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Why some virus-specific CD8 TCR repertoires are diverse and others restricted or “oligoclonal” has been
unknown. We show here that oligoclonality and extreme clonal dominance can be a consequence of T cell cross-
reactivity. Lymphocytic choriomeningitis virus (LCMV) and Pichinde virus (PV) encode NP;s_,1, epitopes that
induce different but highly cross-reactive diverse TCR repertoires. Homologous viral challenge of immune mice
only slightly skewed the repertoire and enriched for predictable TCR motifs. However, heterologous viral chal-
lenge resulted in a narrow oligoclonal repertoire with dominant clones with unpredictable TCR sequences. This
shift in clonal dominance varied with the private, i.e., unique, specificity of the host’s TCR repertoire and was
simulated using affinity-based computer models. The skewing differences in TCR repertoire following homolo-
gous versus heterologous challenge were observed within the same private immune system in mice adoptively
reconstituted with memory CD8 T cell pools from the same donor. Conditions driving oligoclonality resulted
in an LCMYV epitope escape variant in vivo resembling the natural Lassa virus sequence. Thus, T cell oligoclonal-
ity, including extremes in clonal dominance, may be a consequence of heterologous immunity and lead to viral
escape. This has implications for the design of peptide-based vaccines, which might unintentionally prime for

skewed TCR responses to cross-reactive epitopes.

Introduction

An important feature of the immune system is a diverse repertoire
of T cells (1) whose TCRs recognize antigens presented by MHC
molecules (2). CD8 T cell responses to a single epitope are usually
diverse and often use different variable region § (Vf) families, but
even in the case of dominant Vf usage, many different clonotypes
may be present (3-6). Less diverse “oligoclonal” responses are some-
times seen against epitopes in HIV, CMV, EBV, and HCV infections
(7-10). TCR diversity may help to control the pathogen and lower the
possibility of immune evasion by T cell escape variants (8, 11). Why
narrow oligoclonal repertoires are generated is poorly understood
but might relate to the intrinsic structure of the epitope (12) or to
repeated antigenic exposure (13). However, longitudinal studies in
lymphocytic choriomeningitis virus- (LCMV-) and influenza virus-
infected mice have revealed few changes and only modest narrowing
of the TCR repertoire after homologous reinfection (14-17).

An immunologically naive host responds to infections differ-
ently than an experienced host, in part because of the activation
of memory CD8 T cells that can cross-react between previously
and newly encountered pathogens (18-20). Cross-reactive memory
CD8 T cells can compete with the proliferation of naive CD8 T
cells, even those that would normally be immunodominant in the
primary immune response. This can lead to a change in epitope-
specific T cell hierarchies and an altered immune response (21)

Nonstandard abbreviations used: CDR3, third complementarity-determining
region; ICS, intracellular cytokine staining; LCMV, lymphocytic choriomeningitis
virus; PV, Pichinde virus; VP, variable region of TCR f-chain.
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manifested as either protective immunity or enhanced immuno-
pathology (22, 23). LCMV and Pichinde virus (PV) encode high-
ly cross-reactive subdominant KP-restricted NP;gs_21, epitopes
sharing 6 of 8 amino acids. Heterologous virus infection of mice
immune to the other virus leads to proliferation of NP,gs-specific
CD8 T cells, resulting in a dominance for this normally subdomi-
nant epitope (21). Here we show that a surprisingly small subset of
this highly cross-reactive T cell population expands, modulating
clonal dominance and resulting in a narrowed oligoclonal TCR
repertoire, and that unpredictable clonal dominance patterns are
determined by the private, i.e., unique, TCR specificities of each
immune host. Viral escape may be a consequence.

Results

LCMV- or PV-induced CD8 T cells specific to NP2os show widespread
functional cross-reactivity. The cross-reactive subdominant epitopes
LCMV NP;p5.212 (YTVKYPNL) and PV NP;gs_,1, (YTVKFPNM) dif-
fer in 2 amino acids in their MHC class I binding motifs but are
similar in the positions available for TCR interaction. We ques-
tioned whether NP,ps-specific CD8 T cells induced during pri-
mary infection could recognize the heterologous NPys peptide
and mediate cross-reactive effector function, as assessed by IFN-y
production (Figure 1). Upon LCMV infection, LCMV NP5
peptide induced 3.0% + 1.2% (range: 1.1-4.5%; n = 10) and the PV
NP5 induced 3.1% + 1.3% (range: 0.9-4.7%; n = 10) of the CD8 T
cells to produce IFN-y. During PV infection, the PV NP,os peptide
induced 0.54% + 0.33% (range: 0.19-1.1%; n = 12), while the LCMV
NP5 peptide induced 0.39% + 0.23% (range: 0.13-0.87%; n = 12) of
the CD8 T cells to produce IFN-y. This suggests that the PV and
LCMV NPys peptides could stimulate equivalent portions of the
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LCMV-induced CD8 T cells to produce IFN-y. The LCMV NPys
peptide stimulated a similar but not completely equivalent portion
(76% + 21%; n = 12) of the PV-induced CD8 T cells to produce IFN-y
compared with the PV NPys peptide (Figure 1A).

Widespread cross-reactivity was also demonstrated by staining
T cells from day 8 LCMV-infected mice with tetramers specific to
both peptides (Figure 1B). The double-tetramer staining revealed
2 discrete populations when compared with the costaining pat-
tern using LCMV NP5 tetramers in 2 different colors (Figure 1B).
The majority of the double tetramer—positive cells were dim for the
PV NP5 tetramer as compared with the LCMV NP5 tetramer,
suggesting that the NP;gs population may contain cells having
differing avidities to LCMV NPyos and PV NPys, though formal
estimates of affinities and avidities were not done. Correspond-
ingly, in mice acutely infected with LCMV, the PV NP,os peptide at
lower concentrations stimulated significantly fewer cells to pro-
duce IFN-y than did the LCMYV peptide (Figure 1, C and D).
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TCR VP repertoires of NPxs-specific CD8 T cells differ in LCMV and
PV infection. We investigated the TCR VP repertoires by costain-
ing lymphocytes with all available V(3 mAbs (VB2-14) in tetramer
or intracellular cytokine staining (ICS) assays. Most NP,gs-specific
T cells did not costain with the anti-Vf antibodies, though some
stained with VPS5 (Figure 2A). To determine which VB family was
contributing to the unknown Vf population, we analyzed LCMV
NP,s tetramer-sorted cells by RT-PCR using specific primers for
VB1-18.In 3 LCMV-infected mice, the LCMV NP,gs-specific CD8 T
cells showed a very strong amplification of the V16 family (Figure 2,
B and C). The VB16 PCR product was subcloned and sequenced and
shown to be highly diverse, with some higher-frequency clones but
many low-frequency clones (Figure 2D and Supplemental Table 1;
supplemental material available online with this article; doi:10.1172/
JCI27804DS1; sequencing data are shown in Supplemental Tables
1-21). In acute PV infection, sorted PV NPyys-specific CD8 T cells
also demonstrated a strong amplification of the V16 family (data
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Figure 2

Differences in the TCR Vp repertoire of CD8 T cells specific to LCMV NP2s and PV NP2gs. (A) Splenocytes from day 8 LCMV- or PV-
infected mice (n = 8) were stimulated with LCMV NP2gs, or PV NP2os peptides in an ICS assay and then stained with Vf-specific mAbs. The
percentage of VB usage was calculated after gating on the IFN-y—positive CD8 T cell population. The percentage of other VB (V15-18
were not included in the antibody pool) was calculated by subtracting the sum of Vp2-14 from 100%. (B and C) TCR V3 mRNA expres-
sion of LCMV NPys—specific CD8 T cells. LCMV NP»gs tetramer—positive CD8 T cells were sorted from PBMCs 8 days after LCMV infec-
tion, and RNA was isolated. RT-PCR was performed with specific primers for V31-18 (B). Spectratype analysis with specific primers for
the indicated Vg families (C). (D) The TCR VB16 repertoire of acute LCMV—infected mice is diverse. This shows the CDR3 amino acid
sequence and the frequency of each unique V16 LCMV NPyss—sorted CD8 T cell clone represented in B. Clones with the same amino
acid sequence that are plotted more than once have a different nucleic acid sequence. T cell clones with an XGGX-Jp2.5 (QDTQY-F)
motif dominate the response. (E) The TCR V316 repertoire of acute PV—infected mice is diverse. (F) The TCR V(5.1 repertoire of acute
PV-infected mice is diverse.
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Figure 3

Variability and skewing of NPxgs-specific T cells dependent on private specificity after heterologous infection. (A) TCR V repertoire of PV NPys tetra-
mer—positive cells of 2 PV-immune mice 8 days after LCMV challenge (PV+LCMV). (B and C) Double-tetramer staining and TCR Vf5.1,5.2 analysis.
(B) Splenocytes from day 8 PV-infected LCMV-immune mice (LCMV+PV) stained with CD8 and tetramers. Numbers in upper-right corners represent
the percentage of gated CD8 T cells binding LCMV NP2os and PV NPy tetramers; representative of 3 experiments. (C) Histograms of Vf35.1,5.2-posi-
tive cells after gating on CD8 and double tetramer—positive cells. (D and E) Private specificity of NPxgs response. Splenocytes from individual LCMV-
immune donor mice were transferred into 3 congenic recipients. (D) Numbers in upper-right corners represent the percentage of gated CD8 T cells
binding both tetramers 8 days after PV infection. (E) TCR Vf repertoire of LCMV NPxps-specific CD8 T cells in LCMV-immune mice before and 8 days
after PV infection. Percentage of V3 usage was calculated after gating on the IFN-y—positive CD8 T cell population. The percentage for other V was
calculated by subtracting the sum of the indicated Vf3 families from 100%. Numbers in lower bar graphs represent mean percent of Vp5.1,5.2 usage (A
versus B: P < 0.005; A versus C: P < 0.0002; B versus C: P < 0.03). In B and C, letters A—J represent individual mice. In D, letters A—C represent donor
mice, and numbers 1-3 represent recipient mice receiving cells from the specified donor.
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Figure 4

Narrowing of the private LCMV NP2s—specific CD8 T cell Vp repertoire after heterologous PV infection. (A) PBMCs were isolated from 10
LCMV-immune mice (white bars), and the LCMV NP.gs-specific CD8 T cells were analyzed either by ICS or by tetramer staining and costaining
with Vf-specific antibodies. The same mice were infected with PV (black bars), and 8 days after infection PBMCs were isolated, and the TCR
Vp repertoire of LCMV NP5 tetramer—positive cells was analyzed. (B and C) The cross-reactive NPxps-specific TCR repertoire is oligoclonal
after heterologous virus infection. (B) The FACS dot plots show the dominant V(3 usage of the NPps-specific CD8 T cells from 2 representative
LCMV+PV—-infected mice (mouse 1 [M1] and M8). (C) The LCMV NP.s—specific CD8 T cells from M1 and M8 were sorted, and the dominant

V@ family was subcloned and sequenced.

not shown). These results suggest that VB16 is a major part of the
VP repertoire used by NPys-specific CD8 T cells in both infections
(Figure 2A). However, in all mice infected with PV, V5.1,5.2 was a
codominant part of the PV NP,gs-specific T cell repertoire. This was
significantly different from LCMYV infection, where V5.1,5.2 was
less dominant and even absent in some mice (PV: 38% + 18% versus
LCMV: 12% + 8.0%; n = 13 per group; P =0.0001). Sequence analyses
of the VP16 (Figure 2E and Supplemental Tables 2 and 3) or VB5.1
(Figure 2F and Supplemental Tables 16 and 17) PV NP,gs-specific
repertoires of PV-infected mice showed high diversity of TCR usage,
similar to the diversity seen with LCMV.
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Altered clonal dominance and repertoire narrowing after heterologous
virus infection. We questioned how the TCR repertoire evolves
under conditions of heterologous virus infection. PV-immune
mice infected with LCMV (PV+LCMV mice) had a dominant NP5
response (13% + 7.7% of CD8; n = 12) due to a proliferation of
cross-reactive PV NP5os-specific memory CD8 T cells, as reported
previously (21), and the magnitude of the response varied great-
ly between individual mice (4.0-30%; » = 12). Analysis of the PV
NPyos-specific TCR VP repertoire in PV+LCMV mice by mAb stain-
ing revealed variations in patterns of VP usage between mice. Only
2 of 12 mice had a Vf repertoire like that seen in PV-infected mice,
Volume 116~ Number 5
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Figure 5
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A subset of LCMV NP2ps—specific clones is expanded after heterologous PV infection. PBMCs were from 2 LCMV-immune mice before and
8 days after PV infection. (A and C) LCMV NPys tetramer—positive CD8 T cells were sorted, and V3 mRNA expression was analyzed by
RT-PCR with specific primers for V1-18. (B, D, and E) The PCR products from dominant V316 (M1, A and B; M2, D) and from Vp 5.1 (M2,
D) were subcloned, and 13-32 clones were sequenced per group.
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with a 30-40% Vf5.1,5.2 usage (Figure 3A, mouse 1). Two other
mice had avery high and skewed V5.1,5.2 frequency of NP5s-spe-
cific CD8 T cells (56%, 61%). Six of the 12 mice had no dominant
(<25%) VP usage for the tested mAbs, suggesting a dominant VB16
response. Importantly, the VB5.1,5.2 frequency was below 5% in
these mice, even though the V35 response is typically higher dur-
ing the primary PV infection (Figure 2A). Two other mice demon-
strated a dominant and highly skewed response to VB7 (89%; data
not shown) and to VB12 (69%; Figure 3A, mouse 2). VB7 and V12
were never observed as dominant VP families used by PV NP5os-
specific T cells during the primary PV infection. Overall, these
results suggest that only a subset of the cross-reactive PV NPygs
CD8 T cells proliferated after heterologous LCMV infection.

In LCMV-immune mice infected with PV (LCMV+PV mice),
we similarly observed an enhanced cross-reactive NP,gs-specific
response with high variability in magnitude (3.0-42%, mean:
15% + 8.7%; n = 24) and in TCR Vf repertoires (Figure 3, B and C).
The NPos double-tetramer staining of T cells isolated from indi-
vidual LCMV+PV mice revealed different binding patterns (Figure
3B), and these LCMV+PV mice were variable in their TCR Vf reper-
toires (Figure 3C). In 2 of 9 mice (Figure 3C, mice B and E), 75% of
the LCMV+PV NP5 response used the V35.1,5.2 family, consistent
with only a subset of the NPys-specific CD8 T cells preferentially
expanding on PV infection, as VB5.1,5.2 was usually only a minor
part of the LCMV infection in a naive host (Figure 2A).

VB16
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Figure 6

The LCMV NPxs—specific CD8 T cell repertoire is not skewed after
homologous LCMV virus infection. PBMCs were from LCMV-immune
mice before and 8 days after LCMV infection. (A) LCMV NP5 tetra-
mer—positive CD8 T cells were sorted, and V3 mRNA expression was
analyzed by RT-PCR with specific primers for V1-18. (B) The PCR
product from dominant V316 was subcloned, and 12—13 clones were
sequenced per group. This is a representative experiment of 2.

Private specificities influence patterns of clonal dominance. Adoptive
transfer experiments showed that individual variations in the mag-
nitude of the NP,os response and its TCR repertoire were not ran-
dom events, as memory cells transferred from an LCMV-immune
donor mouse into 3 different hosts generated similar double-tetra-
mer staining patterns (Figure 3D) and similar Vf repertoires (Fig-
ure 3E) upon PV infection. All recipients from individual donors
had statistically similar VP repertoires, but recipients from differ-
ent donors had statistically different Vf repertoires. The VB5.1,5.2
usage in the recipient mice did not correlate with the frequency
of LCMV NPygs-specific VB5.1,5.2 usage of the LCMV-immune
donor mouse (Figure 3, D and E), again indicating that only a sub-
population of T cells proliferated.

Infection with a heterologous virus does not affect the TCR VP repertoire of
non—cross-reactive epitopes. We asked whether immunity to PV would
influence the Vf usage of the non-cross-reactive H-2DP-restricted
epitope LCMV NP3g5. The NP396 response during acute LCMV infec-
tion had a dominant VB8.1,8.2 TCR repertoire (n = 2: 35%, 33%), con-
sistent with published studies (14, 24). This dominance of V8.1,8.2
was not altered in PV-immune mice challenged with LCMV. All mice
tested had a dominant (32-52%, mean: 40% + 8.0%; n = 7) Vf8.1,8.2
TCRV repertoire specific to LCMV NP3o6. These data indicate that
immunity to another virus does not influence the quality of the
response to non-cross-reactive CD8 T cell epitopes. We made simi-
lar observations for the VB11-enriched H-2KP-restricted epitope
LCMV GP;, in longitudinal studies of LCMV-immune mice before
and after challenge with PV (data not shown).

Longitudinal analysis of T cell repertoire evolution. PBMCs of LCMV-
immune mice before and after PV infection were costained with
LCMV NP;gs tetramers and Vp-specific mAbs. Most mice used the
undetected VP family, most likely V316, while some mice had a
codominant VB5 response (Figure 4A). The VRS frequencies in
LCMV NPys-specific T cells of all tested mice acutely infected
with LCMV and LCMV-immune mice were not statistically differ-
ent (12% = 8.0% versus 13% + 11%; n = 13 and n = 36, respectively;
P =0.6), supporting the concept that the T cell repertoire does not
differ substantially between the acute response and the memory
phase (14, 16, 17, 25, 26). However, after heterologous PV infec-
tion, the LCMV NPs-specific Vf repertoire was altered and varied
between different mice (Figure 4A).

Mouse 1 had a dominant 64% VP12 usage, and mouse 8 had an
86% V5 usage of the LCMV NPys—specific response (Figure 4B).
Subcloning and sequencing of the TCR-f third complementar-
ity-determining region (CDR3) of tetramer-sorted cells showed
that the LCMV NP5 response was highly restricted in these mice.
Mouse 1 used only 2 VP clones of 13 sequenced for the LCMV
NPps-specific VB12 response (Figure 4, B and C, and Supple-
mental Table 21), accounting for two-thirds of the response, and
mouse 8 used only a single clone of 16 sequenced (Figure 4, B and
C, and Supplemental Table 20), which suggests that more than
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Figure 7

Homologous versus heterologous infection of a private TCR repertoire. Splenocytes from an LCMV-immune donor mouse were transferred into 2
congenic recipients. One recipient was infected with LCMV and the other was infected with PV. (A) TCR Vp repertoire of NPxgs-specific CD8 T cells.
Splenocytes from the LCMV-immune donor and recipient mice 8 days after LCMV or PV infection were stimulated with LCMV NP5 peptide. The
percentage of Vp usage was calculated on the gated IFN-y—positive CD8 T cell population. V317 served as a negative control. The percentage for
other VB was calculated by subtracting the sum of the indicated Vf families from 100%. C57BL/6-A, C57BL/6 donor A. (B) TCR Vf 5.1,5.2 of LCMV
NP2os5 tetramer—positive CD8 T cells before and after infection. Staining with LCMV NP5 tetramer and Vf35.1,5.2 antibody was performed on the CD8
LCMV-immune or congenic donor CD8 T cells (LCMV+LCMV, LCMV+PV). The numbers shown above the gates represent the percentage of cells in
the gate. The number in the upper-right quadrant (gray box) represents the percentage of LCMV NPxs—specific CD8 T cells positive for V$5.1,5.2. This
NP2os-specific VB5.1,5.2 frequency was similar in the ICS assay. Data are from 1 of 5 experiments, where V$5.1,5.2 proliferated after PV infection. (C)
Vp clonotypes after PV or LCMV infection of mice harboring the same memory pool. Splenocytes from LCMV-immune mice were adoptively transferred
into 2 recipient mice, which were then infected with LCMV or PV. This experiment used mice different from those represented in A and B.
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Figure 8

Computer simulation of homologous versus heterologous virus challenge. (A) Left: Clonal distribution of the memory population before (white
bars) and after (black bars) a homologous challenge. Right: The same population before (white bars) and after (gray bars) a heterologous chal-
lenge. The x axis shows the absolute number of CD8 T cells, while y axis labels indicate hexadecimal representation of each clone involved in
the response. Number in brackets on the left of the clone labels represents the place occupied by a particular clone in the immune hierarchy
at the end of the primary response. Clones generated after the primary response are ordered according to decreasing cell number. This order
is upset when there is a change of hierarchy occurring after the second challenge. rn, random number. (B) Computer simulation of effects of
affinity on heterologous virus challenge—induced skewing of the T cell repertoire. Graphs show 2 examples of heterologous challenge in mice
selected to possess a memory population with a defined percentage of high/low-affinity cells specific for the challenging virus (10% high/90%
low in the left graph, 50% high/50% low in the right graph). White bars represent the memory population after the primary response and before
the challenge, while gray bars represent the same population after the heterologous challenge. The x axis shows the size of each clone in terms
of absolute cell number. On the y axis labels indicate the affinity of each clone for the heterologous virus: H, high affinity; M, medium affinity;

L, low affinity; N, non—cross-reacting (see Methods).

one-third of that mouse’s CD8 T cells (41% LCMV NP5os and 86%
VpS) was composed of only 1 Vf clone.

The evolution of the clonal composition of the LCMV-
immune NP,gs-specific TCR repertoire was examined before
(Supplemental Tables 4 and 5) and after (Supplemental Tables
10 and 11) PV infection of the same LCMV-immune mouse.
Mouse 1 had a strong V316 usage of the NP,gs-sorted cells, both
before and after the PV challenge (Figure SA). Figure 5B shows
NP;os-specific VB16 clonotypes used by mouse 1 before and
after PV infection. The VP16 repertoire of this LCMV-immune
mouse and several others (Supplemental Tables 4-9) revealed a
diverse TCR repertoire, with some clones more frequent than
others. However, after PV infection, only 2 clonotypes account-
ed for more than 80% of the TCRs, suggesting a more skewed
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and focused repertoire. This contrasted greatly with the high
diversity of clonotypes in naive mice acutely infected with PV
(Figure 2, E and F, and Supplemental Tables 2 and 3). Formerly
lower-frequency or undetected clones in the resting memory
repertoire dominated the response after PV infection. Similar
observations were made with a second mouse (Figure 5, C-E).
LCMV-immune mouse 2 had a poly-Vf repertoire with a strong
VP5.1,5.2 signal. After PV infection, the VP repertoire became
more focused (Supplemental Table 19), as VB5.1,5.2 and VP16
became dominant (Figure 5C). Subcloning and sequencing the
PCR products of V5.1 (Supplemental Tables 18 and 19) and
VPB16 (Supplemental Tables 4, 5, 10, and 11) demonstrated a
diverse TCR repertoire before PV infection but a highly skewed
repertoire after PV infection (Figure 5, D and E).
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Table 1
Summary of the total number of clones and clonotypes in differ-
ent infection sequences and the clone/clonotype ratio

Infection sequence No. of mice  No. of No. of Ratio
analyzed clones clonotypes

LCMV 8 144 101 1.43

PV 4 63 44 1.43

LCMV+LCMVA 3 58 25 2.32

LCMV+PV 6 99 21 4.71

PV+LCMVA 2 41 8 513

ALCMV clone 13.

Constancy in the LCMV NPys—specific TCR repertoire after homolo-
gous virus infection. Two LCMV-immune mice analyzed before
(Supplemental Tables 6 and 7) and after (Supplemental Tables
13 and 14) homologous LCMV (LCMYV variant clone 13) chal-
lenge had diverse V16 repertoires in each case (Figure 6). Clone
13 was used because it grows better in vivo, but its T cell epitopes
are identical to those of the Armstrong strain and, where tested,
induce similar TCR repertoires. In several LCMV-immune mice
tested, the VP16 repertoire included many clones of low frequen-
cy, but many used the joining region of TCR $-chain 2.5 (JB2.5),
depicted by the sequence X-QDTQY-F, and expressed a CDR3
region amino acid motif of XGGNorA (Supplemental Tables 1
and 4-9). These sequences (LGGAQDTQY, LGGNQDTQY) still
dominated after homologous virus infection, suggesting a selec-
tion for this CDR3 motif (Figure 6, A and B). Together with data
from other studies (14, 16, 17, 26), our data indicate that the level
of TCR diversity is not dramatically different between primary
and homologous secondary immune responses for nonpersis-
tent pathogens, though there was a slight skewing toward the
dominant motif. This contrasts with the marked skewing seen
after heterologous virus challenge (Figure 2D, Figure 5, B and E,
and Figure 6B), which may completely alter and distort the TCR
repertoire against cross-reactive epitopes.

Homologous versus heterologous challenge of the same T cell repertoire.
To show that the same private TCR repertoire of the NP,gs popula-
tion of an LCMV-immune mouse would skew differently, depend-
ing on a homologous versus heterologous challenge, splenocytes
from 1 LCMV-immune donor mouse were transferred into 2
congenic recipient mice, which were then infected with LCMV
or PV. The NPys-specific VP repertoire of this LCMV-immune
mouse was similar before and after secondary LCMV infection
but was very different after PV infection, with a dramatic increase
in NP,gs frequency and skewing of the repertoire to Vf5.1,5.2
(48%) (Figure 7, A and B). In a similar experiment, we compared
the clonal composition of the LCMV NPys-specific VB16 reper-
toire before and after challenge with either LCMV or PV (Figure
7C and Supplemental Tables 9, 12, and 15). In this mouse, V16
was the dominant family before and after infection with LCMV
or PV. However, after heterologous PV infection, the hierarchy of
the clones skewed and shifted, and a clone originally of lower fre-
quency dominated (Figure 5B).

Simulation by computer modeling. The data showing the nar-
rowing of the repertoire on heterologous virus challenge were
simulated by computer modeling of the immune system in a “vir-
tual” mouse. The private specificities of mice were reproduced
1452
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by utilizing a sufficiently large diversity of TCRs, which allowed
us to obtain and study the characteristic memory populations
and their growth and/or modification in hierarchy after homolo-
gous and heterologous challenge. Figure 8A shows a represen-
tative experiment comparing homologous versus heterologous
challenge out of 30 experiments conducted, where focusing of
the clonal distribution was monitored by the skewness index
increase. These computer-generated data are remarkably similar
to the biologically determined data with LCMV and PV shown
in Figure 8A and allow us to state the following: (a) homologous
challenge only weakly focuses the repertoire; the skewness of the
memory population before (1.71) and after (1.76) the homolo-
gous challenge is not statistically different; (b) heterologous
challenge results in altered clonal dominance and a significant
narrowing of the preexistent memory distribution, and the skew-
ness after challenge (2.29) is significantly higher than before
challenge (1.71; P < 0.01); (c) there is a significant difference in
the average skewness of 30 homologous challenges and 30 het-
erologous challenges of the same memory population, with the
index being higher in the heterologous (P < 0.01).

To study in silico the effect of clonal affinity for the heterolo-
gous peptide on the clonal population changes, we constructed
memory T cell repertoires with a number of same-sized clones (e.g.,
30 cells) representing different mixtures of affinity levels. Virtual
mice were primed and programmed to show 10% high/90% low- or
50% high/50% low-affinity cells toward the heterologous peptide
(Figure 8B). The conclusions of these experiments are that high
affinity clones have the highest probability of reaching a dominant
position after challenge, although both the competition and the
low initial representation can thwart their chances. It also indicates
that more skewing may occur if there is initially a smaller rather
than larger proportion of high affinity cross-reactive clones.

Generation of an epitope escape mutant. Some correlations have been
made between the presence of oligoclonal TCR repertoires and the
generation of T cell epitope escape variants in human viral sys-
tems. To directly test under controlled conditions whether a nar-
row repertoire might yield an escape variant, mice immune to PV
were challenged with the clone 13 strain of LCMV, which causes
persistent infections and narrows the NPys repertoire (Table 1).
Eight months after infection, most virus was cleared, but a variant
in the NP,gs epitope was isolated from the kidney, the only tested
organ where virus was found. This had a V—A change in the third
position of the epitope (Figure 9A). Of note is that the wild-type
epitope sequence is well conserved, and all of 8 sequenced New
World arenaviruses have valine in the third position. However,
the Old World arenaviruses Lassa and Mopeia have alanine in the
third position, indicating that this can be perpetuated in nature.
Both wild-type and mutant peptides stabilized K" on the surface
of RMA-S cells, which normally do not express surface class IMHC
due to a mutation in the class I peptide transporting Tap-1 pro-
tein. This indicates that the mutant epitope had the potential to
be presented to T cells (Figure 9B). However, the V—A peptide was
less effective than the wild type at stimulating IFN-y from T cells
from either LCMV-infected (data not shown) or PV+LCMV-infect-
ed mice (Figure 9C). Infection of mice with the mutant V—A virus
resulted in normal CD8 T cell responses to the immunodominant
epitopes GP33, NP396, and GP276, but a substantially reduced
response to either wild-type or mutant NP,os epitopes (Figure 9D).
To our knowledge, this is the first reported escape mutant in the
LCMV NP205 epitope.
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Figure 9

Characterization of the NP2os (V—A) variant. (A) NP2gs epitope sequences from Old World arenaviruses. (B) Peptide MHC stabilization assay.
RMA-S cells were incubated with 100 uM of the indicated peptides overnight. The y axis indicates the mean fluorescence intensity (MFI) of the
anti-KP mAb staining. Data are representative of 2 experiments. (C) Peptide titration. IFN-y production of splenocytes from PV-immune + LCMV
mice (n = 3) in response to serial dilutions of LCMV NPzs wild-type and LCMV NP5 (V—A) variant peptides. A representative FACS plot with
stimulation of 5,000 nM and 0.5 nM of peptides is shown. Numbers in the upper-left corners represent the percentage of CD44" T cells produc-
ing IFN-y. IFN-y responses are plotted as percentage of the maximal response to each peptide stimulation. Differences between LCMV NP s
wild-type and LCMV NPyos (V—A) were statistically significant (P = 0.0045) at 0.5 nM. (D) Virus-induced CD8 T cells. Splenocytes from mice
inoculated with either LCMV (n = 2) or LCMV NPzs (V—A) variant virus (n = 3) 8 days after infection were stimulated with the indicated peptides
in an intracellular IFN-y assay. Numbers in the upper-left quadrants represent the percentage of CD8 T cells producing IFN-y.

Discussion

Here we examined the evolution of the TCR repertoires specific
to highly cross-reactive epitopes of different viruses. Despite iden-
tity in the amino acids emanating from the MHC, these epitopes
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induced different and diverse TCR repertoires, yet most T cells
from each repertoire synthesized IFN-y in response to the other
epitope. Striking differences in repertoire development, however,
were noted when mice received a homologous versus heterologous
Volume 116 1453
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viral challenge. The results of all of our sequence analyses shown
in the text and in the Supplemental Figures are summarized in
Table 1, which lists the number of molecular VP clones sequenced
and the number of different sequences (clonotypes) they repre-
sent. Infections with either LCMV or PV alone induced very broad
repertoires, with most analyzed clones represented only once and
each with a clone/clonotype ratio of 1.43. Homologous LCMV
challenge only slightly narrowed the repertoire (to a ratio of 2.32),
and in each case, the repertoire predictably narrowed toward an
already dominant V16 J$2.5 CDR3 motif of XGGNorA (Figure 6
and Supplemental Tables 13-15). Heterologous challenge in either
virus sequence led to profound narrowing of the repertoire (to ~5).
Under these conditions of heterologous infection, the Vf usage
and CDR3 motifs were highly skewed, unpredictable, and a func-
tion of the private specificity of the host’s unique T cell repertoire
(Figures 4, 5,and 7C, and Supplemental Tables 10-12 and 19-21).
Thus, extremes in clonal dominance and oligoclonality can be a
function of heterologous immunity.

Computer studies with immune virtual mice challenged with
a cross-reactive epitope mimicked our experimental data show-
ing that T cell cross-reactivity can modulate clonal dominance
and narrowing of the TCR repertoire (Figure 8A). This system
was further useful in predicting that repertoire narrowing could
be a function of the proportion of high-avidity cross-reactive T
cells (Figure 8B). It is noteworthy that a recent report indicates
that high-avidity T cell populations are selected during persistent
human CMV infection (27).

Elements shown to influence epitope-specific immunodomi-
nance hierarchies include the efficiency of peptide processing,
the affinity of the peptide for the presenting MHC molecule, the
overall number of peptide-MHC complexes, the availability of a
TCR repertoire able to recognize the peptide-MHC complex, and
the phenomenon of immunodomination, where T cells specific for
certain immunodominant epitopes suppress responses to other
epitopes (28). What causes TCR clonal selection within an epitope-
specific response is poorly understood (12), but the remarkable
repertoire skewing after a heterologous versus homologous viral
challenge is likely a consequence of the subtle avidity differences
of different clones of T cells to the heterologous epitope and the
slower clearance of the heterologous viral antigens, which allows
for alonger time period to drive selection of the repertoire.

Cross-reactivity may explain why T cell responses to some epi-
topes in human viral infections have a narrow oligoclonal TCR
repertoire, while others are diverse. A narrowed repertoire with a
high-affinity clone in some circumstances may help to control a
pathogen early in infection (29), but if the pathogen is not effi-
ciently cleared, the resultant narrowed repertoire might enable
mutant viruses to escape the immune system. During acute HIV
infection, antigen-specific T cells are associated with the decline
of viremia, but narrow CD8 T cell responses against a single epi-
tope correlate with the generation of HIV T cell escape variants
(11). Limited CD8 TCR repertoire diversity has also been cor-
related with the appearance of T cell epitope escape variants in
chimpanzees with chronic hepatitis C infection (8). T cell epitope
escape mutants in the LCMV system have been generated by the
unnatural process of cultivating virus-infected cells in vitro in the
presence of epitope-specific T cell clones or by passaging virus in
mice harboring transgenic T cells (30, 31). Here we were able to iso-
late an epitope mutant under the far more natural conditions of a
heterologous viral challenge and viral persistence (Figure 9A). The
1454
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mutation was in a nonanchoring position, and, despite the fact
that the peptide could be presented by the MHC (Figure 9B), it was
not well recognized by T cells (Figure 9, C and D). It is notewor-
thy that this V—>A mutation made LCMV more like Lassa virus, a
related and highly virulent arenavirus of West Africa.

The private specificities of cross-reactive TCR repertoires might
explain why some patients have a higher extent of viral escape
than others (32). Cross-reactivity between CD8 T cells specific
for epitopes of HCV (NS31¢73) and influenza A (NA,31) has been
documented (33), and CD8 T cells specific to the cross-reactive
epitope HCV NS31¢73 are observed during acute HCV infection
(34-36). Notably, HCV NS3¢73 is an epitope for which viral
escape mutants have been demonstrated (37), and dominant
responses to this cross-reactive epitope unique to the private
specificities of an individual have been correlated with rare cases
of fulminant acute HCV infection (38). These patients developed
achronic HCV infection, even though patients with symptomatic
HCYV infection are usually more likely to resolve infection due to
a strong immune response (39).

These results also have implications for vaccine design, as vac-
cines inducing the proliferation of cross-reactive memory CD8
T cells may lead to restricted TCR repertoires that differ between
individuals and have different pathogenic outcomes.

Methods
Mice. C5S7BL/6 (B6, H-2) male mice were from the Jackson Laboratory,
and B6.SJL-ptprc? (it.1) congenic male mice were from Taconic. Mice were
used at 2-12 months of age and maintained under specific pathogen-free
conditions at UMMS. All animal work was reviewed and approved by the
UMMS institutional animal use committee.

Virus infection protocol. LCMV (Armstrong strain and variant clone 13)
and PV (AN3739 strain) were propagated in BHK21 cells (40). For primary
infections, mice were inoculated i.p. with § x 104 PFU LCMV Armstrong or
2 x 107 PFU PV. Mice were considered immune 6 weeks or later after infec-
tion. For homologous challenge experiments, LCMV-immune mice were
infected i.p. with 2 x 10° PFU LCMV variant clone 13 (LCMV+LCMV) to
generate a highly disseminating LCMV infection with high virus titers. For
heterologous virus challenge, LCMV-immune mice were infected i.p. with
2 x 107 PFU PV (LCMV+PV), and PV-immune mice were infected i.p. with
4 x 10° PFU LCMV Armstrong (PV+LCMV). For isolation of an epitope-
escape variant, PV-immune mice were inoculated with 2 x 105 PFU LCMV
clone 13, and virus was isolated from the kidney 8 months later. To control
for culture contaminants, PV stocks were purified through a sucrose gra-
dient and diluted in HBSS (Invitrogen Corp.), and LCMV Armstrong was
diluted more than 40-fold in HBSS.

Synthetic peptides. LCMV epitope NPxgs 212, K> (YTVKYPNL) (41) and PV
epitope NP5 212, KP (YTVKFPNM) (21) were used in this study. Other
LCMYV epitopes were NPsos_s04 (FQPQNGQFI), GPs3_41 (KAVYNFATC), and
GP,76 235 (SGVENPGGYCL) (31) and the NPygs»1, V—=Amutant YTAKYPNL.
Synthetic peptides were from BioSource International or 21st Century Bio-
chemicals and purified to 90% purity.

Cell surface and tetramer staining by flow cytometry. Single-cell suspensions
of splenocytes or blood lymphocytes were stained as described previously
(42) using peridinin chlorophyll protein-anti-mouse (PerCP-anti-mouse)
CD8-a (clone 53-6.7) and FITC-anti-CD44 (clone IM7) or FITC-labeled
VpB-specific mAbs (V2-14, VB172 BD Biosciences — Pharmingen kit).
VB172served as negative control. For (double-)tetramer staining, cells were
incubated first with streptavidin and Fc block to prevent nonspecific bind-
ing, washed, and then stained with PE- and/or allophycocyanin-labeled
(APC-labeled) tetramers for 60 minutes. After 40 minutes of tetramer
Volume 116

NumberS  May 2006



incubation, surface antibodies were added for 20 minutes, and cells were
washed twice with FACS buffer and fixed in Cytofix (BD Biosciences —
Pharmingen). Samples were analyzed with a BD FACSCalibur flow cytom-
eter and FlowJo software version 6.X (Tree Star Inc.). All surface antibodies
were purchased from BD Biosciences — Pharmingen. MHC class I peptide
tetramers specific for LCMV NP5s/K?, LCMV NP396/DP, LCMV GP34/K®,
and PV NP,(s/KP were generated as described previously (43).

ICS. Spleen or blood (10°) leukocytes were stimulated either with medium
or 5 uM peptide unless otherwise indicated (42). In experiments analyzing
the NPygs-specific IFN-y production and TCR V[ usage, there was down-
regulation of the TCR, and therefore a higher concentration of the Vf3
mAbs was used (2 pg per 10 cells in 100 ul instead of 0.5 ug). Intracellular
cytokine-producing cells were detected with PE- labeled anti-mouse IFN-y
or IgG isotype control mAbs (BD Biosciences — Pharmingen).

Adoptive transfer of LCMV-specific T cells into mice. Spleen leukocytes iso-
lated from LCMV-immune B6 mice were adoptively transferred via the tail
vein into LYS5.1* B6 congenic mice. One day after transfer, mice were either
infected i.p. with 4 x 105 PFU LCMV Armstrong or 2 x 107 PFU PV. Donor T
cells were analyzed 6 days after infection using PerCP-anti-mouse CD45.2
(LYS.2, clone 104) and PE- or APC-anti-mouse CD8-a (clone 53-6.7).

TCR VP analysis of NPss-sorted CD8 T cells by RT-PCR and sequencing of the
TCR VB chain region. For longitudinal experiments, blood (0.3-0.4 ml) was
collected from mice, and for adoptive transfer experiments splenocytes
were analyzed before and after transfer. H-2K® LCMV NP,s tetramer—posi-
tive and tetramer-negative CD8 T cells were sorted with a FACSVantage cell
sorter (BD). Tetramer-positive cells (5,000-60,000 cells) were collected into
medium containing 2 x 10° cos-7 monkey kidney cells, which were used
as carrier cells. RNA was isolated with TRIzol reagent (Invitrogen Corp.)
according to the manufacturer’s protocol. Total RNA was transcribed into
cDNA with Superscript III reverse transcriptase and oligo-d T, 15 primer
(Invitrogen Corp.). TCR Vp analysis was performed either by a standard
qualitative PCR or by spectratype analyses (3) with modifications using
HotMaster Taq DNA polymerase (Eppendorf) and specific primers for
mouse VB1-18 (VP1: 5'-CAGACAGCTCCAAGCTACTTTTAC-3'", V2:
S'-ATGAGCCAGGGCAGAACCTTGTAC-3", VP3: §'-
GAAATTCAGTCCTCTGAGGCAGGA-3', VB4: 5'-CTAAAGCCTGAT-
GACTCGGCCACA-3',Vf5.1: 5'-CCTTGGAGCTAGAGGACTCTGCCG-3/,
VBS5.2: §'-CCTTGGAACTGGAGGACTCTGCTA-3', VB5.3: S'-CCTTG-
GACCTAGAGGACTTTACTG-3', VB6: 5'-GCCCAGAAGAACGAGATG-
GCCGTT-3', VB7: 5'-GGATTCTGCTAAAACAAACCAGAC-3', VB8.1:
S'-GCTTCCCTTTCTCAGACAGCTGTA-3', Vp38.2: 5'-GCTACCCCCTCT-
CAGACATCAGTG-3', Vf38.3: 5'-GGCTTCTCCCTCTCAGACATCTT-3',
VR9: §'- CTCTCTCTACATTGGCTCTGCAGG-3', VB10: 5'-CTTCGAAT-
CAAGTCTGTAGAGCCGG-3', VPB11: S'-TGAAGATCCAGAGCACGCG-
GCCCC-3', Vp12: 5'-CCACTCTGAAGATTCAACCTACAGAACCC-3',
VP13:5'-CAAGATCCAGTCTGCAAAGCAGGG-3',VB14: 5'-GCACGGAGA-
AGCTGCTTCTCAGCC-3', VB15: 5'-GCATATCTTGAAGACAGAGGC-3',
VPB16: 5'-CTCTGAAAATCCAACCCACAGCACTGG-3', V317: §'-TCT-
GAAGAAGACGACTCAGCACTG-3',Vp18: 5'-GCAAGGCCTGGAGACAG-
CAGTATC-3') and constant region of TCR B-chain (Cp): 5'-GCAAGGCCT-
GGAGACAGCAGTATC-3' (44, 45). The amplification was performed in an
Eppendorf thermocycler (Mastercycler; Eppendorf) starting with a 2-min-
ute 94°C denaturation, followed by 30 cycles consisting of 20 seconds at
94°C, 12 seconds at 55°C, and 30 seconds at 68°C and a final elongation
step of 10 minutes at 68°C. V5.1, VB12, and V16 PCR products were
subcloned and sequenced across the CDR3 region as described previously
(3). Sequencing data are provided in Supplemental Tables 1-21.

Sequencing of epitope variant. LCMV plaques were excised and used to
infect MC57G monolayers in 12-well plates. After 48 hours RNA was iso-

lated, reverse transcription performed using a poly-T primer, and the NP5s
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region of the cDNA was PCR amplified using 0.3 uM each of flanking
primers 5'-GGTCCTCGCTGTTGCTTGGCTTGA-3" and 5-TGGGGAG-
GCTCAGTGCAGAAGAAC-3', using platinum Pfx polymerase (Invitrogen
Corp.). The PCR conditions were: (a) 94°C for 2 minutes; (b) 94°C for 15
seconds, 58°C for 30 seconds, and 72°C for 60 seconds (repeated 30 times);
(c) 72°C for 60 seconds. DNA sequencing was done at the UMMS sequenc-
ing facility with custom primers (5 pmol/ul) 5'-CACCAAGACTAAAGT-
TATAGCCAG-3' and 5'-AGGGTGCAAGTGGTGTGGTAAGAG-3'.

Peptide/MHC stabilization assay. TAP-1-deficient RMA-S cells were seed-
ed into 96-well U-bottom plates at 5 x 10° cells per well. Following incu-
bation in a 5% CO; incubator at 27°C for 4 hours, NPys peptides were
added at various concentrations and incubated overnight. The cells were
then stained with mAb to H2KP (clone AF6 88.5) conjugated with PE and
analyzed by FACS.

Statistics. Statistics are expressed as mean + SD. Comparisons between
groups were performed with the unpaired Student’s ¢ test (2-tailed). P val-
ues less than 0.05 were considered statistically significant.

Computer modeling. IMMSIM, an agent-based model of the immune sys-
tem governed by probabilistic events is available at http://www.immsim.
org and can be downloaded for research and educational use (46-50).
The IMMSIM body consists of epithelial cells in a grid of discrete “inter-
action sites,” where cells of each type (Th1, Th2, B, macrophages) of the
immune system are distributed, meet with each other and with antigens,
and mount cellular and humoral responses whenever a virus infects and
expresses antigens in the target epithelial cells. To simulate the T cell
clonal distributions observed in vitro (unique for each individual but
partly overlapping), the key decision was to use 16-bit strings to repre-
sent the TCR, yielding a theoretical repertoire of 65,536 (21¢) different
receptors and a peptide-specific repertoire of 697.

In the first experiment, we created virtual mice containing 2,500 CD8 T
lymphocytes with an average of 27 clones specific for any sorted peptide-
TCR combination. In the second experiment, in order to analyze a wider
clonal distribution, each virtual mouse had 10,000 CD8 T lymphocytes,
but the same ratio between the number of specific clones and the individ-
ual repertoire was maintained, yielding an average of 108 peptide-specific
clones. In both cases the individual repertoires of the mice are different
but partly overlapping.

To study the focusing of the memory repertoire as a consequence of T
cell cross-reactivity, we designed 2 different sets of experiments to perform
simulations: (a) homologous infection, in which the same virus (with non-
cross-reacting B epitope) was injected at time steps 0 and 600, in order to
evaluate the effects of a rechallenge on the preexistent memory repertoire;
and (b) heterologous infection, in which we performed a heterologous chal-
lenge by injecting at time step 0 the same virus used in the previous set and
injecting a cross-reacting virus at time step 600. The 2 cross-reactive viruses
were slightly different in their bitstring composition, to simulate the close
amino acid sequence relationship between LCMV NP;gs and PV NPys.

As a measure of focalization, we used the skewness (S) of the CD8 T
memory cells population that expresses the degree of asymmetry of the
distribution: S = m3/m,32, where m; and mj are the central moments of
degrees 2 and 3, respectively.

To study whether, during a heterologous challenge, affinity can play a
significant role in determining the changes of the immune hierarchy, we
designed 2 experimental sets: from a pool of 30 different primary respons-
es, we selected 2 cases in which, among the cross-reacting clones against the
heterologous peptide, high- and low-affinity cells were present in defined
proportions (about 10% high/90% low-affinity cells in the first experiment
and about 50% high/50% low-affinity cells in the second one). The 2 prima-
ry responses were elicited against the same virus by using different random
seeds to initialize the simulator. The cross-reacting peptides injected dur-
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ing the second challenge are different in their bitstring composition and
show a different level of cross-reactivity with the first peptide. A simulated
adoptive transfer technique was used to further validate the results by per-

forming different secondary challenges (using diverse random numbers) to

stimulate the same memory pool generated in the first response.
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