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The incidence of chronic kidney diseases is increasing worldwide, and these conditions are
emerging as a major public health problem. While genetic factors contribute to susceptibility
and progression of renal disease, proteinuria has been claimed as an independent predictor
of outcome. Reduction of urinary protein levels by various medications and a low-protein diet
limits renal function decline in individuals with nondiabetic and diabetic nephropathies to the
point that remission of the disease and regression of renal lesions have been observed in exper-

imental animals and even in humans. In animal models, regression of glomerular structural
changes is associated with remodeling of the glomerular architecture. Instrumental to this discovery were 3D
reconstruction studies of the glomerular capillary tuft, which allowed the quantification of sclerosis volume
reduction and capillary regeneration upon treatment. Regeneration of capillary segments might result from the
contribution of resident cells, but progenitor cells of renal or extrarenal origin may also have a role. This review
describes recent advances in our understanding of the mechanisms and mediators underlying renal tissue repair

ultimately responsible for regression of renal injury.

Historical view

Progression to end-stage renal disease (ESRD) is common in chron-
ic nephropathies, independent of the initial insult. Since 1830,
disorders of the kidney with albuminuria and changes of blood
chemistry were defined as Bright’s disease (1, 2). In his 1931 book
The renal lesion in Bright’s disease (2), Thomas Addis indicated that
study of the urine could be advantageous to the categorization of
structural disease in the kidneys. By 1939, Addis (3) introduced
the idea of “osmotic work” and calculated how this work would
vary with the amount of protein in the diet. An important impli-
cation of those studies was that dietary protein restriction could
be of help for patients with renal impairment. Meanwhile, in 1932
Alfred Chanutin and Eugene Ferris (4) observed that removal of
three quarters of the total renal mass in the rat led to a slowly pro-
gressive deterioration in the function of the remaining nephrons,
with progressive azotemia and glomerulosclerosis. The glomerular
lesions of the remnant kidney were associated with abnormal glo-
merular permeability and proteinuria. At that time, proteinuria was
considered a marker of the extent of glomerular damage, despite
the fact that Franz Volhard and Theodor Fahr in 1914 (5) and Wil-
helm von Mollendorf and Philipp Stohr in 1924 (6) had already
found that renal damage was related to exuberant protein excre-
tion in the urine. In 1954 Jean Oliver and colleagues (7) recognized
protein droplets in the cytoplasm of tubular cells. They suggested
that such findings were possibly the result of impairment in the
process of reabsorption of plasma proteins normally carried out
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by the renal tubule and proposed that proteinuria could lead to
structural and functional nephron damage. Robert Platt, during
the second of the two Lumleian Lectures delivered to the Royal
College of Physicians of London (8), reported that “the functional
disturbances known to occur in human renal disease are precisely
those which occur in animal experiments as a result of reduction
in the amount of functioning renal substance, that is, loss of neph-
rons. Rats from which 80% of the renal tissue has been removed had
hypertrophy of the remaining nephrons, as they take in a volume
of work which they would never be called up to perform in nor-
mal kidney.” This was interpreted as a possible adaptation to over-
come the handicap imposed by the loss of nephrons. Shimamura
and Morrison (9) found hyalinization of the glomerular structure
after partial five-sixths nephrectomy in animals. In the late 1960s
Brenner had access to a unique strain of rat with glomeruli on the
cortical surface and developed a new micropuncture technique
(10). By such means, Brenner and coworkers clarified the patho-
physiology of renal adaptation to nephron loss. They found that
after removal of renal mass, arteriolar resistance lowers and plasma
flow increases in remnant glomeruli (11). The tone of afferent arte-
rioles drops by a greater degree than that of efferent ones, which
increases glomerular capillary hydraulic pressure, leading to more
filtrate formed per nephron. “These changes serve to enhance the
fileration capacity of the remaining nephron units, minimizing the
functional consequences of nephron loss, but are ultimately detri-
mental” (12). Brenner also found (13) that therapies that attenuate
such adaptive changes limit GFR decline and structural damage
(14). A possible link between glomerular hypertension and protein-
uria was not established formally at that time; nevertheless, Cam-
eron had already found that patients with nephrotic syndrome did
progress more rapidly than those who had never been nephrotic
(15, 16). This was in harmony with previous findings by Habib (17)
that in focal and segmental glomerulosclerosis those patients who
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Figure 1

The progressive nature of chronic kidney disease. The progression to
ESRD, as underlined by the progressive decline of GFR, is highly vari-
able. Here is reported the natural history of autosomal-dominant poly-
cystic kidney disease (ADPKD) in patients with PKD1 mutation in the
PKD1 gene as an example of genetic renal disease. Progressive renal
disease occurs in 20-40% of patients with type 2 diabetes. Progression
to renal failure occurs in 30% of patients with IgA nephropathy after
a follow-up of 25 years. Similarly, 30% of patients with membranous
nephropathy reach ESRD within the 30-year follow-up period. A more
rapid course is observed for patients with mesangial capillary glomer-
ulonephritis or primary focal and segmental glomerulosclerosis, who
possess persistently high urinary protein excretion rates.

had their proteinuria lowered by corticosteroids did not develop
renal failure. In 1986, studies in rats (18) renewed the old idea that
urinary proteins may have intrinsic renal toxicity and contribute
to the progression of damage. Later, Eddy and Michael (19), in an
experimental model of nephrosis, found that proteinuria correlated
with increased numbers of interstitial cell infiltrates.

Excessive proteinuria was also induced in rats by intraperitoneal
injections of albumin (20, 21) or by transplanting a pituitary tumor
(22). In both models proteinuria was followed by tubular damage
and interstitial inflammation of macrophages and T lymphocytes.
The availability of cultured cells with features of differentiated glo-
merular epithelial cells has recently prompted investigation into the
effects of plasma proteins on the function of podocytes (23), cur-
rently thought to play a key role in the progression of renal lesions.

Epidemiology of chronic renal diseases

Chronic kidney disease (CKD) is a worldwide threat to public
health, but the true dimension of this problem is not fully appre-
ciated. Approximately 1.8 million people are currently treated

Figure 2

Progression of nephropathy in type 2 diabetes. Following 10 years of
stable renal function and normal UAE rate (<20 ug/min or <30 mg/d),
UAE increases in 20—40% of type 2 diabetic patients. UAE persistent-
ly in the range of 20-200 ug/min or 30—300 mg/d (microalbuminuria)
heralds the onset of incipient nephropathy. If left untreated, 20-40%
of patients progress to overt nephropathy, a syndrome of macroalbu-
minuria (UAE rate >200 ug/min or >300 mg/d), declining glomerular
filtration rate, and increased cardiovascular morbidity. With the onset
of macroalbuminuria renal function progressively declines, and ESRDs
eventually develop, requiring RRT with dialysis or transplantation. Dia-
betics with overt proteinuria have a higher risk of dying from cardiovas-
cular disease (122).
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with renal replacement therapy (RRT), which consists primarily
of kidney transplantation, hemodialysis, and peritoneal dialysis
(24,25). More than 90% of these individuals live in industrialized
countries, while available RRT in developing countries is scarce,
and null in underdeveloped areas.

The treatment of a relatively limited number of patients repre-
sents a major societal commitment, since RRT absorbs a signifi-
cant proportion of the health care budget (25). A forecast analy-
sis based on data from the US Renal Data System and Medicare
predicts that by the year 2010 the total number of patients on
RRT will be double the current number and will exceed 650,000,
which is expected to increase public expenditure for dialysis to
$28 million per year (26).

Diabetes is the most common cause of ESRD in the US and in
many other countries (27). Patients that have diabetes and are on
RRT have a worse outcome, and their management costs a great deal
more compared with patients that are on dialysis for other diseases.

A relevant question for health care planning is how many
patients at an early stage of renal dysfunction will progress to
ESRD? Recently the National Kidney Foundation has adopted
a stratification of patients with CKD into 5 stages (28). Stage 1
includes patients with normal GFR but with urinary abnormal-
ities; stages 2-4, individuals with increasing severity of disease;
and stage 5, patients with ESRD (28). This staging system has
been used to estimate the prevalence of CKD in the US. A sur-
vey was conducted in the frame of the Third National Health
and Nutrition Examination Survey (NHANES III). A sample
of 15,625 adults aged 20 years and older was analyzed. Kidney
function, kidney damage, and stages of CKD were estimated
from calibrated serum creatinine levels, spot urine albumin lev-
els, age, sex, and race. The prevalence of CKD in the US adult
population was estimated to be 10.8% (approximately 19.2 mil-
lion people) (29). In Europe, a similar screening program was
conducted in the frame of the Prevention of Renal and Vascu-
lar End-Stage Disease (PREVEND) study (30). Eighty thousand
people in Groningen, The Netherlands, were evaluated for renal
function and urinary abnormalities. It was found that up to
12% of the adult population had some degree of renal damage.
If these data were to be extrapolated to the world population,
the number of people with CKD could be estimated to be in the

hundreds of millions.
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Remission/regression in diabetic and nondiabetic nephropathies.
Changes in GFR during 4—7 years follow-up after institution of single-
drug or multidrug antiproteinuric treatment (based on renin-angio-
tensin system blockade) in patients with diabetic nephropathy (123,
124), or nondiabetic nephropathies (97) as well as in a patient with
systemic lupus erythematosus and proteinuric chronic disease (92).
Stabilization of GFR values (remission) was achieved after years of
treatment and in 7 patients belonging to the REIN trial even positive
GFR changes (regression) were found. DETAIL, Diabetics Exposed
to Telmisartan and Enalapril trial; DM, diabetic mellitus; SLE, systemic
lupus erythematosus.

ESRD is the most visible outcome of CKD. However, cardio-
vascular disease (CVD) is frequently associated with CKD, and
individuals with CKD are likely to die of CVD before they develop
terminal renal failure (31, 32). The American Heart Association
(33) has published a scientific statement to emphasize the impor-
tance of recognizing CKD as one of the major risk factors for CVD
and recommends that measurement of urinary albumin excretion
(UAE) and estimation of GFR be included in the evaluation of
patients with or at high risk for CVD.

In low-income countries, facilities for dialysis are extremely
scarce or altogether nonexistent, and patients with CKD are fac-
ing an ominous fate. In countries where the living conditions
are somewhat improving, and the income is increasing, a wor-
risome increase in CVD and diabetes is witnessed (34, 35). In
low-income countries, social and public health pilot experiences
have shown that early detection of CKD is feasible at affordable
costs (36, 37). The next step is to provide aid to these countries
and to also prove that inexpensive treatment for the prevention
of CKD progression is possible.

The progressive nature of kidney disease

Certain renal diseases, including rapidly progressive glomerulone-
phritis, although rare, have a very rapid course that quickly leads
to irreversible ESRD. More common nephropathies do progress
less rapidly, but still evolve to ESRD at different rates (Figure 1).
When serum creatinine is elevated beyond a certain level, progres-
sion is inevitable (S1-S3, 38).

The rate of progression of renal disease in hereditary kidney
diseases such as autosomal-dominant polycystic kidney disease is
highly variable, due to genetic heterogeneity (S4-S6, 39). Individu-
als with mutations in polycystic kidney disease 1 (PKD1) experience a
more severe disease course, ultimately progressing to ESRD by the
290
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average age of 54, while individuals with mutations in PKD2 experi-
ence loss of renal function approximately 20 years later (40-42, S7).
When renal function falls below 75% of normal the decline is rapid,
requiring RRT in a matter of 5-10 years (S8, 43).

After 10-15 years of stable renal function or even hyperfiltra-
tion, small amounts of albumin may appear in the urine of 20-40%
of patients with type 1 or type 2 diabetes. UAE rate in the range
of 20-200 pg/min or 30-300 mg/d (microalbuminuria) (44-46,
S9) is an early marker of nephropathy. If left untreated, 80-100%
of microalbuminuric patients with type 1 and 20-40% of patients
with type 2 diabetes progress to overt nephropathy, a syndrome
of macroalbuminuria (UAE >200 ug/min or >300 mg/d), declin-
ing GFR, and increased cardiovascular morbidity (44, 45, 47, S9).
In the case of macroalbuminuria, GFR relentlessly declines at an
average of 10-12 ml/min/yr (48) (Figure 2). At least two-thirds of
patients with overt nephropathy will die from CVD before they
progress to ESRD, a mortality rate 5- to 8-fold higher than in the
average population (49). While on dialysis, 21% of these patients
will die within 1 year (50).

Nondiabetic glomerulopathies include IgA nephropathy. Pro-
gression to ESRD occurs in 30% of patients after a follow-up of
25 years (51). A further 20% will have impaired renal function and
will progress eventually. Membranous nephropathy has a variable
course (52, 53, 510, S11) with an insidious onset and increasing
proteinuria up to nephrotic ranges. In the long term, spontaneous
remission occurs in up to 30% of individuals, while the remaining
two-thirds experience either equally persistent proteinuria of vari-
able degrees — although usually of declining severity, and with
normal or impaired but stable renal function — or progressive dis-
ease eventually leading to ESRD. Overall, approximately 30-40%
of patients develop significant renal failure 10-15 years after the
diagnosis of nephropathy (52, 53, S10, S11).

Most patients with mesangial proliferative glomerulonephritis
and isolated hematuria maintain normal renal function for years.
Cases with low-grade proteinuria also have a good long-term
prognoses, while patients with heavy proteinuria may progress
to renal insufficiency (54, 55, S12). Non-nephrotic patients with
primary focal and segmental glomerulosclerosis have a benign
disease. Actually more than 80% of these patients still retain nor-
mal renal function 10 years after the diagnosis of nephropathy
(56). When proteinuria is within the nephrotic range, the course
of the disease is rather malignant, and 50% of patients reach
ESRD within 6-8 years (57).

Genetic studies in rodents and humans

Kidney diseases are in part genetically determined; therefore,
individuals with a familial history of renal failure have a 3- to
9-fold greater risk of ESRD (58). However, the search for kidney

Table 1
Definitions of renal disease outcomes according to functional
and structural changes

Progression Remission  Regression
Proteinuria >19/24 h <1g9/24h  <0.3g/24h
Glomerular filtration rate Declining? Stable Increasing
Renal structural changes ~ Worsening Stable Improving

AFaster than physiological decline associated with aging (1 ml/min/1.73 m?
per year). Table modified with permission from The Lancet (91).
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Table 2
Regression of renal damage in experimental nephropathies
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large cohort of Japanese patients with type 2 diabetes at
more than 80,000 single nucleotide polymorphisms loci

Model Start of Treatment
treatment (wk)
Puromycin aminonucleoside— 0 Low-protein diet + ACEi
induced nephrosis 0 ACEi + Ang IIRA
Subtotal nephrectomy 8 High dose ACEi
8 High dose ACEi
8 ACEi
8 ACEi + Ang IIRA
Spontaneous nephropathy 20 ACEi
8 ACEi + Ang IIRA
Aging 72 Ang IIRA
Diabetic nephropathy 16 or 32 HGF gene transfer

allowed identification of the engulfinent and cell motility 1

Ref. ELMO1) gene as a candidate for conferring susceptibil-
& g P
ity to diabetic nephropathy (S15).

(99) In an effort to identify kidney disease quantita-
(125) tive trait loci (QTL), Fawn-Hooded hypertensive rats,
(100) Munich Wistar Fromter rats, and Dahl salt-sensitive
(103) rats have been crossed with kidney disease-resistant
(S22) strains, and the progeny have been phenotyped for
(S23) y y

(101) markers of renal impairment (67). Fifteen genomic
(102) regions were found to contribute to kidney disease in
(104) the rat, with 12 replicated in separate rat crosses using
(105) different parental strains (67). One QTL (named Rf-2)

on rat chromosome 1 is concordant to human chromo-

ACEi, ACE inhibitor; Ang IIRA, Ang Il receptor antagonist.

disease-related genes has not been very successful as yet except
for the identification of monogenic forms of the disease, which
include polycystic kidney disease, Finnish nephrotic syndrome,
and focal segmental glomerulosclerosis. In the context of chronic
progressive nephropathies, the gene coding for angiotensin-con-
verting enzyme (ACE), in which an insertion/deletion polymor-
phism has been described, received special attention owing to
the pivotal role of the renin-angiotensin system in renal hemo-
dynamics, sodium metabolism, and glomerular permeability
to proteins. The ACE DD genotype has been shown to predis-
pose to progression of IgA nephropathy (59, 60). Similarly, the
D allele has been found to represent an independent risk factor
for both the onset and the progression of diabetic nephropathy
in type 1 and type 2 diabetes mellitus (61, 62), although other
studies failed to find any association between insertion/deletion
polymorphisms and diabetic nephropathy (S13). Rather than
predicting disease progression, the ACE insertion/deletion poly-
morphism predicts ACE inhibition-associated renoprotection in
patients with nondiabetic proteinuric nephropathies. Protein-
uria, fall of GFR, and progression to ESRD are reduced by ACE
inhibitors in patients with the DD genotype, but not in those
with the II or ID genotype (63, 64).

A prospective population-based study, including more than
10,000 adults with or without diabetes and without severe renal
dysfunction at baseline, has demonstrated that the €2 allele of
apolipoprotein predicts chronic kidney disease progression inde-
pendent of diabetes status, race, and lipid levels (65, S14).

Linkage studies have examined the whole genome by testing for
coinheritance of chromosomal regions with disease in families
with a history of renal disease. Several kidney disease loci have been
identified on chromosomes 3q, 10q, and 18q (66). Genotyping a

Figure 4

3D versus 2D estimation of hypothetical regression of glomerulosclero-
sis changes. Simulation of sclerotic changes reduction in 3D glomeru-
lar capillary tuft reconstructions (left) and corresponding 2D estimation
of changes in sclerosis extension in single section morphology (right).
The outer surface of the glomerular capillary tuft is represented in gray,
while sclerotic changes are represented in red. Hypothetical reductions
of sclerosis changes (left to right) represented in 3D images are less
evident in corresponding single sections of the same glomerular tuft.
The technique for 3D reconstruction of glomerulosclerosis changes is
reported in detail in ref. 108.
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some 19q13, which contains a locus for a monogenic

form of segmental glomerulosclerosis (S16). The rat

QTL on chromosomes 2 and 3 are concordant with a
kidney disease QTL identified in Pima Indians (68), and the rat
QTL on chromosome 11 is concordant with 2 QTL for creatinine
clearance on human chromosome 3q27 found in African Ameri-
cans and whites (69). Kidney disease QTL in rats may help predict
the location of corresponding disease genes in humans.

Key role of proteinuria and of its correction
with RAS inhibitors

The predictive value of proteinuria

Rather than simply a marker of damage (70), ultrafiltered pro-
teins can be toxic to the kidney (18, 71). In humans, proteinuria
predicts progression and renal outcomes (72, 73, S17) in diabet-
ic (S18) and nondiabetic renal disease (74). In the 274 patients
with nondiabetic chronic nephropathies and clinical proteinuria

Regression of sclerotic changes

®-0

Regression of sclerotic changes

oo

Sclerosis Capillary tuft

3D reconstruction 2D sections
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Figure 5

Regeneration of normal capillary tissue by ACE inhibition in Munich
Wistar Fromter rats. Distribution of normal (nonsclerosed) capillary tis-
sue as estimated by serial section reconstruction of the entire capillary
tuft in Munich Wistar Fromter rats at 50 weeks of age, in untreated
rats at 60 weeks of age, and in animals treated with an ACE inhibitor
(ACE:i; lisinopril) from 50-60 weeks of age. One hundred glomeruli
have been completely reconstructed in each animal group, and values
of nonsclerosed volume represented in ascending order. Numbers in
the abscissa represent reconstructed glomerular capillary tufts. Data
obtained by elaboration of experimental results described in ref. 108.

included in the Ramipril Efficacy in Nephropathy (REIN) trial
(75), urinary protein excretion was the only baseline variable that
correlated with decline in GFR and progression to ESRD. Similar
findings are now available for type 2 diabetics (76).

Astudyin alarge population of whites found that proteinuria inde-
pendently predicted risk of ESRD and overall mortality (77). Urinary
albumin also predicted more ESRD and cardiovascular mortality in
an Australian aboriginal community (78). In more than 100,000
healthy individuals followed for up to 17 years, a positive correlation
was found between baseline proteinuria and ESRD (79).

The renoprotective effects of proteinuria reduction

Evidence from clinical trials in nondiabetic nephropathies. Lowering pro-
teinuria always retards renal disease progression (74, 80, 81, S19).
The Modification of Diet in Renal Disease (MDRD) study (74)
found thatreduction of proteinuria is followed by less GFR decline.
The REIN study (81) showed a 2- to 3-fold faster GFR decline in
patients on interim analysis with nephrotic-range proteinuria
than in those with less proteinuria (82, 83). Nephrotics were con-
siderably protected by the active treatment (rate of GFR decline
on ramipril, 0.39 ml/min/mo; on placebo, 0.89 ml/min/mo).
At final analysis the risk of dialysis was reduced by 50% by
ramipril compared with placebo. Proteinuria was lowered dur-
ing ramipril but was increased on placebo (81). The renopro-
tection of ACE inhibition was likely mediated by the effect on
urinary proteins (83, 84), since blood pressure was comparable
to that of controls (81). Moreover, the rate of GFR decline cor-
related negatively with proteinuria reduction but positively
with residual proteinuria (85). The REIN study also found that
the comparable outcomes in male and female patients were the
faster progression on placebo and the better response to ACE
inhibitor therapy in females compared with males. In females
the effect of ramipril on lowering proteinuria was more pro-
nounced than in males.
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Evidence from clinical trials in type 1 and type 2 diabetics. Bjorck et al.
(86) found that in type 1 diabetics with overt nephropathy at com-
parable blood pressure, enalapril reduced the rate of GFR decline
more than did treatment with a beta blocker. In another trial of
409 type 1 diabetics (80), results documented less progression to
the combined end point of doubling serum creatinine, ESRD, or
death while on captopril compared with placebo. Similar data are
available for type 2 diabetics. In the Reduction of Endpoints in
NIDDM with the Angiotensin II Antagonist Losartan (RENAAL)
study (87), fewer patients reached the composite end point of
doubling serum creatinine, ESRD, or death in the losartan group
compared with placebo. In the losartan group, proteinuria was
reduced by greater than 30%, while for individuals on placebo,
there was a slight increase by the end of the follow-up period. The
renal and cardiovascular effects of losartan were fully driven by
the effects of the drug on urinary proteins and largely depended
on the amount of residual proteinuria. In the Irbesartan Diabet-
ic Nephropathy Trial (IDNT) (88), patients on irbesartan had a
lower rate of progression to the primary endpoint (doubled serum
creatinine, progression to ESRD, or death) compared to amlodip-
ine or placebo. The irbesartan group had greater than 30% reduc-
tion in proteinuria, compared with 6% for amlodipine and 10%
for placebo. The beneficial effect remained even after correction
for the difference in blood pressure.

Evidence from meta-analyses of ACE inhibitor trials. The ACE Inhibi-
tion in Progressive Renal Disease (AIPRD) meta-analysis (89, 90)
confirmed that proteinuria is a strong risk factor for progression
of chronic renal disease and that patients with more severe renal
disease benefit most from ACE inhibitor treatment. Moreover,
a strong relationship between early changes in urinary proteins
upon treatment and disease outcome has been found (91), again
confirming previous findings (75).

Is glomerular sclerosis reversible?

Preliminary observations in humans

The case of a patient with systemic lupus. Multidrug treatment,
titrated to urinary proteins, blunted proteinuria and stabilized
GEFR for years in a young girl with nephrotic proteinuria and
systemic lupus (92). She was given an ACE inhibitor in order
to maintain a diastolic blood pressure of 90 mmHg or less. Her
proteinuria reduced remarkably. Three years later, proteinuria
was again measured at 9 g/24 h, and she had severe renal fail-
ure. There was no sign of active lupus. In addition to dietary
sodium and protein restriction, she was given an ACE inhibi-
tor plus an angiotensin II (Ang II) receptor antagonist, and a
statin (92) with up titrations as deemed appropriate. Full remis-
sion of proteinuria was achieved within 6 months. Seven years
later, proteinuria averaged 0.1-0.2 g/24 h, and renal function
improved. This case shows that it is now possible to stabilize or
even reverse disease progression, even in an advanced phase of
the disease (Figure 3).

The case of pancreas transplantation. Regression of diabetic renal dis-
ease with glomerular architecture remodeling has been observed in
a few patients with type 1 diabetes after 10 years of normoglycemia
induced by a pancreatic transplant (93). Kidney function, however,
did not return to pretransplant values. These findings show that
sustained normoglycemia induces regression of lesions of diabetic
glomerulopathy, extending previous evidence obtained in experi-
mental animals (94, 95) to humans.
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The REIN follow-up study. Nephrotic patients of the REIN core
study that continued on ramipril for another 2 years (as part of
the REIN follow-up study) had a progressive amelioration in the
rate of GFR decline up to 1 ml/min/yr (96, 97). Among the 78
patients treated with the ACE inhibitor in this study, 10 patients
showed improvement of GFR and never reached ESRD (97). GFR
slopes in 16 additional patients stabilized, or worsened so slowly
that ESRD would be delayed beyond the patients’ life expectancy.
Patients that switched to ramipril from conventional treatments
continued to progress on follow-up. Thus, ESRD risk reduction
went from 50% in the core study (18 months) to 300% in the follow
up study (3-4 years), a finding consistent with the time-dependent
effects of ACE inhibitors (97) in inducing regression of the disease.
The time-dependent amelioration of the GFR slopes (Figure 3) was
paralleled by progressive reduction in urinary protein excretion.

Long-term follow-up in diabetes. A post-hoc analysis of the Capto-
pril study (S20) on 108 patients with type 1 diabetes and nephrotic
proteinuria at study entry found that over a follow-up period last-
ing more than 3 years, 7 of 42 patients on captopril had full remis-
sion of proteinuria. In these patients, renal function stabilized. In
patients that had no remission of proteinuria, GFR deteriorated.
After an 8-year extended follow-up period, GFR remained stable in
6 patients who still had less than 1 g/24 h of proteinuria (98). These
findings challenge the common belief that diabetics with nephrot-
ic-range proteinuria have inexorable progression to ESRD, showing
instead that remission and even regression of the disease can occur
(Table 1). This is one of the first indications that no further renal
function loss is possible in these patients, provided that urinary
protein excretion can be limited by the treatment (Figure 3).

Animals studies belp clarify the significance of buman findings

The finding that a low-protein diet or ACE inhibition can reverse
proteinuria and glomerulosclerosis is well established in animals
(Table 2) (S21, 99-102). When an ACE inhibitor and an Ang II
receptor blocker were combined in a genetic model of progressive
nephropathy, reduction of glomerular sclerosis was even more evi-
dent, particularly in those glomeruli that had less severe lesions to
begin with (102). This shows that remodeling of glomerular archi-
tecture is possible, which would imply some form of regeneration
of the capillary network (103, S22).

Among the mediators involved in the regression of sclerosis (104,
105, S23), plasminogen activator inhibitor-1 (PAI-1) is a plausible
candidate, given the role of PAI-1 — which is potently induced by
Ang II — in inhibiting matrix degradation (104). PAI-1 (as shown
by immunostaining) progressively increases as sclerosis develops,
while in rats receiving ACE inhibitors, PAI-1 expression decreased
(S23). In all of the studies described above, quantification of sclero-
sis was based on semiquantitative scores. Yet 2D analysis of a single
section of a biopsy specimen overestimates the number of normal
glomeruli and underestimates the actual extent of glomeruloscle-
rosis (106, 107). Thus one cannot currently tell what volume of
glomerular capillaries is actually affected by sclerosis and to what
extent the sclerosis volume is effectively reduced by treatment.

A possible answer from 3D reconstruction studies

To quantify the extension of sclerosis volume and capillary regenera-
tion upon treatment, 3D reconstruction of the entire capillary tuft
of hundreds of glomeruli has been performed in a rat model (108).
The 3D analysis of the capillary tuft was instrumental to demon-
strate reabsorption of sclerosis and regeneration of capillary tissue
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after administration of a high dose of ACE inhibitor to rats with
very advanced nephropathy (Figure 4). The treatment remarkably
reduced sclerosis volume in most glomeruli, unless they were already
almost totally sclerosed. ACE inhibitors also enlarged the volume
of intact capillaries by up to 40% (Figure 5) (108). These structural
changes allowed the kidney to regain function with time.

Interpretation of existing data

Mechanisms responsible for sclerosis regression include the inhi-
bition of TGF-f (102) and the decrease in PAI-1 levels (104, S23).
However, precisely which cells are involved in the process of scar
tissue removal is not yet known. While glomerular, endothelial,
and mesangial cells seem to proliferate in some circumstances, it
is generally accepted that more differentiated podocytes do not
usually proliferate (109, S24), making it unlikely that new segment
formation can occur simply by replication of resident cells. Podo-
cytes, however, may promote capillary growth by stimulating pro-
liferation and migration of glomerular endothelial cells (110).

Regeneration of capillary segments in the glomerular tuft may
depend on other cells. Bone marrow cells act as a reservoir for glo-
merular mesangial cells in rodents (111), and cross-bone marrow
transplantation from young to old mice allows a partial regression of
structural lesions associated with aging (112). Regression of glomer-
ulosclerosis and neoformation of glomerular tissue has indeed been
linked to progenitor cells of renal or extrarenal origin (110, 112).

Stem cells also exist in the adult kidney and can theoretically
act to repair lesions. A distinct population of progenitor-like cells
exists that express vimentin (a marker typically expressed by meta-
nephric mesenchyme during kidney development). These cells are
localized in proximal and distal tubuli and peritubular capillar-
ies and can retain mitogenic potential (113). Following ischemia
(113), such cells enter the cell cycle, divide, and migrate to the site
of damage (113). Renal papilla can also be a niche for kidney stem
cells (114) that start proliferating after renal ischemia.

Stem cells of bone marrow origin, both hematopoietic and
mesenchymal, also contribute to kidney regeneration (115, 116,
S25,S26). Transplanting male bone marrow into female recipients
yielded Y chromosome-positive cells that localized and differenti-
ated in tubular epithelium and glomerular podocytes (115).

Mesenchymal stem cells, by promoting resident tubular cell pro-
liferation, limited renal injury and improved renal function in mice
with cisplatin-induced acute renal failure (117). That bone mar-
row or resident kidney cells repair tissue damage is plausible, given
results in the heart (118). In the process of cardiac repair, stem cell
migration and homing is facilitated by HGF (119). Whether this
applies to the kidney has yet to be confirmed (S27). Ang I blockade
also limits TGF-f expression. Since TGF-f suppresses HGF (528),
one might speculate that ACE inhibitors exert a beneficial effect by
preserving the HGF-dependent pathway of renal repair. Evidence
in animals has shown that ACE inhibition prevents glomerular and
tubular injury by upregulating renal mRNA levels of HGF (120).
HGEF could therefore be pivotal in regenerating the kidney owing to
its capacity for inducing renal cell proliferation and limiting apopto-
sis, which adds to its chemotactic effect on stem/progenitor cells.

Future perspectives

It has been found that the repair of renal tissue involves remodel-
ing of the glomerular capillary network (S22). The process of glo-
merular restructuring can now be analyzed by geometrical com-
putational models. For this type of investigation, last-generation
Volume 116 293
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confocal and multiphoton microscopy would be most suitable.
Computer programs can then be used to analyze serial sections
of glomeruli and automatically compute capillary network topol-
ogy. Using these theoretical models, one can estimate the distri-
bution of blood flow and water filtration along the network and
the pressure difference across the glomerular membrane in indi-
vidual capillary segments (121). In addition, graph theory could
be used to compare topological differences among individual cap-
illary networks (S29). Identifying differences within glomerular
network organization that emerge during sclerosis regression may
also be a potential application of the above models and may help
to identify changes in cell and gene expression occurring in newly
formed capillary segments.

Another challenge for future research is to clarify which cells —
whether of bone marrow origin or resident renal stem cells — are
involved in sclerosis regression and to what extent, as well as the
dynamics of intrarenal events involved in tissue repair. Greater
knowledge regarding the regression of kidney lesions and a bet-
ter understanding of how to influence this process will hope-

fully reveal new paths toward postponing the progression of
renal disease in humans.
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