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Obesity and its related cluster of pathophysiologic conditions including insulin resistance, glucose
intolerance, dyslipidemia, and hypertension are recognized as growing threats to world health. It is
now estimated that 10% of the world’s population is overweight or obese. As a result, new therapeu-
tic options for the treatment of obesity are clearly warranted. Recent research has focused on the
role that gp130 receptor ligands may play as potential therapeutic targets in obesity. One cytokine
in particular, ciliary neurotrophic factor (CNTF), acts both centrally and peripherally and mimics

the biologic actions of the appetite control hormone leptin, but unlike leptin, CNTF appears to be
effective in obesity and as such may have therapeutic potential. In addition, CNTF suppresses inflammatory signal-
ing cascades associated with lipid accumulation in liver and skeletal muscle. This review examines the potential role
of gp130 receptor ligands as part of a therapeutic strategy to treat obesity.

The prevalence of adult obesity has increased approximately 75%
in the last quarter century (1). The prevalence of children who are
overweight and obese is also increasing in both developed and
developing countries (2). Among the disorders associated with
obesity, insulin resistance, glucose intolerance, and dyslipidemia
promote the development of pancreatic  cell failure and overt
type 2 diabetes. Current therapies to treat obesity center on life-
style modifications, but for those individuals who do not respond
to such treatment or cannot adhere to lifestyle intervention pro-
grams, bariatric surgery is often used. As this is neither a feasible
nor a desirable treatment for a pandemic, drug therapy is a viable
intervention for those in whom lifestyle modification has failed.
Currently, there are 3 obesity drugs commonly prescribed. Xeni-
cal (orlistat) is a gastrointestinal lipase inhibitor known to cause
moderate weight loss, but is associated with adverse gastrointesti-
nal effects including colon cancer (3). Sibutramine, a monoamine
reuptake inhibitor, results in greater weight loss compared with
orlistat, but is associated with increased blood pressure and ele-
vated heart rate. Rimonabant, the first of the endocannabinoid
receptor antagonists, appears most promising, as it induces weight
loss and improves waist circumference and HDL cholesterol con-
centration, but this drug is associated with the incidence of mood-
related disorders (4). Disappointingly, none have resulted in con-
sistent and effective weight loss, and to date, all antiobesity drug
trials have been limited by their high attrition rates and lack of
long-term morbidity and mortality data (4). Current therapeutic
strategies for diabetes and related diseases such as insulin resis-
tance usually involve the administration of thiazolidinediones
(TZDs) in combination with other therapies. These too have many
disadvantages, including weight gain, particularly when TZDs and
insulin are coadministered (5). Access to a drug capable of con-
comitantly decreasing body weight while enhancing insulin action
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that does not induce adverse side effects such as those described
above would have broad clinical impact.

Leptin: the great panacea

The existence of a molecule capable of signaling from fat to the CNS
was hypothesized for several decades, and the discovery of leptin
provided a critical scientific breakthrough in obesity-related disease
research (6-9). The isolation of a molecule that could profoundly
affect central feeding behavior led to the identification of canonical
signaling pathways in the central regulation of energy homeostasis
(10-12). A decade later, it is now well known that leptin primar-
ily signals though the JAK/STAT pathway. Indeed, it was initially
thought that leptin’s effects were mediated exclusively via this sig-
naling cascade, which ultimately causes alterations in the transcrip-
tion of genes mediating behavioral and metabolic processes (13).
However, many key metabolic effects of leptin signaling take place
too rapidly to be ascribed solely to changes in processes in response
to altered gene expression (14). Recent work from Minokoshi, Kahn,
and colleagues has, for example, demonstrated that leptin acts on
the brain by directly downregulating AMP kinase (AMPK) activity
independent of changes to gene transcription (15). This is thought
to be a direct, JAK/STAT-independent event. In recent years, work
from several groups (16-18) has also demonstrated that leptin can
increase fat oxidation and increase glucose uptake in skeletal mus-
cle via activation of AMPK within skeletal muscle. The reason why
leptin can reduce AMPK activity in the brain but activate it in the
periphery is not completely clear, but may be related to differential
actions of leptin on upstream kinases (14).

The discovery of leptin (4, 5) and the leptin receptor (19), the lat-
ter of which has both a long, full-length form (LRb) and a short,
truncated form (20), led to the hope that researchers had at last
identified a highly effective molecule and/or pathway that could
be targeted in the treatment of obesity. However, it soon became
apparent that obesity (in which high circulating concentrations of
leptin develop) resulted in leptin resistance in the CNS, whereby
endogenous leptin was no longer effective (21). Several mecha-
nisms have been suggested to account for this resistance. The first
appears to be related to reduced transport of leptin across the
blood-brain barrier, since leptin maintains its effect when deliv-
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Signaling via LRb and gp130R: similarities and
differences. (A) Leptin binds its homodimeric
receptor LRb, which results in autophosphory-
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lation and activation of JAK, subsequently
activating the insulin receptor substrate/PI3K
(IRS/PI3K) signalling pathway. JAK activation
also results in the phosphorylation of LRb at
Tyr985 and Tyr1138. The phosphorylation
of Tyr1138 mediates the recruitment, phos-
phorylation, and activation of the transcription
factor STATS, resulting in the transcription of
SOCS3 and other STAT3-dependent genes
in the nucleus. SOCS83 inhibits leptin signaling
via binding to SHP-2 bound to the LRb, recruit-
ing ubiquitin transferases to the SOCS3 box
domain at Tyr985; and binding JAK. (B) Signal-
ing through gp130R§ is similar to that through
LRb. In the case of IL-6 signaling, IL-6 binds to
the IL-6Ro/gp130Rp homodimer, which results
in JAK/STAT, insulin receptor substrate/PI3K,
and ERK signaling. Importantly, however,
there are 4 tyrosine phosphorylation sites (at
residues 767, 814, 905, and 915) distal to
the SHP-2 domain bound at Tyr759. As with
the LRb, SOCSS3 can inhibit JAK signaling on
gp130Rp. It is not clear why gp130R ligands
may overcome SOCS3 inhibition, but it may be
due to the 4 additional STAT3 binding sites,
since truncation of gp130R to remove these
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ered centrally, but not peripherally, in diet-induced obese mice
(22). Moreover, in obese humans, who have relative high circulat-
ing leptin levels, the uptake of leptin by the CNS (as determined
by the cerebrospinal fluid/plasma leptin ratio) is compromised,
demonstrating reduced efficiency of brain leptin delivery (23). The
second mechanism is related to a novel cytokine-inducible mol-
ecule, suppressor of cytokine signaling (SOCS), which negatively
regulates leptin signaling and leads to leptin resistance by binding
Src homology-containing tyrosine phoshatase 2 (SHP-2) bound to
phosphorylation sites on the active leptin receptor and inhibiting
JAK tyrosine kinase activity via its N-terminal kinase motif (24-31)
(Figure 1A). In mice haploinsufficient for SOCS3, leptin sensitivity
is increased and high-fat diet-induced obesity is attenuated (27).
Because elevated SOCS expression (32, 33) and leptin resistance
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sites does not allow ligand-mediated STAT3
phosphorylation in mice in vivo (18).

Ubiguitin
transferase

(34, 35) occur in both obese humans (33, 34) and rodents (32, 35),
leptin’s efficacy as an antiobesity drug appears limited to individu-
als with genetic mutations that result in leptin deficiency (36) or in
patients undergoing sustained weight loss (37).

Links to leptin signaling: gp130 cytokines

The mRNA encoding IL-6 was identified almost 25 years ago (38),
and the gene was subsequently cloned and structurally character-
ized (39, 40). It is now known that a family of IL-6 cytokines exists
whose membership is based not on sequence homology, but on
a shared 4-helical bundle structure (41) and a shared subunit in
their respective receptor complexes: the transmembrane signal
transduction protein gp130 (42). The IL-6 cytokine family — also
known as long type I or gp130 cytokines — consists of ciliary neu-
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The complex ligand receptor signaling for the gp130Rp cytokine CNTF. In contrast to the mechanism of IL-6Ra/gp130Rp homodimer binding of
IL-6 ligand illustrated in Figure 1B, CNTF can signal via a heterodimer containing CNTFRo., gp130Rg, and LIFRf (A) or via a heterodimer contain-
ing IL-6Ra, gp130Rp, and LIFRp (B). While CNTF can signal via IL-6Rq, it cannot do so via the IL-6Ra/gp130Rp homodimer shown in Figure 1B,
as LIFRp is an absolute requirement. In contrast, IL-6 does not signal through the CNTFRa/gp130Rp/LIFRp heterodimer (51).

rotrophic factor (CNTF) as well as IL-6, IL-11, leukemia inhibi-
tory factor (LIF), oncostatin M (OsM), cardiotrophin 1 (CT-1),
and cardiotrophin-like cytokine (CLC) (43). Although there is
some cross-talk among the gp130 cytokines (44), the complex sig-
nal transduction cascade is not common to all family members.
IL-6 and IL-11 are the only members of the family that signal via
induction of a gp130 homodimer after binding to IL-6 receptor o
(IL-6Ra) and IL-11Ra, respectively (Figure 1B). In contrast, CNTF,
CT-1, and CLC first bind to their specific a receptors, which —
although the receptors are not involved in signal transduction per
se —induces formation of a heterodimer of the signal-transducing
gp130 receptor B (gp130RP) and LIF receptor f (LIFRP) to allow
signal transduction (Figure 2A). LIF and OsM directly induce for-
mation of gp130RB/LIFRP and gp130RP/OsM receptor heterodi-
mers, respectively (45). The gp130Rf in isolation cannot trans-
duce signals without other specific a receptor subunits; therefore,
although gp130 is ubiquitously expressed across all mammalian
cell types, cell-specific responses to gp130 cytokines are dependent
upon the relative expression of the a receptor within a cell type.
There are several reasons why a discussion of the intricacies
of the complex ligand-receptor interactions of gp130 cytokines
is pertinent to a discussion of antiobesogenic targets. LRb and
gp130Rp share a large degree of sequence homology, and both
activate the JAK/STAT and ERK signaling pathways (45). In addi-
tion, signaling through these receptors activates subsequent sig-
nal transduction pathways important in energy balance such as
PI3K (46, 47) and mTOR (48, 49). It must be noted, however, that
LRb and gp130RP cannot bind the other’s specific ligand; the
actions of CNTF are not compromised in the db/db mouse (which
lacks the functional LRb; ref. 18), and circulating leptin is nor-
mal in brain-specific gp130Rf knockout mice (50). Importantly,
gp130R ligands may provide a way to circumvent leptin resis-
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tance, because while gp130Rf and LRb have a degree of sequence
homology, gp130RP has multiple tyrosine phosphorylation sites
that may allow for adequate signaling in the obese phenotype, in
which SOCS proteins are elevated. Finally, IL-6R can serve as an
o receptor for CNTF (51) (Figure 2B). The importance of this is
discussed below (see “Using gp130R ligands as therapy: where to
now?”). Despite the fact that all gp130R cytokines signal through
a common transmembrane receptor, most research pertaining to
obesity-related disorders has centered upon IL-6 and CNTF.

Biologic role of IL-6 and its relationship

to insulin resistance

In the past decade it has become apparent that obesity is associ-
ated with a state of chronic inflammation (52) in tissue such as the
liver, adipose, and smooth and skeletal muscle. Inflammation is
characterized by the secretion of inflammatory cytokines such as
resistin, TNF-o, and IL-6 from tissue-resident macrophages and/or
adipocytes (53). Given this proinflammatory state, and the obser-
vation that systemic IL-6 concentrations are elevated in obesity and
patients with type 2 diabetes (54, 55), it is generally thought that
elevations in the plasma and/or tissue concentrations of IL-6 lead
to insulin resistance (56). Indeed, there are a number of studies
both in vitro (57-60) and in rodents in vivo (61-63) that demon-
strate that IL-6 is capable of inducing insulin resistance. However,
evidence is emerging that IL-6 can in some circumstances activate
pathways to promote increased energy turnover and insulin sen-
sitivity, and the role of IL-6 in the determination of insulin sen-
sitivity is now a source of controversy (64, 65). While this notion
challenges the dogma that IL-6 is an inflammatory cytokine that
has adverse metabolic effects, it is not inconceivable; as described
above, gp130 cytokines signal through a receptor that has many
similarities to leptin signaling, and leptin is known to activate
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signal transduction pathways that promote increased energy
expenditure and insulin sensitivity (21). In exercising rats, hypo-
thalamic leptin and insulin sensitivity are increased in an IL-6-
dependent manner (66). In 3 recent studies, IL-6 has been shown
(like leptin) to activate AMPK in both skeletal muscle and adipose
tissue (67-69). Consistent with activation of AMPK, IL-6 has also
been shown to increase fat oxidation in vitro (60-70), ex vivo (71),
and in humans in vivo (70, 72), while inactivation of AMPK using
siRNA (68) or a dominant-negative adenovirus (69) abolishes the
effect of IL-6 on fat oxidation. Signaling through gp130Rf results
in activation of PI3K (47), and IL-6 can activate PI3K and its down-
stream target Akt (68, 73-75), but it must be noted that this effect
has not been observed in all studies (69). Given that IL-6 activates
the immune system and is proinflammatory, particularly in the
liver (61, 62), it is clear that recombinant human IL-6 treatment
would not be a wise therapeutic strategy to treat obesity. However,
given the recent evidence that IL-6 and leptin have common signal
transduction pathways downstream of signaling through gp130Rf
and LRb, respectively, it is possible that other endogenous or syn-
thetic gp130R agonists may be viable antiobesity therapeutics.

Can CNTF circumvent leptin resistance and

result in weight control?

CNTF was first identified over 25 years ago for its ability to sup-
port the in vitro survival of chick ciliary ganglion neurons during
maturation (76). It was subsequently purified from sciatic nerves
by 2 groups a decade later (77, 78). CNTF is described as a 22-kDa,
200-aa-long member of the IL-6 family of cytokines, sharing the
4-helical bundle structure (79). As a neurotrophic factor it pro-
motes differentiation of sympathetic neurons and glial progeni-
tor cells into astrocytes; supports the survival of sensory, motor,
hippocampal, and cerebral neurons; and promotes the maturation
of oligodendrocytes (79). However, unlike IL-6, CNTF lacks a sig-
nal sequence peptide and is therefore not secreted by neuronal cells
(80, 81), which has therapeutic implications (see “Using gp130R
ligands as therapy: where to now?”). CNTF receptor oo (CNTFRa)
is most highly expressed within neural tissue, but its expression is
ubiquitous, being detected in the adrenal glands, liver, kidney, tes-
tis, and skin (79). It is important to note that relative to its expres-
sion in other peripheral tissues, CNTFRa. is also highly expressed
in skeletal muscle (80), although its mRNA expression in both fast-
and slow-twitch muscle is approximately 6-fold lower than that of
IL-6Ra (18). The expression of CNTFRa in skeletal muscle appears
to be functionally important, as CNTF has recently been shown to
be capable of inducing the dedifferentiation of adult human myo-
blasts into multipotent progenitor cells (81) and preventing loss of
muscle strength associated with aging (82). Prior to the discovery
that gp130R and LRb shared sequence homology and a common
JAK/STAT signaling cascade, the antiobesogenic properties of
CNTF treatment were uncovered in a study of patients with amyo-
trophic lateral sclerosis (ALS). As a neurotrophic factor, CNTF was
used in a clinical trial in an attempt to decrease disease progression
(83). While this proved unsuccessful, the patients, who were not
classified as obese at the onset of the trial, experienced marked
involuntary weight loss. This finding provided the impetus for
a number of studies examining the efficacy of CNTF as an anti-
obesity drug and ultimately the development of CNTFays (also
known as Axokine), the human recombinant form of CNTF. Com-
pared with the parent molecule, CNTFa, s has a cystine replaced
by an alanine at position 17, a glutamine replaced by an arginine
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at position 63, and a truncation of the last 15 amino acids at the
N terminus. These modifications increased its stability, potency,
and solubility (79). Human clinical trials with CNTFays are dis-
cussed below (see “CNTF/CNTFRo mutations in humans and
efficacy of CNTFays in clinical trials”).

Central effects of CNTF

The first report that CNTF might be a strategic target for the treat-
ment of obesity associated with leptin resistance was published a
decade ago. Gloaguen and colleagues (84) reported that CNTFRa.
and LRb were colocalized in the hypothalamic region of the brain
involved in the regulation of energy balance. In addition, systemic
administration of either CNTF or leptin activated and suppressed
the same genes in cell bodies of the arcuate nucleus, suggesting
that both cytokines were capable of anorexogenic neuronal signal-
ing. Moreover, administration of CNTF in leptin-resistant models
of obesity, namely 0b/0b, db/db, and high-fat-fed mice, was found
to result in hypophagia, reduced body weight, and attenuated
hyperinsulinemia. This initial study was confirmed by Lambert
etal. (85), who showed that CNTFays corrected the obese pheno-
type in leptin-resistant rodent models without side effects such
as fever and other metabolic abnormalities often associated with
cytokine treatment (86). Whether CNTF or CNTF,;s treatment
results in a proinflammatory response is equivocal, as subsequent
studies have reported the presence (87, 88) and absence (18) of
fever as well as upregulation of proinflammatory gene expression
following administration.

It is important to note that in the study by Lambert et al. (85),
animals continued to maintain a reduced body weight several days
following the cessation of treatment. This suggested that the mode
of action of CNTF was not solely though the activation of the tri-
partite CNTFRa,/gp130RB/LIFRB complex. Until recently, the
mechanism underlying CNTF- or CNTFas-related weight gain
prevention observed after the cessation of treatment remained
elusive. However, Flier and colleagues recently demonstrated that
centrally administered CNTF leads to cell proliferation in the
hypothalamus of mice (89), the region of the brain that contains
neurons such as proopiomelanocortin (POMC) and neuropep-
tide Y (NPY), which are known to play a role in energy balance
regulation (90). The hypothalamic neurogenesis was prevented by
coadministration of the mitotic blocker cytosine f-p-aribinofu-
ranoside, which was accompanied by rebound weight gain (89).
This concept of neural growth provided a new dimension to strat-
egies targeting weight loss because CNTF and other neurogenic
compounds would allow for the growth of new leptin-responsive
neurons in the hypothalamus, making the brain more sensitive to
compounds that modulate POMC and NPY even after cessation
of treatment. It must be noted, however, that these results have
been challenged on the basis that the studies reported (89) did not
categorically prove that the treatment resulted in full-fledged neu-
rons, but rather supported the survival of immature but preexist-
ing brain cells (91). Regardless of whether CNTF results in bona
fide neurogenesis, it is clear that an important feature of CNTF or
its analogs is the capacity to remain effective after termination of
therapy, which may provide scope to trial drugs that could be used
in a cyclic manner in the treatment of obesity. However, new cell
growth in the CNS may lead to adverse side effects that could limit
the efficacy of such treatment. Strategies to limit this potentially
dangerous outcome are under development (see “Using gp130R
ligands as therapy: where to now?”).
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The exact site of CNTF action in the arcuate has only recently
been uncovered. Janoschek, Briining, and colleagues (50) engi-
neered mice with selective ablation of the gp130R in POMC-
expressing neurons (gp1302P°MC mice). When fed regular chow or
a high-fat diet, the gp1304POMC€ mice displayed a normal pheno-
type, suggesting that endogenous CNTF plays no role in energy
balance. However, in contrast with the expected response as seen in
littermate control mice, the effect of centrally administered CNTF
was abolished in gp1304POMC mice, identifying a neuronal circuit
by which CNTF signals in the hypothalamus.

Some of leptin’s central actions are mediated via inhibition
of AMPK (15, 92). The central action of CNTF also involves the
downregulation of AMPK, since both i.p. and icv injection of
CNTFaxs decrease AMPKa2 activity (93). Moreover, icv adminis-
tration of CNTFays into the lateral ventricle increases phosphory-
lation of STAT3, but reduces AMPK, and acetyl-CoA carboxylase
(ACC) phosphorylation in the arcuate, while markedly reducing
food intake and body weight in animals fed regular chow and/or
a high-fat diet. Consistent with previous findings, the efficacy of
leptin was abolished in animals fed the high-fat diet (93). In sum-
mary, CNTF and its analogs appear to be effective mediators of
hypothalamic control of energy balance via multiple pathways.
They appear to specifically activate POMC neural circuits in the
arcuate and to decrease activation of AMPK.

Peripheral effects of CNTF

In one of the early studies showing that CNTFays prevented
weight gain, the authors observed a greater weight loss in treated
compared with pair-fed control animals (85). This observation
suggested that CNTF or its analogs could increase energy expendi-
ture independent of effects on energy intake. This study could not
determine whether the increase in energy expenditure as a result
of CNTFaus administration was centrally mediated, but it raised
the possibility that CNTF could exert some actions in peripheral
tissues via a mechanism independent of central mediation. Two
subsequent in vitro studies supported the concept that CNTF may
act on peripheral target tissues in a manner independent of cen-
tral mediation. CNTF was shown to increase the mRINA expression
and/or phosphorylate several proteins in brown adipocytes (94) as
well as in 3T3-L1 preadipocytes and mature adipocytes (95). In the
latter study, the authors noted that this effect occurred in spite
of the fact that adipocytes do not express CNTFRa, suggesting
that the IL-6Ra may serve as an a receptor for CNTF in adipocytes
(51). CNTF also activated STAT3 in the adipose tissue and skeletal
muscle of mice in vivo, which suggested that CNTF could exert
peripheral, central mediation-independent actions, but the study
could not rule out the possibility that when administered i.p.,
CNTF was acting via a neural circuit. Although leptin was shown
to directly activate AMPK in the periphery, central administration
of leptin can also result in activation of AMPK in skeletal muscle
(16). To test whether this could also be the case with CNTF, mice
were treated with CNTF either i.p. or icv and skeletal muscle was
excised. CNTF increased STAT3 phosphorylation and AMPK activ-
ity in skeletal muscle when delivered i.p., but not when delivered icv
(18). This was the first report providing evidence that CNTF could
actin a manner independent of central mediation. Consistent with
the work conducted by this group on another gp130 cytokine, IL-6
(69), CNTF was able to increase fat oxidation in skeletal muscle
via an AMPK-dependent mechanism, since the infection of muscle
cells with an AMPK dominant-negative adenovirus abolished the
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CNTF-mediated increase in fat oxidation. Mice treated with CNTF
for 7 days lost more weight compared with sham-treated, pair-fed
animals fed a high-fat diet, confirming previous in vivo observa-
tions (85). This weight loss was associated with improved insu-
lin signal transduction and insulin action in skeletal muscle. The
effects were also seen in db/db mice. Importantly, these authors
showed that while both leptin and CNTF caused activation of
STAT3 and AMPK, phosphorylation of ACC, and enhanced fat
oxidation in the skeletal muscle of mice ingesting a regular chow
diet, only CNTF maintained these effects in mice fed a high-fat
diet or in db/db mice (18).

This recent study has heightened interest in the possibility of
using CNTF or its analogs as a treatment for obesity (96) and
has also uncovered a possible mechanism by which gp130R
cytokines might overcome leptin resistance. As seen in Figures
1 and 2, while the LRb and CNTFRa/gp130Rf complexes share
structural homology in their cytoplasmic domains, there are
nonetheless important distinctions. Similar to the way in which
SOCS proteins bind SHP-2 bound to LRb and attenuate leptin
signaling, SOCS proteins can inhibit JAK/STAT signaling on the
gp130Rp receptor by binding to the JAK site. However, it appears
that CNTF can overcome SOCS inhibition of receptor signaling.
While the capacity for CNTF to override SOCS inhibition of sig-
nal transduction has not been fully elucidated, it is hypothesized
that this is due to the gp130R possessing 4 STAT-binding sites (at
Tyr767, Tyr814, Tyr905, and Tyr915; Figure 2). This hypothesis is
based on the following observation: when mice with a truncation
of the C-terminal domain that eliminates these tyrosine residues
of the gp130R (gp1302STAT mice) are treated with CNTF, STAT3
phosphorylation is abolished as well as AMPK activation, ACC
phosphorylation, and ultimately fat oxidation (18). These results
suggest that the STAT3-binding sites downstream of the SHP-2/
Tyr759 binding site on gp130Rf are functionally important for
transducing signaling after ligand binding (Figure 2). Mutations
of these 4 STAT bindings sites of gp130Rf are currently being
synthesized. This work may determine the functional significance
of these sites in the context of the capacity for gp130R signaling
to overcome SOCS inhibition.

In mice, CNTF treatment also markedly attenuates high-fat diet-
induced accumulation of lipid in skeletal muscle (18). Specifically,
the intramuscular accumulation of triacylglycerol, diacylglycerol,
and ceramide is restored to the level in control mice fed regular
chow. Accumulation of lipid metabolites in peripheral tissues cor-
relates with insulin resistance (97). In addition, the production of
fatty acid metabolites within insulin-responsive tissues activates
a host of serine kinases including PKC-0, Ik kinase, and JNK,
which have been shown to impair insulin signal transduction and
insulin action in vivo (98-100). CNTF may attenuate such lipo-
toxicity and resultant inflammatory serine kinase cascades. When
rats were treated with CNTFay s during a 2-hour lipid infusion,
both skeletal muscle and liver insulin action were restored during
a subsequent hyperinsulinemic euglycemic clamp (101). More-
over, CNTF treatment prevented acute, lipid-induced activation
of JNK in skeletal muscle and both JNK and NF-kB in liver. This
effect was associated with reduced fat deposition in these tissues,
confirming earlier findings that CNTF can attenuate hepatic ste-
atosis (102). When db/db mice were treated with CNTFuyys for 10
days, liver steatosis was found to be reduced, which coincided with
improvements in liver function and insulin signaling (102); the
authors also observed increased basal metabolic rate of db/db mice
Volume 117 845
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the muscle. The enhanced fat oxidation in these tissues and resultant decrease in accumulation of deleterious lipid species (diacylglyceride
[DAG] and ceramide) prevent the activation of inflammatory serine threonine kinase cascades (JNK and Ik kinase) in the liver and muscle and
the transcription of Stearoyl-CoA desaturase (SCD-1) in liver to ameliorate lipid-induced decreases in insulin signal transduction. Although
speculative, in skeletal muscle, these actions appear to be mediated by activation of AMPK, which may also lead to activation of PGC-1a.

AgRP, agouti-related protein.

treated with CNTF,y;s. This effect was confirmed by a subsequent
study from this group (103) that also found increases in uncoupling
protein 1 (UCP1) mRNA levels in brown adipose tissue. This latter
observation is consistent with the finding that CNTF can increase
the mRINA expression of the Ppargcla gene and prevent the high-
fat diet-induced decline in its encoded protein, PPARY coactivator
la (PGC-1a), in skeletal muscle (18). A recent study has shown
that AICAR, a pharmacologic activator of AMPK, increased
PGC-1o promoter levels in C2C12 muscle cells (104), and a num-
ber of studies have recently implicated defective mitochondria,
specifically reduced PGC-1o-responsive gene expression and/or
reduced mitochondrial ATP turnover, in the etiology of insulin
resistance and type 2 diabetes (105, 106). Although speculative,
one antiobesogenic action of gp130R cytokines may occur via
an AMPK-mediated increase in PGC-1a levels and subsequent
increase in mitochondrial biogenesis (Figure 3); this hypothesis is
currently being tested. Thus, in addition to the well-described cen-
tral actions of CNTF and its analogs, these cytokines are capable of
enhancing insulin action and promoting lipid oxidation in periph-
eral tissues (by apparent direct action in those tissues).

CNTF/CNTFRo mutations in humans and efficacy

of CNTF x5 in clinical trials

A mutation in the first intron of the human CNTF gene was first
identified over a decade ago (107). This mutation resulted in a
novel splice acceptor site and mRNA encoding a novel protein.
In addition, 3 single nucleotide polymorphisms (SNPs) in the
gene encoding CNTFRa have been identified (108). Given the
association of CNTF with energy homeostasis, studies have exam-
ined whether any of these mutations are associated with body
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mass homeostasis in humans. While some found no association
between genetic markers segregating with CNTF and body weight
regulation (109), others observed that in a cohort of elderly male
Caucasians, carriers of the gene mutation are on average 10 kg
heavier than those lacking the mutation (108). In addition, of the
3 identified SNPs in the gene encoding CNTFRa, the C174T poly-
morphism in exon 9 is associated with body weight regulation in
both men and women (110). In a phase II clinical trial of the effects
of CNTFa.1s administration, patients recruited to the study were
on average approximately 114 kg with an average BMI of approxi-
mately 41. Over a period of 84 days, patients treated with a placebo
maintained their weight, while patients treated with CNTFays at
doses of 1 or 2 ug/kg body weight lost 3-4 kg. While these results
were promising, the efficacy of CNTFxys as a treatment appears
limited, since patients treated with high doses of the drug reported
nausea or developed anti-CNTF,ys antibodies. This effect may
have been responsible for an increase in weight gain in CNTFays-
treated patients in a long-term follow-up study (111).

Using gp130R ligands as therapy: where to now?

Given the lack of success with current gp130R ligands in clinical
trials, why should we pursue this class of proteins as possible anti-
obesity therapies? As discussed in this review, inflammation in the
CNS (86, 87) and anti-CNTF antibody formation (112) are major
hurdles that require attention. Nonetheless, recent results showing
potent peripheral effects of gp130Rf ligands in increasing lipid
oxidation, activating AMPK, preventing lipid-induced inflamma-
tion, and upregulating genes associated with oxidative phosphory-
lation (18, 68, 69, 101) have led to the suggestion that alternative
treatment strategies using these ligands are possible (96). Impor-
Volume 117
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tantly, unlike its effects in the brain, CNTF has no adverse effects
on markers of inflammation in peripheral tissue (18), and by vir-
tue of reducing intracellular lipid accumulation in these tissues,
CNTF can reduce the activation of inflammatory signaling path-
ways such as JNK and NF-kB (100). Hence, a drug capable of acti-
vating gp130Rp in the periphery alone could be a viable therapeu-
tic strategy. As described above, IL-6Rat can serve as an o. receptor
for CNTF (51). However, each ligand has a greater degree of bind-
ing affinity for their specific a receptor, and it must be emphasized
that CNTFRa has a relatively low level of expression in skeletal
muscle (18) and is undetectable in adipose tissue (95). With this in
mind, a drug that could have the general properties of CNTF but
specifically activate IL-6Ra may be useful. Hence, the efficacy of
so-called “designer gp130R ligands” is currently being studied. The
design of these ligands is based on the observation that receptor
recognition sites of gp130 cytokines are organized as exchangeable
modules and various chimeras in which the site III loop of IL-6
has been substituted for the site IIT loop of CNTF (112). The site
III loop is situated on the C-terminal end of the protein and is the
region that binds the receptor (112). Thus, it is hypothesized that
this designer gp130 chimera possesses CNTF-like action, but has
a greater binding affinity for IL-6Ra, which, as discussed above, is
much more highly expressed in peripheral tissues (18). Theoreti-
cally, therefore, the dose required to signal through the IL-6Ra/
gp130RPB homodimer would be markedly lower than that of CNTF
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and would be less likely to result in antibody formation. In addi-
tion, since the peripheral metabolic actions of gp130R ligands do
not require CNS signaling, an attractive approach would be to fuse
the ligand to a larger protein, thereby preventing it from crossing
the blood-brain barrier. One such strategy being examined is to
fuse the chimera to the Fc portion of IgG, a strategy used for many
clinical therapeutics, including TNF inhibitors, for the treatment
of rheumartoid arthritis (113). Whether designer gp130R ligands
prove useful as antiobesity drugs remains to be seen, but given
recent results showing potent peripheral effects of gp130R ligands,
these strategies warrant further investigation.
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