When EGF is offside, magnesium is wasted
Shmuel Muallem1 and Orson W. Moe1,2,3

1Department of Physiology, 2Department of Internal Medicine, and 3Charles and Jane Pak Center for Mineral Metabolism, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

Our understanding of magnesium (Mg2+) regulation has recently been catalyzedforward by the discovery of several disease loci for monogenic disorders of Mg2+ homeostasis. In this issue of the JCI, Groenestege et al. report that their study of a rare inherited Mg2+ wasting disorder in consanguineous kindred shows that EGF acts as an autocrine/paracrine magnesiumotropic hormone (see the related article beginning on page 2260). EGF stimulates Mg2+ reabsorption in the renal distal convoluted tubule (DCT) via engagement of its receptor on the basolateral membrane of DCT cells and activation of the Mg2+ channel TRPM6 (transient receptor potential cation channel, subfamily M, member 6) in the apical membrane. These authors show that a point mutation in pro-EGF retains EGF secretion to the apical but not the basolateral membrane, disrupting this cascade and causing renal Mg2+ wasting. This work is another seminal example of the power of the study of monogenic disorders in the quest to understand human physiology.

Magnesium (Mg2+) is a critical cofactor in many enzymatic reactions and as such participates in all cellular functions. It is the second most common intracellular ion and the fourth most abundant cation in the body, and plasma and cellular Mg2+ concentrations are both tightly controlled. The initial advances in our understanding of Mg2+ handling stemmed from clearance, micropuncture, microatherosclerosis, and micropenetration studies. While these experiments furnished the key foundations of understanding the regulation of Mg2+ balance, this process is surprisingly poorly understood at the cellular and molecular levels, largely due to a lack of good surrogate cell model systems and a slow rate of emergence and hence paucity of cDNAs and specific reagents for Mg2+ homeostatic proteins. Almost all of the seminal progress in enlightening our understanding of the molecular mechanisms of Mg2+ handling arose from identification of disease loci of rare human monogenic Mg2+ disorders (3–10). The discovery reported by Groenestege et al. in this issue of the JCI (11) appends a new page to this catalog of pedigogical disorders. These authors show that EGF is an autocrine/paracrine magnesiumotropic hormone that regulates renal Mg2+ reabsorption by regulating the activity of the Mg2+-permeable channel TRPM6 (transient receptor potential cation channel, subfamily M, member 6). They go on to demonstrate that a point mutation in pro-EGF that disrupts sorting of the protein to the basolateral membrane of distal convoluted tubule (DCT) cells in kidney nephrons and thus release of EGF to the basolateral space or inhibition of the EGFR by anti-EGFR antibodies led to suppressed activity of TRPM6 and renal Mg2+ wasting in humans.

Mg2+ homeostasis
The systemic balance of Mg2+ and its intracellular concentration are determined by intestinal absorption and renal excretion. The main site of intestinal Mg2+ absorption is the small bowel, with some additional absorption in the large bowel. Renal handling commences with glomerular filtration of the non–protein bound plasma fraction (free and complex) followed by passive absorption through the paracellular pathway in the proximal tubule and the thick ascending loop of Henle and active transcellular absorption by the DCT (Figure 1) (12). The molecular mechanism of these processes remained elusive for many years until identification of disease genes underlying hereditary Mg2+ homeostatic disorders. Analysis of the mutations leading to familial hypomagnesemia with hypercalcemia and nephrocalcinosis (FHHNC) disclosed that passive Mg2+ absorption by the thick ascending
limb is mediated by a tight-junction Mg$^{2+}$ pathway, which includes paracellin-1 and claudin-19 (Figure 1) (3–5). Loss-of-function mutations in these proteins lead to a form of combined urinary Mg$^{2+}$ and Ca$^{2+}$ wasting (3–5). The DCT is responsible for only 5–10% of the filtered Mg$^{2+}$, but this critical section fine-tunes Mg$^{2+}$ reabsorption to determine the final urinary Mg$^{2+}$ concentration and is key to the regulation of Mg$^{2+}$ homeostasis (12, 13). Magnesuria (physiologic or pathophysiologic) that exceeds 15% of the filtered load likely involves segments proximal to the DCT.

In the DCT, active transcellular Mg$^{2+}$ transport requires passive Mg$^{2+}$ entry across the luminal membrane, Mg$^{2+}$ flow from the apical to the basal pole, and active extrusion across the basolateral membrane (Figure 1). Of these processes, only the pathway that mediates Mg$^{2+}$ influx across the luminal membrane has been elucidated. Here again, an understanding of the cause of the condition hypomagnesemia with secondary hypocalcemia (HSH) disclosed the luminal Mg$^{2+}$ entry pathway. HSH is a rare autosomal-recessive disease typified by low serum Mg$^{2+}$ levels and high urinary fractional Mg$^{2+}$ excretion and is caused by nonsense or missense mutations of TRPM6, a member of the transient receptor potential channel family (6, 7, 13, 14). Subsequent studies showed that TRPM6 is a Mg$^{2+}$-permeable channel that is expressed in the luminal membrane of the intestinal epithelium and the DCT (8, 15). Inactivating mutations of TRPM6 thus causes the pernicious combination of impaired gut absorption of Mg$^{2+}$ and renal wasting. How Mg$^{2+}$ traverses the cytoplasm from the apical to the basal poles and how it exits the cell across the basolateral membrane are not known. If diligence and luck prevail, there will be discoveries of more monogenic diseases on the horizon to help unveil the identity of the proteins involved in this process.

There are other monogenic diseases in this nephron segment that do not directly involve Mg$^{2+}$-transporting proteins. Inactivating mutations of the NaCl cotransporter causes Gitelman syndrome (9), which is characterized by hypomagnesuria with inappropriate renal wasting. It is presently unclear how defective apical NaCl entry can lead to Mg$^{2+}$ wasting in the DCT. The disorder autosomal dominant renal hypomagnesemia with hypocalciuria (ADRRH) is caused by a dominant negative mutation of the γ subunit of the Na,K-ATPase, which causes mistargeting of the protein that is expressed mainly in the kidney with high levels in the DCT (10). At present, there exist only speculations as to how this mutation leads to severe renal Mg$^{2+}$ wasting.

EGF is a magnesiotropic hormone

In their study in this issue of the *JCI*, Groenestege et al. (11) analyzed yet another form of hereditary hypomagnesemia, isolated recessive renal hypomagnesemia (IRH), a syndrome with classical symptoms of hypomagnesemia frequently presenting in infancy and childhood due to renal Mg$^{2+}$ wasting, and found that the disease is caused by a P1070L mutation in the cytoplasmic domain of pro-EGF. Pro-EGF is a type 1 membrane protein expressed at high levels in the luminal and low levels in the basolateral membranes of the DCT (Figure 2). Pro-EGF is cleared by a series of extracellular proteases to generate the active EGF in the luminal and basolateral spaces. Whether luminal EGF has a biologic effect is unclear since there is a paucity of luminal EGF-Rs under normal conditions. Groenestege et al. show that the P1070L mutation in EGF specifically prevents secretion of EGF to the basolateral space with no effect on secretion to the luminal space in polarized Madin-Darby canine kidney (MDCK) cells. Absent secretion of EGF may be the result of aberrant targeting of pro-EGFP1070L to the basolateral membrane or aberrant processing by proteases. Although P1070 may be part of a basolateral targeting motif of PXXP, expression of pro-EGFP1070L in human embryonic kidney (HEK) cells also affects EGF formation, leaving open the possibility that the mutation may affect pro-EGF processing.

How mistargeting and/or processing of pro-EGF causes IRH became clear when Groenestege et al. (11) found that EGF markedly increases TRPM6 activity. This
led the authors to propose the physiologic model in which baseline activity of basolateral EGFR activation is required for TRPM6 activity and Mg\(^{2+}\) entry. This model is compatible with the hypomagnesemia previously observed in cancer patients treated with the anti-EGFR antibody Cetuximab (11, 16, 17). To support that notion, the authors showed that Cetuximab also antagonizes the stimulation of TRPM6 activity by EGF in cultured cells.

Future directions
The novel finding that EGF acts as an autocrine/paracrine magnesiotropic hormone (11) opens the way to a better understanding of active Mg\(^{2+}\) reabsorption and its regulation. This first step raises many questions that are likely to be addressed in the coming years (Figure 2). A fundamental question is that of how EGF regulates TRPM6 activity. In principal, EGF can rapidly change TRPM6 expression in the plasma membrane of the DCT and/or EGF may directly gate TRPM6 channel activity. EGF can activate several signaling pathways, among which are the MAPK pathway, phospholipase C\(_{7}\) (PLC\(_{7}\)) to activate PKC and increase intracellular Ca\(^{2+}\) levels, and the PI3K pathway. It will be of interest to determine which of these signaling pathways mediates activation of TRPM6 by EGF, as many of these signaling cascades are linked to the control of protein trafficking. Parathyroid hormone, calcitonin, glucagon, and vasopressin affect Mg\(^{2+}\) reabsorption by the DCT (18). Since these hormones activate some of the same pathways that are activated by EGF, the question is whether these hormones can regulate TRPM6 activity in parallel or in tandem to the autocrine/paracrine EGF system. The EGF axis is a target for therapy in autosomal dominant polycystic kidney disease (19). Does blanket blockade of EGF in the DCT have consequences in Mg\(^{2+}\) handling? EGF stimulates proximal tubule phosphate transport via basolateral receptors (20). Proteolytic release of EGF from the DCT is likely to result in contact between EGF and the proximal tubule in its immediate vicinity. Do patients with IRH have subtle phosphaturia? Finally, knowledge of the upstream regulator of DCT Mg\(^{2+}\) reabsorption opens up a host of possible therapeutic targets to manipulate renal Mg\(^{2+}\) handling.

Another question regarding the target effector of EGF is whether EGF can activate the TRPM6 homolog TRPM7 both alone and when it is coexpressed with TRPM6 (Figure 2). TRPM7 is ubiquitously expressed, functions as a Mg\(^{2+}\) channel, is exquisitely sensitive to intracellular Mg\(^{2+}\) and Mg\(^{2+}\)-ATP, and is suggested to be the cellular Mg\(^{2+}\) sensor (21). TRPM7 forms heteromultimers with TRPM6 (6, 14, 22), and the channel properties of the resulting TRPM6/TRPM7 heteromultimer are different from those of homodimers. Moreover, a missense mutation in TRPM6 suppresses TRPM7 activity (14). It is possible that the physiologically relevant Mg\(^{2+}\) influx channel is a TRPM6/TRPM7 heteromultimer although this notion remains controversial (13). Determining regulation of TRPM7 and TRPM6/TRPM7 channels by EGF may begin to clarify whether TRPM7 participates in Mg\(^{2+}\) reabsorption.

After many decades of work, both biologists and clinicians are still laboring at a rather early stage in understanding mammalian Mg\(^{2+}\) homeostasis. Mg\(^{2+}\) deficiency in humans is probably more prevalent than recognized and has been linked to cardiovascular disease, diabetes, hypertension, and inflammation. The epidemiology of Mg\(^{2+}\) deficiency and the basis for the correlative relationship between this condition and other diseases mandate elucidation and
confirmation by vigorous scientific studies. The demonstration of autocrine/paracrine regulation of TRPM6 by EGF adds a new chapter in the journey toward this goal.

Acknowledgments

The authors are supported by NIH grants DK38938 and DE12309 (to S. Muallem) and DK20543 and DK48482 (to O.W. Moe).

Address correspondence to: Shmuel Muallem, Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA. Phone: (214) 648-7993; Fax: (214) 648-2071; E-mail: orson.moe@utsouthwestern.edu.

“AMPing up” our understanding of the hypothalamic control of energy balance

Kevin W. Williams, Roberto Coppari, and Joel K. Elmquist

Division of Hypothalamic Research, Department of Internal Medicine, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

AMP-activated protein kinase (AMPK) has emerged as a metabolic “fuel gauge,” which oscillates between anabolic and catabolic processes that ultimately influence energy balance. A study in this issue of the JCI by Clare et al. now extends the role of AMPK in medial basal hypothalamic neurons (see the related article beginning on page 2325). These findings maintain AMPK signaling as a common cellular mechanism in proopiomelanocortin and neuropeptide Y/agouti-related protein neurons and links hypothalamic AMPK to coordinated energy and glucose homeostasis.

As we live in the midst of rising rates of obesity, diabetes, and associated comorbidities, intense interest exists in increasing the understanding of the cellular and molecular mechanisms by which nutrients and metabolic cues modulate neuronal activity and how neurons may ultimately regulate energy homeostasis. Key targets of such cues are neurons that reside in the medial basal hypothalamus. The prototypical “sensing” cells are proopiomelanocortin (POMC) and neuropeptide Y/agouti-related protein (NPY/AgRP) neurons in the arcuate nucleus of the hypothalamus. A wealth of data has demonstrated the inherent ability of these neurons to respond to changing levels of a number of signals including insulin, leptin, and glucose. The ability of these (and other) neurons to sense and integrate coordinated responses to changing levels of metabolic signals is thought to contribute to the control of energy balance (1–5). On the other hand, it is becoming apparent that dysregulation of this regulatory system contributes to the pathophysiology of obesity, diabetes, and other components of the metabolic syndrome (6–8).

In addition to identifying the key sensing neurons, we now are beginning to...