment leads to right-heart failure and death often within 2–3 years of diagnosis (1, 2). There are currently limited options available for the prevention and treatment of this work.

Conflict of interest: The authors have declared that no conflict of interest exists.

Nonstandard abbreviations used: hsp90, heat shock protein 90; IPAH, idiopathic pulmonary arterial hypertension; t-NAMe, N-nitro-L-arginine methyl ester; MnTMPyP, manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin pentachloride; NO, nitrate/nitrite; PH, pulmonary hypertension; PVR, pulmonary vascular resistance; RVSP, right-ventricular systolic pressure; iNOS, inducible NO synthase; eNOS, endothelial NO synthase; cNOS, neuronal NO synthase; PKG, protein kinase G; Cav1, caveolin-1; eNOS, endothelial NO synthase; PKG, protein kinase G; eNOS, endothelial NO synthase.

Citation for this article: J Clin Invest. 119:2009–2018 (2009). doi:10.1172/JCI33338.
PH (24). In addition, decreased expression of caveolin-1, predominantly in endothelial cells, was observed in lungs of patients with severe idiopathic pulmonary arterial hypertension (IPAH) (23, 25). In the present study, we addressed the potentially important mechanism of pulmonary vascular remodeling and PH associated with caveolin-1 deficiency. We determined the role of eNOS-derived NO in the pathogenesis of PH using double-knockout mice deficient in Cav1 and eNOS (Nos3) (DKO mice). Our studies showed that persistent eNOS activation secondary to caveolin-1 deficiency induced the nitration of PKG and the resultant impairment of its kinase activity. We demonstrated that this post-translational modification in a mouse model and in lungs of patients with IPAH is a critical determinant of the pathogenesis of PH.

Results
Genetic deletion of Nos3 in Cav1–/– mice prevents PH. Nos3–/– mice were bred into the background of Cav1–/– mice to generate mice with deletions of both Cav1 and Nos3. DKO mice were indistinguishable from WT littermates. We observed that 85% (n = 200) of the DKO mice survived at least 18 months, the same as the life expectancy of WT mice. To eliminate any background effects from either the Nos3–/– or Cav1–/– line on the observed phenotype, F4 or higher generations were used in the present studies. As shown in Figure 1, Cav1–/– and WT lungs expressed a similar amount of eNOS and its chaperone protein hsp90. However, eNOS association with hsp90 was drastically increased in Cav1–/– compared with WT lungs (Fig 1C). Basal eNOS-derived NO production as measured by nitrate

Figure 1
Chronic eNOS activation in Cav1–/– lungs. (A) Western blot analysis of caveolin-1 and eNOS expression in lungs from 2-month-old mice. Lung lysate (20 μg per lane) was loaded and immunoblotted with antibodies against mouse eNOS, caveolin-1, and β-actin (loading control). Neither caveolin-1 nor eNOS was detected in DKO lungs. (B) Similar protein expression of hsp90 in Cav1–/– and WT lungs. (C) Increased eNOS-hsp90 association in Cav1–/– lungs. Lung lysates (500 μg) were immunoprecipitated with anti-eNOS and immunoblotted with anti-hsp90. The same blot was immunoblotted with anti-eNOS. (D) Quantitative analysis of eNOS-derived NO2 in mouse lungs. eNOS-derived NO2 was determined using the Griess reagent in the presence of iNOS and nNOS inhibitors but without addition of the eNOS agonist, e.g., calcium ionophore A23187. Data are shown as mean ± SD (n = 4–5). *P < 0.001 versus WT (n = 4–6). Cav1–/– lungs produced 3.5-fold more eNOS-derived NO2 than WT lungs. (E) Total NO production in mouse lungs. Total NO2 production was determined with the Griess reagent. Data are expressed as mean ± SD (n = 4–5). *P < 0.05, Cav1–/– versus WT; **P < 0.01, DKO versus WT; †P < 0.05, Nos3–/– versus WT.

Figure 2
PH and increased PVR in Cav1–/– mice were prevented in DKO mice. (A) Representative RVSP tracings (each represents 1 second). (B) Normalized RVSP in DKO mice. RVSP was measured in age- and sex-matched 9-month-old mice. Data are expressed as mean ± SD. *P < 0.01, Cav1–/– versus WT or DKO (n = 6–8). (C) Restored RV/LV+S weight ratios in DKO mice. Right and left ventricles including septum (S) were dissected free of connective tissues from age- and sex-matched mice and weighed. Data are expressed as mean ± SD. *P < 0.01, Cav1–/– versus WT (n = 5–7); **P < 0.01, DKO versus Cav1–/– (n = 6–8). (D) Restored PVR in DKO lungs. Data are expressed as mean ± SD. *P < 0.01, Cav1–/– versus WT; †P < 0.05, Cav1–/– versus DKO; **P > 0.5, DKO versus WT (n = 4–6).
and nitrite (NO\textsubscript{2}) production was 3.5-fold greater in \textit{Cav1}--/-- than WT lungs (Figure 1D), consistent with the activation of eNOS secondary to loss of caveolin-1 inhibition in vivo. There was little eNOS-derived NO\textsubscript{3} produced in either \textit{Nos3}--/-- lungs or DKO lungs (Figure 1D). Similar expression of iNOS and nNOS was detected in WT lungs (Figure 1D), consistent with the activation of eNOS (Figure 2, A and B). However, RVSP in DKO mice was the same as in WT, whereas a similar number of muscularized large vessels was seen in \textit{Cav1}--/-- and WT lungs (Figure 3, G and H). The number of muscularized distal and large vessels in DKO lungs was similar to that in the WT and \textit{Nos3}--/-- lungs (Figure 3H).

To determine the consequences of chronic activation of eNOS in \textit{Cav1}--/-- lungs, we measured right-ventricular systolic pressure (RVSP) (to reflect the pulmonary artery systolic pressure). \textit{Cav1}--/-- mice had significantly increased RVSP compared with WT mice (Figure 2, A and B). However, RVSP in DKO mice was the same as in WT. The weight ratio of right/left ventricle plus septum (RV/LV+S) was normal in DKO mice, in contrast to \textit{Cav1}--/-- mice, in which the ratio was increased (Figure 2C). PVR in DKO mice was reduced to the WT level (Figure 2D), indicating that PH occurring secondarily to increased PVR in \textit{Cav1}--/-- mice was the result of chronic eNOS activation.

\textbf{Rescue of pulmonary vascular pathology in DKO mice.} Studies have demonstrated severe lung hypercellularity and thickening of alveolar septa in \textit{Cav1}--/-- mice (19–21); thus, we addressed the possibility that chronically active eNOS in \textit{Cav1}--/-- mice was responsible for the lung pathology in these mice. DKO lungs exhibited normal alveolar-capillary structure and vessel wall thickness (Figure 3C) in contrast to \textit{Cav1}--/-- lungs (Figure 3B). Histological scoring showed normal pulmonary morphology in DKO lungs (Figure 3, E and F).

To quantify the number of muscularized distal pulmonary arteries, an underlying feature of pulmonary vascular remodeling in PH, we stained lung sections with anti–α-SMA. \textit{Cav1}--/-- lungs exhibited a 3-fold increase in muscularized distal arteries (>40 \textmu m in diameter) compared with WT, whereas a similar number of muscularized large vessels was seen in \textit{Cav1}--/-- and WT lungs (Figure 3, G and H). The number of muscularized distal and large vessels in DKO lungs was similar to that in the WT and \textit{Nos3}--/-- lungs (Figure 3H).

\textbf{Tyrosine nitration of PKG secondary to caveolin-1 deficiency impairs PKG activity.} NO reacts with superoxide to form the damaging reactive nitrogen species peroxynitrite, which modifies proteins and may interfere with their function through tyrosine nitration (26–28). Immunostaining of nitrotyrosine, a surrogate measure of peroxynitrite, showed that \textit{Cav1}--/-- lungs had greater nitrotyrosine expression than WT and DKO lungs (Figure 5A), indicating the formation of peroxynitrite in \textit{Cav1}--/-- lungs. Prominent nitrotyrosine immunostaining was also evident in \textit{Cav1}--/-- pulmonary vasculature, including muscularized distal arteries (Figure 5A). Western blotting also demonstrated increased tyrosine nitration of proteins in \textit{Cav1}--/-- lungs (Figure 5B), whereas no difference in S-nitrosylation of proteins was seen in \textit{Cav1}--/-- and WT lungs (Figure 5C).

\textbf{Figure 3} Prevention of pulmonary vascular remodeling induced by \textit{Cav1} deletion in DKO mice. (A–D) Representative micrographs of H&E-stained lung sections from age- and sex-matched WT (A), \textit{Cav1}--/-- (B), DKO (C), and \textit{Nos3}--/-- (D) mice. Hypercellularity and medial thickening seen in \textit{Cav1}--/-- lungs were prevented in DKO lungs. Scale bar: 60 \textmu m. (E) Histology grade score of hypercellularity in lung sections. Cellular hyperplasia was scored from 1 to 5, with 5 as the highest. Data are expressed as mean ± SD. *\textit{P} < 0.01, \textit{Cav1}--/-- versus WT, DKO, or eNOS (\textit{n} = 4–6). (F) Histology grade score of lung vascular hypertrophy. Medial thickness was scored from 1 to 6, with 6 being the highest. Data are expressed as mean ± SD. *\textit{P} < 0.01 versus WT, DKO, or eNOS (\textit{n} = 4–6). (G) Representative micrograph of immunostaining of \textit{Cav1}--/-- lung sections with anti–α-SMA (green). Arrows show muscularized distal pulmonary arterial vessels. Scale bar: 50 \textmu m. (H) Quantification of muscularized pulmonary arterial vessels in mouse lung sections. α-SMA–positive vessels were counted in 20 fields (>200) of each lung section. Data are expressed as mean ± SD. *\textit{P} < 0.01, \textit{Cav1}--/-- versus WT, DKO, or eNOS. <40 \textmu m, vessels with diameter less than 40 \textmu m; >40 \textmu m, vessels with diameter greater than 40 \textmu m.
in a concentration-dependent manner, whereas DETA NONOate, a NO donor, even at 100 μM failed to suppress PKG activity (Figure 7A).

To identify the target tyrosine residues responsible for impairment of PKG activity upon nitration, we mutated all tyrosine residues in the catalytic domain of human PKG-1α into phenylalanine and expressed these myc-tagged PKG-1 mutants with either single or double mutations in human lung microvascular endothelial cells. As shown in Figure 7, B and C, mutation of either Tyr345 or Tyr549 resulted in no impairment of PKG activity following peroxynitrite treatment in contrast to other mutations and WT PKG-1. Accordingly, these PKG-1 mutants exhibited diminished tyrosine nitration in contrast to WT PKG-1 following peroxynitrite treatment (Figure 7D). Both Tyr345 and Tyr549 are conserved from zebrafish to human PKG-1 (Supplemental Figure 5). These data demonstrate that peroxynitrite formation impairs PKG activity through nitration at Tyr345 and Tyr549. Decreased kinase activity of PKG-1α mutant with mutation at Tyr524 was likely due to its location next to the activation loop (Figure 7B and Supplemental Figure 5).

Nitrative stress–mediated PKG dysfunction induces PH in Cav1−/− mice. To determine whether tyrosine nitration–mediated impairment of PKG activity was responsible for the development of PH in Cav1−/− mice, we carried out a series of experiments that included blocking peroxynitrite formation and overexpressing PKG. We first determined whether scavenging superoxide by manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP, a superoxide dismutase mimetic) (31) could reverse PH in Cav1−/− mice. To address the role of peroxynitrite in the mechanism of the observed impairment of PKG activity, we treated human pulmonary artery smooth muscle cells with 3-morpholinosydnonimine (SIN-1), a superoxide and NO donor that forms peroxynitrite simultaneously (30). SIN-1 concentrations as low as 10 μM were shown to cause marked PKG tyrosine nitration (Figure 6D) and decreased PKG activity (Figure 6, E and F). Furthermore, in vitro treatment of purified PKG-1 with peroxynitrite resulted in decreased PKG activity activity was responsible for the development of PH in Cav1−/− mice, we carried out a series of experiments that included blocking peroxynitrite formation and overexpressing PKG. We first determined whether scavenging superoxide by manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP, a superoxide dismutase mimetic) (31) could reverse PH in Cav1−/− mice. To address the role of peroxynitrite in the mechanism of the observed impairment of PKG activity, we treated human pulmonary artery smooth muscle cells with 3-morpholinosydnonimine (SIN-1), a superoxide and NO donor that forms peroxynitrite simultaneously (30). SIN-1 concentrations as low as 10 μM were shown to cause marked PKG tyrosine nitration (Figure 6D) and decreased PKG activity (Figure 6, E and F). Furthermore, in vitro treatment of purified PKG-1 with peroxynitrite resulted in decreased PKG activity

We determined the activities of soluble guanylyl cyclase (sGC) and PKG, the two major downstream targets of NO signaling (29), to investigate whether their functions were impaired by tyrosine nitration in Cav1−/− lungs. Baseline sGC activity and maximal activity after stimulation with sodium nitroprusside, a NO donor, were similar in WT, Cav1−/−, and DKO lungs (Supplemental Figure 2). In sharp contrast, basal PKG activity in Cav1−/− lungs was 30% less than that in the WT group (Figure 6A) and also following the addition of 2.5 μM cGMP (Figure 6B). PKG activities in DKO lungs were restored to levels similar to those in WT lungs (Figure 6, A and B). PKG dysfunction in Cav1−/− lungs could not be ascribed to reduced cGMP production, since Cav1−/− lungs in fact exhibited higher cGMP concentrations (Supplemental Figure 2). The protein levels of PKG-1 were also similar in WT, Cav1−/−, and DKO lungs (Figure 6C). Quantitative RT-PCR demonstrated similar mRNA expression of PKG-1 and PKG-2 in mouse lungs (Supplemental Figure 3). These data suggest that impaired PKG activity in Cav1−/− lungs is the result of post-translation modification. Indeed, we observed markedly increased nitrotyrosine modification of PKG-1 in Cav1−/− lungs as compared with DKO and WT lungs (Figure 6C). In contrast, 5-nitrosylation of PKG-1 in Cav1−/− lungs was minimal and similar to that in WT and DKO lungs (Supplemental Figure 4).

To address the role of peroxynitrite in the mechanism of the observed impairment of PKG activity, we treated human pulmonary artery smooth muscle cells with 3-morpholinosydnonimine (SIN-1), a superoxide and NO donor that forms peroxynitrite simultaneously (30). SIN-1 concentrations as low as 10 μM were shown to cause marked PKG tyrosine nitration (Figure 6D) and decreased PKG activity (Figure 6, E and F). Furthermore, in vitro treatment of purified PKG-1 with peroxynitrite resulted in decreased PKG activity

We determined the activities of soluble guanylyl cyclase (sGC) and PKG, the two major downstream targets of NO signaling (29), to investigate whether their functions were impaired by tyrosine nitration in Cav1−/− lungs. Baseline sGC activity and maximal activity after stimulation with sodium nitroprusside, a NO donor, were similar in WT, Cav1−/−, and DKO lungs (Supplemental Figure 2). In sharp contrast, basal PKG activity in Cav1−/− lungs was 30% less than that in the WT group (Figure 6A) and also following the addition of 2.5 μM cGMP (Figure 6B). PKG activities in DKO lungs were restored to levels similar to those in WT lungs (Figure 6, A and B). PKG dysfunction in Cav1−/− lungs could not be ascribed to reduced cGMP production, since Cav1−/− lungs in fact exhibited higher cGMP concentrations (Supplemental Figure 2). The protein levels of PKG-1 were also similar in WT, Cav1−/−, and DKO lungs (Figure 6C). Quantitative RT-PCR demonstrated similar mRNA expression of PKG-1 and PKG-2 in mouse lungs (Supplemental Figure 3). These data suggest that impaired PKG activity in Cav1−/− lungs is the result of post-translation modification. Indeed, we observed markedly increased nitrotyrosine modification of PKG-1 in Cav1−/− lungs as compared with DKO and WT lungs (Figure 6C). In contrast, 5-nitrosylation of PKG-1 in Cav1−/− lungs was minimal and similar to that in WT and DKO lungs (Supplemental Figure 4).

To address the role of peroxynitrite in the mechanism of the observed impairment of PKG activity, we treated human pulmonary artery smooth muscle cells with 3-morpholinosydnonimine (SIN-1), a superoxide and NO donor that forms peroxynitrite simultaneously (30). SIN-1 concentrations as low as 10 μM were shown to cause marked PKG tyrosine nitration (Figure 6D) and decreased PKG activity (Figure 6, E and F). Furthermore, in vitro treatment of purified PKG-1 with peroxynitrite resulted in decreased PKG activity activity was responsible for the development of PH in Cav1−/− mice, we carried out a series of experiments that included blocking peroxynitrite formation and overexpressing PKG. We first determined whether scavenging superoxide by manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP, a superoxide dismutase mimetic) (31) could reverse PH in Cav1−/− mice. In this experiment, 8-month-old Cav1−/− mice received either saline or MnTMPyP (5 mg/kg, i.p. daily) for 5 weeks. We observed that MnTMPyP treatment reduced RVSP (Figure 8A). We also treated 8-month-old Cav1−/− mice with either N-nitro-1-arginine methyl ester (L-NAME, a NOS inhibitor) or its inactive analog d-NAME in drinking water (1 mg/ml) for 5 weeks. Inhibition of NO production by l-NAME treatment also reduced RVSP and the number of muscularized distal pulmonary arteries, whereas d-NAME had no effect (Figure 8B and Supplemental Figure 6). These data suggest that high levels of NO per se in Cav1−/− mice do not cause PH but that superoxide production is also important for its development; i.e., formation of peroxynitrite and resultant protein nitration are required for the development of PH.

We further tested the hypothesis that nitrative stress–induced PH in Cav1−/− mice is mediated by impaired PKG activity. Recombinant adenoviruses overexpressing human PKG-1 or LacZ were administered into lungs of 10-month-old WT and Cav1−/− mice via an intratracheal microspray device. At 7 days after infection, PKG-1 protein expression was elevated by 50% in AdvPKG-treated Cav1−/− lungs compared with AdvLacZ-treated control lungs (Figure 8C). PKG activity in AdvPKG-treated Cav1−/− lungs was restored to a level similar to that in WT lungs (Figure 8D). PKG-mediated phosphorylation of its substrate vasodilator-stimulated phosphoprotein (VASP) at residue Ser239 was also normalized in AdvPKG-treated Cav1−/− lungs (Supplemental Figure 7). Accordingly, we...
observed that restoration of PKG-1 activity in Cav1–/– lungs resulted in a significant decrease in RVSP and PVR, whereas minimal changes were seen in WT mice (Figure 8, E and F).

Increased eNOS activity and PKG tyrosine nitration in lungs of IPAH patients. To address the relevance of these observations in mice to the pathogenesis of IPAH in patients, we determined eNOS activity, PKG tyrosine nitration, and expression of caveolin-1, eNOS, and PKG-1 in lung tissues from IPAH patients. eNOS activities were increased in IPAH lungs compared with normal lungs (Figure 9A and Supplemental Figure 8), whereas eNOS expression was similar to that in normal lungs (Figure 9B). Caveolin-1 expression was decreased in IPAH lungs compared with normal lungs (Figure 9B), consistent with previous reports (23, 25). Moreover, tyrosine nitration of PKG-1 was markedly increased in IPAH lungs (Figure 9, B and C). We also observed that PKG-1 expression was increased 30% in IPAH lungs (Figure 9B; IPAH, 1.3 ± 0.3 versus normal, 1.0 ± 0.07; \(P = 0.12 \)), suggesting a compensatory PKG protein expression in the face of the decreased PKG activity.

Discussion

We show here that chronic eNOS-derived NO production secondary to the loss of caveolin-1 inhibition is a critical factor in the mechanism of PH. We have demonstrated that increased production of eNOS-derived NO resulted in the impairment of PKG kinase activity through its tyrosine nitration. The essential observations in mice were recapitulated in lung tissue from IPAH patients. The pulmonary vascular changes seen in Cav1–/– lungs were prevented in the Cav1–/– Nos3–/– DKO mice, and PH was reversed following treatment of Cav1–/– mice with either superoxide scavenger or NOS inhibitor and by adenovirus-mediated restoration of PKG activity in Cav1–/– lungs. We also identified Tyr345 and Tyr549 in the catalytic domain of human PKG-1α as responsible for the impairment of PKG activity upon nitration. Thus, the results demonstrate what we believe to be a novel mechanism of PH mediated by the impairment of PKG activity secondary to the tyrosine nitration of the kinase.

Caveolin-1, the scaffolding protein of caveolae, serves a key regulatory signaling function in endothelial cells (32). We observed that eNOS-derived NO production in the Cav1–/– lungs increased 3.5-fold compared with that in WT lungs, whereas eNOS protein expression was similar in the two groups. The activity of other NOS isoforms, iNOS and nNOS, did not differ in WT, Cav1–/–, and DKO lungs. These data show a fundamental in vivo role of caveolin-1 as a negative regulator of eNOS activity (15–17). eNOS binds with caveolin-1 in the caveolar membrane such that upon agonist activation, hsp90 binds with the eNOS dissociated from caveolin-1.

Figure 5

Increased tyrosine nitration of proteins in Cav1–/– mouse lungs. (A) Representative micrographs of immunostaining of lung sections with anti-nitrotyrosine (NT, green) and anti–α-SMA (SMA, red). Nuclei were counterstained with DAPI (blue). Nitrotyrosine was prominent in Cav1–/– lungs, including large artery (arrowhead) and muscularized distal artery (arrow). Scale bar: 40 μm. (B) Increased protein nitration in Cav1–/– mouse lungs. Forty micrograms of lung lysates was loaded per lane. Nitrated proteins were directly detected with anti-nitrotyrosine antibody. The same blot was blotted with anti-GAPDH for loading control. We observed primarily 2 groups of proteins at molecular weights of approximately 30 and 70 kDa, respectively, with markedly increased tyrosine nitration in Cav1–/– lungs. (C) S-nitrosylation of proteins in Cav1–/– and WT lungs was not different. S-nitrosylation (SNO) in biotin-labelled lung lysates (10 μg per lane) was directly detected by Western blotting with avidin-coupled reagents.
mice, we show a clear pathogenic role for the persistent production of NO in Cav1−/− lungs. In previous studies, increased production of NO in eNOS transgenic mice prevented the increase in RVSP, lung vascular remodeling, and thereby promotes eNOS activation (33, 34). We demonstrated an increase in eNOS-hsp90 interaction in Cav1−/− lungs consistent with this model. Decreased eNOS-hsp90 interaction has been suggested to play a role in the pathogenesis of hypoxia-induced PH on the basis of increased NO bioavailability (35, 36). However, our data in Cav1−/− lungs showed that increased eNOS-hsp90 interaction was involved in the mechanism of PH due to persistent activation of eNOS and resultant increased formation of peroxynitrite.

eNOS-derived NO is usually considered to be protective (13). That is, low-output NO produced by eNOS induces vasodilatation and inhibits platelet aggregation, suppresses adhesion of neutrophils and monocytes to endothelial cells, and modulates vascular smooth cell proliferation and migration. In the present study, however, on the basis of genetic evidence from the DKO mice, we show a clear pathogenic role for the persistent production of eNOS-derived NO secondary to caveolin-1 deficiency in the development of PH.

In previous studies, increased production of NO in eNOS transgenic mice prevented the increase in RVSP, lung vascular remodeling, and right-ventricular hypertrophy induced by chronic hypoxia (37), and cell-based eNOS gene transfer also inhibited the development of PH induced by monocrotaline treatment in rats (38). We found in Cav1−/− mice, contrary to these observations, that increased eNOS activity was required for the development of PH. Genetic deletion of eNOS prevented the PH in Cav1−/− mice, while pharmacological inhibition of NO production by L-NAME reversed the PH in adult Cav1−/− mice. We observed that inhibition of superoxide production by the superoxide scavenger MnTMPyP also reversed the PH in adult Cav1−/− mice. Thus, a high concentration of NO itself in Cav1−/− mice did not cause PH, but NO coupled to superoxide production is critically important for the development of PH. The caveolin-1 deficiency–induced production of superoxide and eNOS-derived NO reacted to form peroxynitrite and induced PH in Cav1−/− lungs. Studies have shown that NO alone was incapable of inducing tissue injury even at high concentrations (39), whereas NO in the presence of superoxide produced peroxynitrite, thereby causing severe nitrative stress and tissue injury (26–28), findings consistent with our observations. Taken together, our data show the fundamental role of caveolin-1 in the pathogenesis of PH such that disruption of the negative regulation of eNOS by caveolin-1 leads to pulmonary vascular remodeling and PH.

Studies have suggested that eNOS uncoupling may be sufficient to increase the production of superoxide in Cav1−/− lungs and may thus mediate PH (40). Treatment of neonatal Cav1−/− mice with tetrahydrobiopterin, an essential cofactor for all 3 NOS isoforms (41, 42), prevented PH (40). However, in other studies, eNOS uncoupling alone did not cause PH (37), eNOS transgenic mice failed to develop PH but were resistant to hypoxia-induced PH (37), even though these mice exhibited eNOS uncoupling (43). L-NAME inhibition of NOS in neonatal Cav1−/− mice (44) and restoration of caveolin-1 expression in endothelial cells of Cav1−/− mice (45) prevented PH in Cav1−/− mice. Since none of these studies directly examined eNOS activation, they provide circumstantial evidence concerning the role of eNOS activation secondary to caveolin-1 deficiency in the pathogenesis of PH. It is well known that tetrahydrobiopterin activates all 3 isoforms of NOS (41, 42), whereas L-NAME inhibits all isoforms. Studies in a different ex vivo mouse lung model show that inhibition of NO production by L-NAME paradoxically increased PVR, with the effect being more pronounced in Cav1−/− compared with WT lungs (46). These results may be ascribed to differences inherent in the ex vivo lung model compared with the intact animal. Our studies using Cav1−/− Nos3−/− DKO mice have demonstrated the essential role of eNOS-derived NO production and peroxynitrite formation in the mechanism of PH in Cav1−/− mice.

NO mediates vasodilatation through the activation of the sGC/cGMP/PKG signaling pathway (29). We observed that PKG activity was impaired in Cav1−/− lungs even in the face of high NO concent-
the catalytic domain was resistant to peroxynitrite-induced tyrosine nitration and resultant impairment of PKG kinase activity. Both Tyr345 and Tyr549 are conserved from zebrafish to human PKG-1. Previous studies suggest that tyrosine nitration is enhanced by the close proximity of acidic residues (47–49). Consistent with these observations, the two target tyrosine residues are also next to an acidic residue.

NO-elicited S-nitrosylation has been demonstrated as an important mechanism regulating protein function (50). eNOS-mediated S-nitrosylation in mice that received a high dose of N-acetylcysteine was found to be involved in the pathogenesis of PH (51). However, our data demonstrated that there was no difference in total S-nitrosylation of proteins in Cav1−/− lungs compared with WT lungs, and the basal low levels of S-nitrosylation of PKG-1 in Cav1−/− lungs were similar to those in WT and DKO lungs. In addition, in vitro incubation with peroxynitrite but not DETA NONOate, a NO donor, resulted in impairment of PKG kinase activity. PKG kinase activity was in fact increased by DETA NONOate in intact vessels (52). High levels of NO itself (Cav1−/− mice treated with ROS scavenger) failed to promote the progression of PH but reversed PH in Cav1−/− mice. Taken together, these data strongly support the hypothesis that nitrative stress–induced PH in Cav1−/− mice is mediated by impaired PKG kinase activity through the tyrosine nitration.

Hypoxia has also been shown to impair PKG activity and PKG-mediated relaxation in ovine fetal intrapulmonary veins through both downregulation of PKG expression and tyrosine nitration of PKG (53), thus suggesting a role for PKG nitration in regulating hypoxic venoconstriction in utero. In contrast to our findings in Cav1−/− lungs, the hypoxia-induced tyrosine nitration of PKG in these studies was eNOS independent (53). Other studies showed that pulmonary vascular PKG expression was increased in chronically hypoxic rats, although the vasodilatory responses to exogenous NO and cGMP analog were attenuated (54). These data suggested that hypoxia-induced PKG nitration plays a role in the pathogenesis of hypoxia-induced PH. The present study provides direct mechanistic evidence of the critical role of the hypoxia-independent PKG nitration and resultant impairment of its kinase activity in mediating PH.

The balance between the protective and adverse effects of NO is determined by the relative amounts of NO and reactive oxygen species in the pathogenesis of PH (55). Here we show that PKG nitration resulting from eNOS activation secondary to caveolin-1 deficiency induces PH. Our data support the model outlined in Figure 9D according to which caveolin-1 deficiency results in peroxynitrite-induced tyrosine nitration and resultant impairment of its kinase activity following nitration. PKG-1α mutant with mutations at Tyr345 or Tyr549 located at the catalytic domain was resistant to peroxynitrite-induced tyrosine nitration and resultant impairment of PKG kinase activity. Both Tyr345 and Tyr549 are conserved from zebrafish to human PKG-1. Previous studies suggest that tyrosine nitration is enhanced by the close proximity of acidic residues (47–49). Consistent with these observations, the two target tyrosine residues are also next to an acidic residue.

NO-elicited S-nitrosylation has been demonstrated as an important mechanism regulating protein function (50). eNOS-mediated S-nitrosylation in mice that received a high dose of N-acetylcysteine was found to be involved in the pathogenesis of PH (51). However, our data demonstrated that there was no difference in total S-nitrosylation of proteins in Cav1−/− lungs compared with WT lungs, and the basal low levels of S-nitrosylation of PKG-1 in Cav1−/− lungs were similar to those in WT and DKO lungs. In addition, in vitro incubation with peroxynitrite but not DETA NONOate, a NO donor, resulted in impairment of PKG kinase activity. PKG kinase activity was in fact increased by DETA NONOate in intact vessels (52). High levels of NO itself (Cav1−/− mice treated with ROS scavenger) failed to promote the progression of PH but reversed PH in Cav1−/− mice. Taken together, these data strongly support the hypothesis that nitrative stress–induced PH in Cav1−/− mice is mediated by impaired PKG kinase activity through the tyrosine nitration.

Hypoxia has also been shown to impair PKG activity and PKG-mediated relaxation in ovine fetal intrapulmonary veins through both downregulation of PKG expression and tyrosine nitration of PKG (53), thus suggesting a role for PKG nitration in regulating hypoxic venoconstriction in utero. In contrast to our findings in Cav1−/− lungs, the hypoxia-induced tyrosine nitration of PKG in these studies was eNOS independent (53). Other studies showed that pulmonary vascular PKG expression was increased in chronically hypoxic rats, although the vasodilatory responses to exogenous NO and cGMP analog were attenuated (54). These data suggested that hypoxia-induced PKG nitration plays a role in the pathogenesis of hypoxia-induced PH. The present study provides direct mechanistic evidence of the critical role of the hypoxia-independent PKG nitration and resultant impairment of its kinase activity in mediating PH.

The balance between the protective and adverse effects of NO is determined by the relative amounts of NO and reactive oxygen species in the pathogenesis of PH (55). Here we show that PKG nitration resulting from eNOS activation secondary to caveolin-1 deficiency induces PH. Our data support the model outlined in Figure 9D according to which caveolin-1 deficiency results in persistent eNOS activation and hypoxia-independent production of reactive oxygen species and induces formation of peroxynitrite, which post-translationally modifies PKG through tyrosine nitra-
tion and impairs its kinase activity. Impaired PKG kinase activity in turn causes vasoconstriction and pulmonary vascular remodeling and thereby PH.

Previous studies showed a reduction in Cav1 mRNA (56) and protein expression in lungs of patients with IPAH (23, 25). Decreased caveolin-1 expression in IPAH lungs was predominant in endothelial cells (25). Additionally, eNOS was robustly expressed in the plexiform lesions of IPAH lungs (57). To address the pathophysiological relevance of caveolin-1–regulated eNOS activity in the mechanism of increased PVR and vascular remodeling, we used lung tissue obtained from patients with IPAH. We observed decreased caveolin-1 expression and increased eNOS activity as well as increased PKG tyrosine nitration in IPAH lungs compared with normal lungs in the absence of marked changes in eNOS expression. These findings are in agreement with the studies in Cav1−/− mouse lungs described above.

In summary, we have demonstrated the crucial role of chronic activation of eNOS induced by loss of caveolin-1 in the pathogenesis of PH and provide evidence that hypoxia-independent PKG nitration induces PH. The results help to explain the mechanism of PH seen in patients with caveolin-1 deficiency (24, 25). Downregulation of caveolin-1 in lungs of IPAH patients occurred predominantly in endothelial cells (25), supporting the role of persistent eNOS activation induced by caveolin-1 deficiency in the mechanism of PH. Our results suggest the potential benefit of targeting increased eNOS activity and preventing nitration of PKG as novel therapy against IPAH.

Methods

Animals. To generate the DKO mice, we bred Nos3−/− mice into the background of Cav1−/− mice (The Jackson Laboratory). All mice were bred and maintained at the University of Illinois according to NIH guidelines. Approval for animal care and use for these experiments was granted by the Institutional Animal Care and Use Committee of the University of Illinois at Chicago.

Human subjects. Human lung tissues were obtained from patients undergoing lung transplantation for IPAH (n = 4; age 31.5 ± 19.2 years; 2 male, 2 female) and from unused donor lungs (n = 4; age 36.2 ± 16.1 years; all male). Informed consent from patients and local ethical approval from the Hammersmith Hospitals (ref. no. 2001/6003) and Royal Brompton & Harefield Hospitals (ref. no. 01-210) ethics committees were obtained prior to tissue collection.

Molecular analysis. Western blot analyses were performed using anti-caveolin-1 (1:1,000) and anti-nNOS (1:500; Santa Cruz Biotechnology Inc.), anti-eNOS (1:1,500) and anti-hsap90 (1:1,000; BD Biosciences), anti-nitrotyrosine (1:1,000, Millipore), anti-PKG-1 (1:1,000; Santa Cruz Biotechnology Inc.) was used as a loading control. For detection of PKG-1 tyrosine nitration, protein lysates from either mouse or human lungs (500 μg each) were immunoprecipitated over night with anti-PKG-1 (2 μg each) and then probed with anti-nitrotyrosine (1:2,500; Cayman Chemical).

RNA was isolated using the RNeasy Mini kit including DNase I digestion (Qiagen), and quantitative RT-PCR analysis was performed in an ABI Prism 7000 Sequence Detection System (Applied Biosystems) with QuantiTect SYBR Green RT-PCR kit (Qiagen). The sequences of the primers are provided in Supplemental Methods.

NO measurements. eNOS-derived NO from lung samples was measured by using the Griess Reagent System (Promega). Samples were incubated in 1 ml F-12 DMEM with inhibitors for iNOS (1,400W, 4 μM) and nNOS (Nω-propyl-L-arginine, 1 μM) for 20 minutes. L-Arginine (1 mM) was then added and the samples incubated for 3 hours. Aliquots of medium were

![Figure 8](http://www.jci.org)
collected, and NO release was determined by measurement of the concentration of nitrate and nitrite (NO\textsubscript{x}) in the aliquot in 2 steps using the Nitralyzer II kit (World Precision Instruments) and Griess reagent. Results are expressed as nanomolar/gram lung/hour incubation. Total NO\textsubscript{x} production from mouse lung samples was determined with a similar method without incubation of NOS inhibitors. eNOS-derived NO from human lung samples was also determined using the 3-electrode system as detailed in Supplemental Methods.

Hemodynamic measurements. RVSP was determined with a 1.4F pressure transducer catheter (Millar Instruments) and AcqKnowledge software (Biopac Systems Inc.) as described previously (38). Briefly, the 1.4F pressure transducer catheter was inserted through the right external jugular vein of anesthetized mice (100 mg ketamine/5 mg xylazine/kg BW, i.p.) and threaded into the right ventricle. RVSP was then recorded and analyzed with AcqKnowledge software.

PVR was measured as described previously (58). Briefly, the isolated lungs were ventilated (120/min and end expiratory pressure of 2.0 cmH\textsubscript{2}O) and perfused at constant flow (2 ml/min) and venous pressure (+4 cmH\textsubscript{2}O) with RPMI 1640 medium supplemented with 3 g/100 ml of BSA. Pulmonary arterial and venous pressure was monitored using pressure transducers (P23XL-1; Grass Technologies). PVR was calculated using the formula

\[
\text{PVR (dynes cm}^{-5}\text{cm}^{-5}) = \frac{(P_a - P_v)}{(Q/100 g)},
\]

where \(P_a\) and \(P_v\) are pulmonary arterial and venous pressure, and \(Q\) is flow (2 ml/min).

sGC enzyme activity and lung cGMP measurement. sGC enzyme activity and lung cGMP measurement are described in detail in Supplemental Methods.

PKG kinase assay. In vitro activity of PKG was determined by measuring the transfer of the \([\gamma-^{32}\text{P}]\) phosphate group of ATP to the specific PKG substrate BPDExide (Calbiochem) in the absence or presence of exogenous 2.5 μM cGMP as described previously (59) and in detail in Supplemental Methods. PKG activity is expressed as picomoles of \([\gamma-^{32}\text{P}]\) incorporated into PKG substrate per minute per microgram protein.

Identification of nitrated tyrosine residues of PKG-1α. To determine the effects of nitration or nitrosylation on PKG activity, purified PKG-1 (Promega) was incubated with various concentrations of either peroxynitrite or DETA NONOate (Cayman Chemicals). Kinase activity was measured as described above. To identify the nitrated target tyrosine residues, tyrosine residue was mutated to phenylalanine by site-directed mutagenesis according to the manufacturer's instruction (Stratagene). Myc-tagged WT and mutant PKG-1α were overexpressed in human lung microvascular endothelial cells, and cell lysates were then immunoprecipitated with anti-Myc for 4 hours at room temperature. The same amount of immunoprecipitate was incubated with or without 100 μM peroxynitrite. After 14 minutes incubation in 50 mM KH\textsubscript{2}PO\textsubscript{4} buffer at room temperature, kinase activity was then measured as described above.

Detection of protein S-nitrosylation. Detection of protein S-nitrosylation is described in detail in Supplemental Methods.

In vivo gene delivery to lungs. In vivo gene delivery to lungs is described in detail in Supplemental Methods.

Histology and imaging. Lung tissues were fixed and processed for H&E staining and immunofluorescence staining as described previously (60) and in detail in Supplemental Methods.

Statistics. Data are presented as mean ± SD. Statistical significance of differences between group means was determined using an unpaired 2-tailed Student’s t test; a P value less than 0.05 was considered significant.

Acknowledgments. We thank X-P. Du of the University of Illinois and K.D. Bloch of Massachusetts General Hospital for their generosity in providing anti–PKG-1 antibody and recombinant AdvPKG, respectively; and R.A. Skidgel for critical comments concerning the manuscript. We also thank Jun Yuan, Liquan Cai, and Weijuan Yao for their expert technical support. This work was supported by NIH grants P01 HL060678 to A.B. Malik and R01 HL085462 to Y.-Y. Zhao.

Received for publication July 20, 2007, and accepted in revised form April 8, 2009.

Address correspondence to: You-Yang Zhao, Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, 835 South Wolcott Avenue, Mail Code 868, Chicago, Illinois 60612, USA. Phone: (312) 355-0238; Fax: (312) 996-1225; E-mail: yyzhao@uic.edu.