Nurse-like Cells from Bone Marrow and Synovium of Patients with Rheumatoid Arthritis Promote Survival and Enhance Function of Human B Cells

Yasunori Shimaoka,* Jeanne F. Attrep,§ Toshio Hirano, Yoshio Katsuhiko Ishihara,‡ Ryuji Suzuki,† Tomoko Toyosaki,‡ and Peter E. Lipsky‡

‡Department of Orthopedic Surgery, Osaka University Medical School, 2-2, Yamada-oka, Suita, Osaka 565, Japan; †Harold C. Simmons Arthritis Research Center, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75235; ‡Division of Molecular Oncology, Department of Oncology, Biomedical Research Center, Osaka University Medical School, 2-2, Yamada-oka, Suita, Osaka 565, Japan; †Department of Immunology, Shionogi Research Laboratories, 5-12-4, Sagisu, Fukushima-ku, Osaka 553, Japan

Abstract

Thymic nurse cells are known to interact with T cells and play a role in their functional maturation. However, the role of nurse cells in B cell maturation and differentiation is less well established, especially at extralymphoid sites. To address this issue, nurse-like cell clones from bone marrow and synovial tissue of patients with RA (RA-NLC) were established and characterized. RA-NLC constitutively expressed CD29, CD49c, CD54 (ICAM-1), CD106 (VCAM-1), CD157 (BST-1), and class I MHC molecules, and secreted IL-6, IL-7, IL-8, granulocyte–macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF). Bone marrow–derived and synovial RA-NLC differed in that the former secreted IL-7 and expressed a greater density of CD157 constitutively and after stimulation with IFNγ, whereas the latter secreted G-CSF and more IL-6. Stimulation of both bone marrow and synovial RA-NLC induced expression of CD40 and class II MHC, but not CD154 (CD40L) or CD35. RA-NLC rescued peripheral B cells from spontaneous apoptosis and promoted survival of B cells for >4 wk. B cell survival was blocked by antibodies to CD106 or CD157. RA-NLC also increased Ig production from B cells. After long-term culture (4–6 wk) with RA-NLC, but not alone or with fibroblasts, outgrowth of B cells was observed. All B cell lines derived from these cultures had been transformed by EBV, although the RA-NLC themselves were not infected with EBV. Precursor frequency analysis indicated that ~1 in 12,500 peripheral B cells could give rise to these EBV-transformed B cell lines upon coculture with RA-NLC. These results indicate that RA-NLC from bone marrow and synovium have the capacity to rescue B cells from spontaneous apoptosis, facilitate Ig production, and promote the outgrowth of EBV-transformed B lymphoblastoid cells. These findings suggest that RA-NLC may play a role in the local and systemic hyperactivity of B cells characteristic of rheumatoid arthritis. (J. Clin. Invest. 1998. 102:606–618.) Key words: RA • B cells • apoptosis • stromal cells

Introduction

Nurse cells were first recognized in cell suspensions from dissociated thymi (1, 2). Thymic nurse cells form unique complexes with bone marrow–derived T cell precursors, and play an important role in thymocyte maturation and differentiation, eventually leading to the generation of positively (3, 4) or negatively (5) selected T cells that subsequently migrate to the T cell-dependent areas of secondary lymphoid organs. After initial adhesion to thymic nurse cells, thymocytes crawl beneath them in vitro (6, 7). This phenomenon, known as pseudoemperipolesis, is peculiar to nurse cells (8), and has been used to identify nurse-like cells (NLC)† at various tissue sites. Previous studies have characterized NLC clones from human dermal tissue (9), and nurse-like stromal cell lines have been established from bone marrow of RA patients (10). Takeuchi, E., T. Tomita, T. Toyosaki-Maeda, H. Hashimoto, M. Kaneko, H. Takano, K. Sugamoto, R. Suzuki, and T. Ochi, manuscript submitted for publication. Moreover, NLC have been established from the synovium of RA patients (11). Tomita, T., E. Takeuchi, T. Toyosaki-Maeda, H. Oku, M. Kaneko, H. Takano, K. Sugamoto, K. Ohzono, R. Suzuki, and T. Ochi, manuscript submitted for publication). A common feature of all NLC was their capacity to support pseudoemperipolesis, similarly to thymic nurse cells. Thus, nurse cells may play an important role in extralymphoid immune responsiveness, as well as promoting maturation of T cells in the thymus.

In addition to their association with T cells, nurse cells have also been noted to interact physically with B cell lymphoma lines (9). This finding suggests that NLC may also promote B cell function, but the role of NLC in B cell maturation and differentiation has not been delineated. Furthermore, the functional potential of extrathymic nurse cells is not known.

RA is characterized by chronic inflammation with infiltration of a variety of inflammatory cells, including those of myeloid origin as well as T and B lymphocytes into the affected synovium. One feature of rheumatoid inflammation is local B cell activation, resulting in the production of large amounts of

† Abbreviations used in this paper: BST-1, bone marrow stromal antigen-1; DT1, human dermal fibroblast cell line; FDC, follicular dendritic cells; G-CSF, granulocyte colony-stimulating factor; GM-CSF, granulocyte–macrophage colony-stimulating factor; MFI, mean fluorescence intensity; NLC, nurse-like cells; PE, phycoerythrin; RA-NLC, rheumatoid arthritis NLC; VCAM, vascular cell adhesion molecule.
Ig and autoantibodies. The features of the synovium that promote local B cell differentiation are not completely delineated, although previous studies have suggested that extralymphoid B cell activation in the rheumatoid synovium may be promoted by fibroblast-like synoviocytes. Thus, B lymphocytes, some of which expressed proliferating cell nuclear antigen, were noted to be in intimate contact with synoviocytes in the subintimal layer of the rheumatoid synovium (12), suggesting a role for this interaction in facilitating B cell responses locally. In addition, synoviocytes have been noted to support the terminal differentiation of activated B cells into immunoglobulin-secreting plasma cells (13). These results suggest a role for synoviocytes in facilitating local B cell responses in RA synovium. Whether the capacity to facilitate B cell activation is a general property of synoviocytes or, alternatively, reflects the activity of a small number of contaminating NLC is currently unknown.

These studies were undertaken to examine the possibility that NLC promote B cell as well as T cell activation and differentiation. To address these issues, NLC clones from bone marrow and synovial tissue of patients with RA (RA-NLC) were established and their capacity to promote B cell survival and activation was explored. RA-NLC enhanced B cell viability and inhibited spontaneous apoptosis by a mechanism that was dependent on their expression of vascular cell adhesion molecule-1 (VCAM-1, CD106) and bone marrow stromal cell antigen-1 (BST-1, CD157). RA-NLC also enhanced Ig production and promoted the outgrowth of B lymphoblastoid cell lines. These findings are consistent with the conclusion that NLC in bone marrow or in synovial tissue may play a role in the local and systemic stimulation of B cell activity characteristic of RA.

Methods

Isolation of NLC clones from RA bone marrow and synovial tissue. NLC lines were established from RA bone marrow and synovial tissue as previously described (9–11) and clones of NLC were established from these lines. In brief, heparinized bone marrow from the iliac crest or synovial tissue from knee joints of patients with RA who met American College of Rheumatology criteria (14) was obtained after informed consent. Synovial tissue was dissociated by collagenase and trypsin. Isolation of nurse-like cell lines was accomplished as described previously (9–11), by culturing dissociated single cells in DME (Bio Whittaker, Walkersville, MD) supplemented with 10% FBS, and 25 μl (0.5 cells) of the cell suspension was added to individual wells of a 96-well flat-bottom microtiter plate (Becton Dickinson, Mountain View, CA) in RPMI 1640 (Life Technologies, Inc.) with 10% FBS for 48 h as described (9). The conditioned medium was added to the cultures twice weekly until stable cell lines were obtained. The cultures were then maintained for > 2 mo, with repeated weekly cell transfers. Afterward, the NLC lines were cloned by limiting dilution. To accomplish this, the NLC lines were adjusted to 20 cells/ml in DME with 10% FBS, and 25 μl (0.5 cells) of the cell suspension was added to individual wells of a 96-well flat-bottom microtiter plate (Becton Dickinson) and incubated at 37°C in 5% CO2,93% air. The growing cells in individual wells were transferred to a 24-well flat-bottom culture plate (Becton Dickinson) containing DME with 10% FBS. Thereafter, clones were maintained and replenished with fresh DME medium with 10% FBS every 3–4 d.

Several NLC clones were obtained from the RA patients. RA-NLC33BM, RA-NLC87BM, and RA-NLC91BM were from RA bone marrow, whereas RA-NLC34syn, RA-NLC45syn, RA-NLC88syn, and RA-NLC77syn were from RA synovial tissue. All these RA-NLCs were identified by the capacity to support pseudoemperipositis, as indicated by the migration of T cells beneath them observed by phase-contrast microscopy in vitro (Fig. 1). The T cell lymphoma line, MOLT-17 (American Type Culture Collection, Rockville, MD) was used to document the capacity of the various nurse cell clones to support pseudoemperipositis.

Other cell lines. Mouse fibroblast cell lines NIH3T3 and L cells, the human B lymphoblastoid cell line, Raji, the human B cell lymphoma lines MC/car and RAMOS, and the human T cell lymphoma line, MOLT-17 were obtained from American Type Culture Collection. The EBV-transformed B cell lymphoblastoid cell line, ML-1, was a kind gift of Dr. Ton Logtenberg (University of Utrecht, The Netherlands). Human dermal fibroblasts (DT1) were a gift from Dr. Heather Wishey (University of Texas Southwestern Medical Center, Dallas, Texas).

B cell separation. PBMC were isolated from heparinized blood of healthy adult volunteers by centrifugation over sodium diatrizoate/Ficoll gradients (Pharmacia Fine Chemicals, Inc., Piscataway, NJ). CD19+ B cells were purified by using the CEPRATE streptavidin column (CellPro, Bothell, WA), after staining of the cells with subsaturating concentrations of biotinylated mouse anti–human CD19 mAb (Coulter Corp., Miami, FL). The resultant population of B cells contained > 97% CD20+ B cells.

CD4 T cell separation. CD4+ T cells were prepared from B cell-depleted PBMC by negative selection, using a panning technique (15) to deplete contaminating HLA-DR+ cells and CD8+ T cells. Cells were reacted with saturating concentrations of the anti-HLA-DR mAb, L243, and the anti-CD8mAb, OKT8 (both from American Type Culture Collection). After being washed, the cells were incubated on goat anti-mouse Ig (GaMlg) (Cappel Laboratories, Inc., Cockeysville, PA) coated panning dishes. After a 70-min incubation at 4°C, the nonadherent cells were gently aspirated and were panned a second time on another GaMlg-coated panning dish, after which the nonadherent cells were aspirated. The CD4+ T cell population obtained in this manner contained < 0.1% esterase-positive cells, < 1% CD8+ T cells, and > 96% CD4+ T cells.

Antibodies, cytokines, and reagents. Various antibodies were used, including a goat F(ab’2) Ab directed to human IgD (Caltag Laboratories, Burlingame, CA); a control goat F(ab’2) Ab (Caltag Laboratories); Leu-20, a phycoerythrin (PE)-conjugated mouse IgG1 mAb directed to human CD23 (Becton Dickinson, San Jose, CA); A1A5, a mouse IgG1 mAb directed to human CD29 (integrin β1) (Cosmo Bio, Tokyo, Japan); Ber-MAC-DRC, a mouse IgG1 mAb directed to human CD35 (Dako Corp., Carpinteria, CA); HB-7, a FITC-conjugated mouse IgG1 mAb directed to human CD35 (Caltag Laboratories); a control FITC-conjugated mouse IgG1 mAb, (Caltag Laboratories); G28.5, a mouse IgG1 mAb directed to human CD40 (American Type Culture Collection); 4D9-8, a mouse IgG1 mAb against the human CD40 ligand molecule (a kind gift of Dr. R.J. Noelle, Dartmouth Medical School); P1B5, a mouse IgG1 mAb directed to human CD49c (Funakoshi, Tokyo, Japan); HP2/1, a mouse IgG1 mAb directed to human CD49d (α4 integrin) (Immunotech, Marseilles, France); 15.2, a mouse IgG1 mAb directed to human CD54 (Cosmo Bio, Tokyo, Japan); TP/55.3.1, a FITC-conjugated mouse IgG2a mAb directed to human CD69 (Caltag Laboratories); a control FITC-conjugated mouse IgG2a mAb, (Caltag Laboratories); 38-13, a rat IgM mAb directed to human CD77 (Cosmo Bio); B70, a PE-conjugated mouse IgG2a mAb directed to human CD86 (PharMingen, San Diego, CA); a control PE-conjugated mouse IgG2a mAb (PharMingen); DX2, a mouse IgG1 mAb directed to human CD85 (PharMingen); 51-10C9, a mouse IgG1 mAb directed to human CD106 (VCAM-1) (PharMingen) for staining; 1G11B1, a mouse IgG1 mAb directed to human CD106 (Serotec, Oxford, England) for blocking; MOPC, a control mouse IgG1 mAb; MB40.5 (American Type Culture Collection), a mouse IgG1 mAb directed to human HLA-A.B.C (class I MHC); L243 (American Type Culture Collection), a mouse IgG3 mAb directed to monomorphic HLA-DR deter-
minants (class II MHC); a sheep anti-mouse IgG, FITC conjugate (The Binding Site, Birmingham, UK); a control FITC-conjugated mouse IgG, mAb (Caltag Laboratories); BEC7, a mouse IgG, mAb against human CD157; RF3, a mouse IgG, mAb against human CD157; RS38, a mouse IgM mAb against human BST-2 (Medical and Biological Laboratories Co., Ltd., Nagoya, Japan); polyclonal rabbit Ab against human CD157; control preimmune rabbit Ab. BEC7, RF3, polyclonal rabbit Ab against human CD157, and control preimmune rabbit Ab were developed and purified as described previously (16–19). FITC-conjugated sheep F(ab')2, Ab directed to mouse IgG heavy- and light-chain (Calbiochem, La Jolla, CA) was used as secondary antibody.

SOLuble forms of human recombinant CD157 and CD38 were produced and purified as described previously (19). CD157 and CD38 are ~30% homologous at the amino acid level and appear to have derived by gene duplication from an ancestral gene (20–22). Purified recombinant human IFNγ (Shionogi and Co., Ltd., Osaka, Japan) was used at 100 U/ml for stimulation of RA-NLC or human dermal fibroblasts (DT1).

Quantitation of cytokines. RA-NLCs were maintained routinely with DME supplemented with 10% FBS until they became confluent. The culture supernatant of each clone was collected, and the amount of IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-7, IL-8, granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage CSF (GM-CSF), TNF-α, and TNF-β was measured with ELISA kits (Quantikine; R & D Systems, Minneapolis, MN), according to the manufacturer’s instructions.

Culture medium. B cell lines, Raji, RAMOS, and normal peripheral B cell were cultured in RPMI 1640 medium (Life Technologies, Inc.) supplemented with 200 U/ml penicillin G, 10 μg/ml gentamicin, 0.3 mg/ml l-glutamine, and 10% FBS (Life Technologies, Inc.). RA-NLC and fibroblast cell lines DT1, NIH3T3, and L cells were cultured in high-glucose DME (Bio Whittaker) with 100 U/ml penicillin G, 10 μg/ml gentamicin, 0.3 mg/ml l-glutamine, and 10% FBS (Life Technologies, Inc.).

Flow cytometric analysis. The cells were cultured for various lengths of time with various stimuli as indicated and after washing with PBS containing 2% normal human AB serum and 0.1% sodium azide, cells were reacted with saturating concentrations of various mAb at 4°C for 30 min. Analysis was performed using the FACScan (Becton Dickinson) flow cytometer. Dead cells were eliminated by propidium iodide staining. Density of staining was expressed as the change in mean fluorescence intensity (propidium iodide staining). Density of staining was expressed as the change in mean fluorescence intensity (propidium iodide staining).

Measurement of Ig production. At the end of 12 d of incubation, the supernatants from each culture well were collected and assayed for Ig content. Ig in the supernatants was quantitated by iso- type-specific ELISA as previously described (31). Briefly, microtiter plates (Cooke; Dynatech Laboratories, Alexandria, VA) were coated with affinity-purified goat antibodies to human α, μ, γ chains (Tago, Camarillo, CA) diluted in borate-buffered saline by incubating at 37°C for 2 h and kept at 4°C overnight. Plates were then washed with Tween saline and incubated with serial dilutions of standard Ig (Sigma Chemical Co., St. Louis, MO) or appropriately diluted culture supernatants in PBS containing 0.5% Tween 20. Bound Ig was detected with peroxidase-conjugated affinity-purified isotype-specific Abs (Tago) and o-phenylenediamine dihydrochloride (Sigma Chemical Co.) as substrate. Absorbance was determined at 490 nm on the EL312 Biokinetics Reader (Bio-Tek Instruments, Winooski, VT). The amount of Ig in the supernatants was calculated by comparison with a standard curve by using the KinetiCalc program (Bio-Tek Instruments, Inc.). Triplicates for each culture condition were performed and differed by <10%. The sensitivities of the specific assays were 12 ng/ml for IgA and IgG, and 24 ng/ml for IgM.

Limited dilution analysis of B cell outgrowth. To estimate the number of precursors of EBV-transformed B cells in peripheral blood, limited dilution frequency analysis was performed. Various numbers of peripheral B cells from four different donors were cultured with RA-NLC91BM for 4 wk in 96-well flat-bottomed plates. Nine replicates of each cell dilution were carried out and the percentage of wells yielding B cell growth was calculated.

Assay of cell proliferation. To assay cellular proliferation, a colo- rimetric method was used (32). Briefly, B cells were cultured for the indicated length of time, after which 180 μl of the supernatant was removed without disturbing the pellet. 10 μl of a yellow tetrazolium salt, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bro- mide; Sigma Chemical Co.), and 100 μl of PBS were added to the re-
remaining pellet and incubated at 37°C for 4 h, after which 100 μl of 0.1 N HCl/isopropanol alcohol was added to terminate the reaction and dissolve the formazan product. The contents of the well were then pipetted gently until mixed, and the absorbance was read at 570 and 630 nm on the EL312 Biokinetics Reader.

Results

Establishment of the RA-NLC clones. Seven clones were established from RA-NLC parental lines from different RA patients, three from bone marrow (RA-NLC33BM, RA-NLC87BM, and RA-NLC91BM), and four from synovial tissue (RA-NLC34syn, RA-NLC45syn, RA-NLC88syn, and RA-NLC77syn). The appearance of a representative clone, RA-NLC34syn, is shown in Fig. 1a. RA-NLCs were large adherent cells with an irregular polygonal shape, long dendritic processes, and rich cytoplasm. They did not exhibit either a typical fibroblastic (slender and elongated) or macrophage-like appearance (irregular with many membrane ruffles). Each of the clones was similar in appearance to NLC lines derived from bone marrow and synovium and previously described (9–11; Takeuchi, E., T. Tomita, T. Toyosaki-Maeda, H. Hashimoto, M. Kaneko, H. Takano, K. Sugamoto, R. Suzuki, and T. Ochi, manuscript submitted for publication; Tomita, T., E. Takeuchi, T. Toyosaki-Maeda, H. Oku, M. Kaneko, H. Takano, K. Sugamoto, K. Ohzono, R. Suzuki, and T. Ochi, manuscript submitted for publication).

All RA-NLC clones were screened for the ability to promote pseudoemperipolesis. RA-NLCs were incubated with the human T cell lymphoma line, MOLT-17, and their ability to induce MOLT-17 cells to migrate beneath them was examined by phase-contrast microscopy (Fig. 1c). As previously reported for thymic nurse cells and skin-derived NLC (6, 9), and noted for RA-derived nurse-like cell lines (10, 11), MOLT-17 cells were induced to undergo pseudoemperipolesis by the hu-
man RA-NLC clones, forming typical clusters and, thereby, permitting the RA-NLC clones to be classified functionally as nurse cells and not fibroblasts (9–11; Takeuchi, E., T. Tomita, T. Toyosaki-Maeda, H. Hashimoto, M. Kaneko, H. Takano, K. Sugamoto, R. Suzuki, and T. Ochi, manuscript submitted for publication; Tomita, T., E. Takeuchi, T. Toyosaki-Maeda, H. Oku, M. Kaneko, H. Takano, K. Sugamoto, K. Ohzono, R. Suzuki, and T. Ochi, manuscript submitted for publication). The B cell lymphoma line, MC/car also migrated under RA-NLCs (Fig. 1d). Of note, peripheral B cells from normal donors bound to RA-NLCs (Fig. 1b) but did not migrate beneath them. Peripheral B cells were 14- to 20-fold smaller than RA-NLCs B cells, and primarily bound to the processes of RA-NLC. Despite the binding of peripheral B cells to RA-NLCs, there was no obvious pseudopemiploisis by these cells. All of the RA-NLC clones interacted with MOLT-17, Mc/car, and peripheral B cells comparably.

Surface phenotype of RA-NLC. RA-NLC clones from bone marrow and synovial tissue expressed CD29, CD49c, CD54, CD106, and HLA-A,B,C (class I MHC) constitutively, but did not express CD35, CD40, or CD40L (Figs. 2 and 3; Table I). Human dermal fibroblasts also expressed CD29, CD49c, CD54, and class I MHC, whereas constitutive expression of CD106 was minimal. IFNγ (100 U/ml) stimulation of RA-NLC induced expression of CD40 and HLA-DR (class II MHC), but not expression of CD35 or CD154/CD40L (Table I).

Expression of CD106 by RA-NLCs was modestly enhanced by culture with normal peripheral B cells, and markedly enhanced by IFNγ. In contrast, expression of CD106 by human dermal fibroblasts was much less marked after stimulation with IFNγ or by culture with peripheral B cells (Fig. 2).

Expression of CD157(BST-1) and BST-2 by RA-NLCs was also examined (Fig. 3). Using mAb RF3, expres-
Expression of CD157 by RA-NLC, but not dermal fibroblasts, was enhanced by IFNγ. This was much more marked with bone marrow–derived compared with synovium-derived RA-NCL. Using mAb BEC7, only RA-NLC87BM and RA-NLC91BM were found to express CD157 and then only after stimulation with IFNγ. Even after IFNγ stimulation expression of BEC7-identified CD157 was modest. BST-2 was not expressed by any of the cells constitutively, and IFNγ enhanced expression minimally and only by some clones. It should be noted that expression of CD106 and CD157 mRNA was found in all RA-NLC clones by reverse transcription (RT)-PCR (data not shown). To assure that RA-NLCs had not been transformed by EBV, mRNA for the EBV-encoded gene, BamW was also examined. All RA-NLCs and DT1 were negative for mRNA for this EBV gene product (data not shown).

Cytokine production by RA-NLC. The capacity of RA-NLC to produce various cytokines was studied. Table II shows cytokines produced by RA-NLC33BM from bone marrow and RA-NLC34syn from synovial tissue. RA-NLC from bone marrow produced detectable levels of IL-6, IL-7, IL-8, and GM-CSF, and the production of IL-8 was very great. RA-NLC from synovial tissue produced detectable levels of IL-6, IL-8, G-CSF, and GM-CSF proteins, and the production of IL-6 and IL-8 was very great. Bone marrow–derived, but not synovial RA-NLC produced IL-7, whereas synovial RA-NLC produced G-CSF and greater amounts of IL-6.

Rheumatoid Arthritis support the survival of peripheral B cells by blocking spontaneous apoptosis. Peripheral B cells were cultured in medium alone or with RA-NLC or fibroblasts, and the number of viable B cells was estimated by trypan blue exclusion (Fig. 4). B cells cultured in medium alone rapidly died (6.2% viable at day 6, 3.4% viable at day 9, 1.4% viable at day 14, and 0 viable at day 21). Coculture of B cells with NIH3T3 or L cells had little effect on viability. By contrast, culture of B cells with RA-NLC markedly increased their viability (41.9% viable at day 6, 31.4% viable at day 9, 14.9% viable at day 14, and 3.7% viable at day 21). DT1 also supported B cell viability, but less effectively than RA-NLC. The loss of viability of B

Table I. Surface Phenotype of RA-NLC

<table>
<thead>
<tr>
<th>Surface determinant</th>
<th>Bone marrow</th>
<th>Synovial tissue</th>
<th>Human skin fibroblasts (DT1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>87BM</td>
<td>91BM</td>
<td>77syn</td>
</tr>
<tr>
<td>CD29</td>
<td>Resting</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD35</td>
<td>Resting</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CD40</td>
<td>IFNγ</td>
<td>Resting</td>
<td>–</td>
</tr>
<tr>
<td>CD40L</td>
<td>IFNγ</td>
<td>Resting</td>
<td>+</td>
</tr>
<tr>
<td>CD49c</td>
<td>IFNγ</td>
<td>Resting</td>
<td>–</td>
</tr>
<tr>
<td>CD54</td>
<td>Resting</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD106</td>
<td>Resting</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HLA-A,B,C</td>
<td>Resting</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>HLA-DR</td>
<td>Resting</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>IFNγ</td>
<td>–</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

RA-NLC or human skin fibroblasts (DT1) were cultured with medium alone (resting) or with IFNγ (100 U/ml) for 3 d, and were detached with 0.05% trypsin-EDTA in PBS at room temperature for 5 min. They were stained with anti–human mAb, and analyzed by FACScan.

Table II. Cytokines Secreted by RA-NLC

<table>
<thead>
<tr>
<th></th>
<th>IL-1α</th>
<th>IL-1β</th>
<th>IL-2</th>
<th>IL-3</th>
<th>IL-4</th>
<th>IL-6</th>
<th>IL-7</th>
<th>IL-8</th>
<th>G-CSF</th>
<th>GM-CSF</th>
<th>TNFα</th>
<th>TNFβ</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA-NLC from bone marrow</td>
<td></td>
</tr>
<tr>
<td>(RA-NLC33BM)</td>
<td>< 0.5</td>
<td>< 10.0</td>
<td>< 40.0</td>
<td>< 7.0</td>
<td>< 0.5</td>
<td>17.0</td>
<td>14.5</td>
<td>7876.0</td>
<td>< 10.0</td>
<td>3.0</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
<tr>
<td>RA-NLC from synovial tissue</td>
<td></td>
</tr>
<tr>
<td>(RA-NLC34syn)</td>
<td>< 0.5</td>
<td>< 10.0</td>
<td>< 40.0</td>
<td>< 7.0</td>
<td>< 0.5</td>
<td>1365.0</td>
<td>< 0.5</td>
<td>1395.5</td>
<td>113.5</td>
<td>5.5</td>
<td>< 0.5</td>
<td>< 0.5</td>
</tr>
</tbody>
</table>

RA-NLC were cultured in 24-well plates with DME plus 10% FBS to confluence. After changing the medium, RA-NLC were cultured for 7 d and supernatant was obtained. Cytokines in supernatant were measured with ELISA and expressed as picograms per milliliter. Data are shown from one of two experiments with similar results.
cells cultured alone related to the induction of apoptosis, as Fig. 5 shows. Coculture of B cells with RA-NLC substantially blocked spontaneous apoptosis of peripheral B cells.

Effect of CD106 and CD157 expressed by RA-NLC on the survival of peripheral B cells.

The effect of CD157 on the survival of peripheral B cells was examined using a soluble recombinant form of CD157 (17). Since CD157 has an ~30% amino acid sequence homology with CD38, and both CD157 and CD38 have ADP-ribosyl cyclase and cADPR hydrolase activities (18, 20–23, 33–35), a soluble recombinant form of CD38 was used as a control. As Table III shows, only 17.6% of B cells cultured in medium alone survived in culture for 5 d, and neither soluble CD157 alone (16.9%) nor soluble CD38 (15.8%) affected peripheral B cell survival. By contrast, peripheral B cells cultured with RA-NLC91BM, which express both CD106 and CD157, exhibited significantly greater survival (45.2%, \(P < 0.0001 \)). B cell survival promoted by RA-NLC91BM was reduced by a blocking anti-CD106 mAb (18.2%, \(P < 0.0001 \)) to the same level of B cells cultured in medium alone (17.6%). B cell survival promoted by RA-NLC was also reduced by a blocking anti-CD157 polyclonal Ab (27.3%, \(P < 0.01 \)) but not by the anti-CD157 mAb (RF3) used for staining. Soluble CD157, but not soluble CD38, together with RA-NLC further increased survival of B cells (73.8%, \(P < 0.0001 \)).

The effect of anti-CD106 mAb or anti-CD157 on the pro-

Table III. Effect of CD106 and CD157 on the Survival of Peripheral B Cells

<table>
<thead>
<tr>
<th>B cells with RA-NLC cells</th>
<th>RA-NLC</th>
<th>Viable cells (mean ± SEM ([\times 10^3])</th>
<th>(*P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B cells with medium alone</td>
<td>–</td>
<td>35.2 ± 5.7 (17.6%)</td>
<td></td>
</tr>
<tr>
<td>+ Soluble CD157</td>
<td>–</td>
<td>33.9 ± 4.9 (16.9%)</td>
<td></td>
</tr>
<tr>
<td>+ Control soluble CD38</td>
<td>–</td>
<td>31.6 ± 4.2 (15.8%)</td>
<td></td>
</tr>
<tr>
<td>B cells with RA-NLC cells</td>
<td>+</td>
<td>90.5 ± 5.6* (45.2%)</td>
<td></td>
</tr>
<tr>
<td>+ Anti-CD106 mAb (1.G11B1)</td>
<td>+</td>
<td>36.4 ± 5.5* (18.2%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>+ Control IgG1 mAb (MOPC)</td>
<td>+</td>
<td>78.8 ± 6.0 (39.4%)</td>
<td>0.0001</td>
</tr>
<tr>
<td>+ Anti-CD157 mAb (RF3)</td>
<td>+</td>
<td>82.4 ± 5.8 (41.2%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>+ Control IgG2a mAb (P.17)</td>
<td>+</td>
<td>81.8 ± 4.9 (40.9%)</td>
<td>0.01</td>
</tr>
<tr>
<td>+ Anti-CD157 polyclonal Ab</td>
<td>+</td>
<td>54.6 ± 6.3* (27.3%)</td>
<td>0.01</td>
</tr>
<tr>
<td>+ Control preimmune rabbit IgG</td>
<td>+</td>
<td>77.8 ± 4.5 (38.9%)</td>
<td></td>
</tr>
<tr>
<td>+ Soluble CD157</td>
<td>+</td>
<td>147.6 ± 8.3* (73.8%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>+ Control soluble CD38</td>
<td>+</td>
<td>79.0 ± 5.1 (39.5%)</td>
<td></td>
</tr>
</tbody>
</table>

Peripheral B cells were cultured in 96-well flat-bottom culture plates \((2 \times 10^5)/\text{well}, 200 \mu l\) in medium alone or with soluble CD157 or with control soluble CD38 for 5 d, or with RA-NLC91BM and with several antibodies or soluble molecules indicated. MOPC (IgG1) was used as the isotype-matched control mAb for anti-CD106 mAb, P.17 (IgG2a) was used as the isotype-matched control mAb for anti-CD157 mAb (RF3), and preimmune rabbit IgG was used as the control for polyclonal antibody to CD157. Soluble CD157 and soluble CD38 were used at 10 \(\mu g/\text{ml} \) and antibodies were used at 4 \(\mu g/\text{ml} \). The number of viable B cells was quantitated at day 5 after staining with trypan blue. Each experiment was carried out in replicate, and mean ± SEM of the total number of cells cultured in nine wells was calculated. The percentage of viable cells (shown in parentheses) was calculated by dividing the number of viable cells by the initial cell number \((2 \times 10^5)\). *P values were derived using student’s \(t \) test.
motion of survival by synovial tissue–derived RA-NLC was also examined (Fig. 6). RA-NLC77syn promoted B cell survival that was significantly blocked by an mAb to CD106 in a concentration-dependent manner. At higher concentrations, anti-CD106 mAb completely blocked B cell survival promoted by RA-NLC77syn (P < 0.01) to the same level as B cells cultured in medium alone. Although anti-CD157 Ab appeared to block the survival of B cells partially, this effect was not statistically significant (P = 0.06). This may relate to the markedly diminished expression of CD157 by RA-NLC77syn (Fig. 3).

Expression of a number of B cell surface antigens was increased by coculture with RA-NLC. These included CD38, CD95, CD23, CD69, and CD86 (data not shown). Of these, each was also increased by culture with control dermal fibroblasts (DT1 cells) except CD95, whose expression was increased on B cells by culture with RA-NLC, but not with DT1 cells (data not shown).

Secretion of Ig from peripheral B cells. Coculture with RA-NLC markedly increased secretion of Ig by peripheral blood B cells in the absence of stimulation by a polyclonal activator (Fig. 7). In contrast, a variety of control cells, including L cells, NIH3T3 cells, and DT1 exerted a considerably more modest impact on Ig production by B cells. In addition, RA-NLC enhanced IgG and IgA production by B cells stimulated with anti–CD3-activated T cells (data not shown). The effect of RA-NLC was significantly greater than that of human fibroblasts (DT1). The impact of RA-NLC on proliferation of peripheral blood B cells and a variety of B cell lines was examined. Despite the positive influence on Ig production previously noted, RA-NLC had no effect on initial proliferation of either peripheral blood B cells or a variety of B cell lines (data not shown).

Support of the outgrowth of B cell lines by RA-NLC. Despite the lack of an impact on initial cellular proliferation, clusters of growing cells were observed after a 7-wk incubation of B cells with RA-NLC, but not with DT1 cells (Fig. 8). By limiting dilution analysis, the precursor frequency of peripheral B cells generating outgrowth was ~1 in 12,500 (Fig. 9). Each of
the B cell lines produced by culture of peripheral B cells with RA-NLC expressed EBV-encoded mRNA (data not shown). As noted previously, however, RA-NLC did not express EBV-encoded gene products.

Discussion

Rheumatoid synovitis is characterized by the local activation of B cells and the production of large amounts of Ig (36, 37). It has been suggested that synoviocytes may contribute to the stimulation of B cell differentiation within the synovium (12, 13). Recently, cells with nurse cell characteristics have also been found in rheumatoid synovium and bone marrow (10, 11; Takeuchi, E., T. Tomita, T. Toyosaki-Maeda, H. Hashimoto, M. Kaneko, H. Takano, K. Sugamoto, R. Suzuki, and T. Ochi, manuscript submitted for publication; Tomita, T., E. Takeuchi, T. Toyosaki-Maeda, H. Oku, M. Kaneko, H. Takano, K. Sugamoto, K. Ohzono, R. Suzuki, and T. Ochi, manuscript submitted for publication). To examine the possibility that NLC might contribute to systemic and local activation of B cells within the synovium, RA-NLC clones were established from both sites and their capacity to promote B cell responses analyzed. The RA-NLC clones were identified as nurse cells because they supported pseudoemperipolesis by a T cell lymphoma line, a characteristic that is considered to be specific for nurse cells and to distinguish them from other cell types, including fibroblasts (6–9). The RA-NLC clones also supported pseudoemperipolesis of B lymphoma cells as was recently reported for human skin–derived nurse cell clones (9) as well as bone marrow and synovial derived NLC (Takeuchi, E., T. Tomita, T. Toyosaki-Maeda, H. Hashimoto, M. Kaneko, H. Takano, R. Sugamoto, R. Suzuki, and T. Ochi, manuscript submitted for publication; Tomita, T., E. Takeuchi, T. Toyosaki-Maeda, H. Oku, M. Kaneko, H. Takano, K. Sugamoto, K.

Figure 7. RA-NLC induce secretion of immunoglobulin from peripheral B cells. Peripheral B cells (5 × 10⁴) were cultured in medium alone or with mouse fibroblasts (L-cells, NIH3T3 cells), human dermal fibroblasts (DT1), or with RA-NLC33BM with no other stimulation. The supernatants were harvested after 12 d of culture and Ig content was analyzed by isotype-specific ELISA. Data from three experiments are shown and expressed as mean ± SEM. P values were derived using the student’s t test.

Figure 8. Outgrowth of B cells with RA-NLC. Long-term culture of normal peripheral B cells with RA-NLC (a–d) or human dermal fibroblasts (e and f) was performed. B cells were observed by phase-contrast microscopy after a culture of 1 (a, c, and e) and 7 wk (b, d, and f), respectively. At 1 wk, approximately one-third of B cells were alive in all conditions (a, d, and g). After 7 wk of culture with RA-NLC, B cell aggregations and blast cells were observed, whereas all of the B cells were dead in culture with DT1. ×60.
Of note, RA-NLC also expressed CD157 or BST-1, a glycoprotein (47). Thus, constitutive expression of CD106 (VCAM-1) appears to be a characteristic of nurse cell lines, although each of these populations is clearly positive. Moreover, RA-NLC related to the production of IL-7 that was secreted by bone marrow–derived, but not synovial RA-NLC. This could be an important difference because IL-7 is a stromal cell–derived factor that stimulates B-lineage cell growth and maturation (48). Additional RA-NLC clones will need to be screened to confirm this difference, however, as only some skin-derived nurse cell lines produced IL-7 (9).

RA-NLC promoted survival of peripheral blood B cells by blocking spontaneous apoptosis. The activity of RA-NLC was much greater than the nonspecific effect of human or mouse fibroblasts and could not be explained by the activity of secreted factors. Previous reports have shown that synoviocytes could promote the survival of T cells (49) and B cells (13). An adhesion molecule–mediated mechanism has been suggested to account for T cell survival (49), but the mechanism by which synoviocytes promote T cell survival has not been further delineated. Moreover, the possible contamination of the synoviocytes used in these studies with nurse-like cells has not been evaluated. In these studies, RA-NLC were found to be

Figure 9. RA-NLC promote outgrowth of a small population of B cells. Several densities of peripheral B cells from four different donors were cultured with RA-NLC91BM for 4 wk in 96-well flat-bottomed plates. The vertical axis shows percentage of wells yielding B cell growth, and horizontal axis shows number of B cells initially cultured in each well.
more effective than fibroblasts in maintaining B cell viability by blocking spontaneous apoptosis. Moreover, the mechanism involved the activity of two surface molecules constitutively expressed by RA-NLC, CD106, and CD157. As mentioned above, CD157 expressing bone marrow stromal cells previously have been shown to enhance proliferation of a pre-B cell line (16), but this is the first indication that CD157 may have a functional impact on mature peripheral B cells. Although recombinant soluble CD157 alone had no effect on spontaneous B cell apoptosis, together with RA-NLC, enhanced protection from apoptosis was noted. This finding, along with the data from blocking studies with antibodies to CD157, strongly implied that RA-NLC protected B cells from apoptosis by delivering two signals to B cells, one of which may be provided by CD157 engaging an unknown ligand on the B cell.

The second signal that protected B cells from apoptosis was provided by CD106, a molecule that was also constitutively expressed by RA-NLC and could be further upregulated by IFN-γ. An interaction between CD106 expressed by the RA-NLC and its ligand, CD49d/CD29 (αβ, VLA-4) expressed by the B cell, appeared to be essential for maintenance of B cell viability and prevention of apoptosis. Previous evidence has shown that CD106 is essential for other functions of nurse cells such as the induction of pseudoemperipolesis (7). Moreover, CD49d/CD29 engagement has recently been shown to provide a costimulatory signal to human B cells (50). Thus, interactions between RA-NLC-expressed CD106 and B cell–expressed CD49d/CD29 are reasonable candidates to provide viability promoting signals to B cells.

Although RA-NLC failed to support initial B cell proliferation, they supported increased Ig production by otherwise unstimulated peripheral B cells or B cells activated with anti-CD3-stimulated T cells. Of note, RA-NLC were much more effective than fibroblasts at stimulating resting B cells to produce Ig. Although the mechanism of this phenomenon is unclear, it does not appear to be related to the CD40 signaling pathway as the RA-NLC failed to express CD40 ligand (CD154), even after stimulation with IFN-γ. It is possible that the molecules involved in the induction of Ig production are the same as those promoting viability, namely either CD157, CD106, or both. The possibility that these molecules provide signals to mature B cells that facilitate Ig production is consistent with the expression of CD157 by reticular cells in spleen and lymph node (44) and the recently described role of signaling via CD49d/CD29 in facilitating Ig production by peripheral B cells (50). This possibility is currently being examined. Regardless of the mechanism, the data are consistent with the conclusion that NLC in the rheumatoid synovium and bone marrow play a role in the local and systemic overreactivity of B cells characteristic of RA.

RA-NLC also supported the outgrowth of EBV-transformed B lymphoblastoid cells from normal B cells. Of importance, the RA-NLC were not infected with EBV, as has been reported for some synovial membrane-derived fibroblasts (51). Moreover, RA-NLC did not facilitate growth of EBV-transformed B lymphoblastoid cell lines, suggesting that they facilitated outgrowth of latently transformed B cells from peripheral blood. The precursor frequency of B cells undergoing long-term growth when cultured on RL-NLC (1:12,500) was comparable to the frequency of B cells latently infected with EBV in adult peripheral blood (52, 53) supporting this conclusion. The mechanism whereby RA-NLC promote the outgrowth of EBV-transformed B lymphoblastoid cell lines from human peripheral B cells is unknown, but is likely to involve more than nonspecific support of viability, as human fibroblasts supported B cell viability somewhat, but failed to facilitate the outgrowth of EBV-transformed B lymphoblastoid cell lines. Whether similar surface molecules are involved in this process as were involved in the maintenance of B cell viability is currently unknown, but is the subject of ongoing investigation.

In rheumatoid synovium, germinal center-like structures containing B cells aggregated around cells resembling follicular dendritic cells (FDC) develop (12). The exact lineage of these FDC-like cells is unclear, but they and FDC in secondary lymphoid organs have certain characteristics in common with RA-NLC. For example, synovial FDC-like cells express CD106 at high levels (12, 54). Constitutive expression of CD106 appears to be a feature of both NLC and FDC. In this regard, some (55) but not all (56) FDC lines derived from human tonsil express high levels of CD106. Importantly, CD106 plays a critical role in the interaction of FDC with B cells both in vivo and in vitro (55, 57, 58). Moreover, at least one FDC-like line has been shown to express CD157 (55). In addition, FDC-like lines are similar to nurse cell lines in vitro, in that both can promote pseudoemperipolesis (59). Finally, both FDC and nurse cells can promote B cell viability. Thus, an FDC-like line promoted the viability of tonsillar B cells (56), whereas freshly prepared FDC promoted the viability of germinal center tonsillar B cells in a CD49d/CD29-dependent manner (60). There are, however, differences between FDC lines and RA-NLC, including the cytokines produced (61) and whether they interact uniquely with B cells (58, 61) or with both T and B cells (59), as is typical of nurse cells. In addition, FDC lines appear to support emperipolesis (56, 59, 60) as well as the pseudoemperipolesis (59) typical of nurse cells (6–9). Despite these discrepancies, the results suggest the possibility that RA-NLC and FDC-like cells at inflammatory sites or even in secondary lymphoid organs have many overlapping functional and phenotypic features. However, RA-NLC fail to express CD21 or CD35, characteristic markers of classic FDC (62–64). The absence of these markers on RA-NLC may be related to the observation that although CD21 and CD35 are expressed by FDC in situ, they are rapidly lost when these cells are cultured in vitro (55, 56, 59, 61). Of note, these markers can be induced on synoviocytes by stimulation with the proinflammatory cytokines TNF-α and IFN-γ (12). In this study, IFN-γ upregulated expression of both CD106 and CD157 by RA-NLC. If this cytokine, in conjunction with TNF-α also upregulated expression of CD21 and CD35 by RA-NLC, the cells would then exhibit the phenotype of synovial FDC. In conjunction with the capacity of RA-NLC to facilitate B cell functional activity, cytokine-activated RA-NLC may well account for the aggregates of B cells and CD106 expressing FDC-like cells (54) and the local activation of B cells and immunoglobulin production characteristic of rheumatoid synovitis (36, 37).

Acknowledgments

The authors are grateful to Dr. Amrie C. Grammer for her careful review of the manuscript.

This research was supported by National Institutes of Health Specialized Center of Research grant AR-39169 and by the program for Promotion of Fundamental Studies in Health Science of the Organ-
zation for Drug ADR Relief, Research and Development Promotion and Product Review of Japan.

References

ment for VLA-4 and VLA-5 integrins in lymphoma cells binding to and migra-

10. Tomita, T., T. Toyosaki, S. Kawamura, H. Oki, R. Suzuki, H. Hashi-

moto, K. Hayashida, J. Hashimoto, and T. Ochi. 1996. Stromal cells established from bone marrow of RA patients could induce and maintain unusual myoid cells (CD14+ CD15+ cells) specific to severe RA patients. Arthritis Rheum. Suppl. 39:34.

volved in pre-B-cell growth. Genomics. 26:527–534.

20. Dong, C., D. Willerford, F.W. Alt, and M.D. Cooper. 1996. Genomic or-

ganization and chromosomal localization of the mouse B6 gene, a member of the CD38-ADP-ribosyl cyclase family. Immunogen. 45:35–43.

22. Ferrero, E., and F. Malavisi. 1997. Human CD38, a leukocyte receptor a-

Rheumatoid Arthritis Nurse B Cell–B Cell Interaction 617

