Abstract

When exposed to a pathogen, a naive CD4+ T cell is forced to make a cell fate decision that leads to a polarized population of Th1 IFN-γ– or Th2 IL-4– producing cells. Although IL-4 has traditionally been considered a factor that promotes Th2 cell differentiation, recent evidence has demonstrated that the site and timing of IL-4 expression in an immune response determines its ultimate effects on CD4+ T cell fate. Using a mast cell (MC) reconstitution model, we demonstrate that MC-derived IL-4 promoted Th1 responses in vivo. Furthermore, MCs from genetically disparate mouse strains varied in their potential for IL-4 expression. Independent of the activation mode, MCs from Th1-prone C57BL/6 mice exhibited a more robust Il4 response than did the Th2-prone strain Balb/c. The hierarchy of IL-4 expression potential was directly associated with the degree of basal chromatin accessibility at cis-regulatory elements conserved noncoding sequence–1 and VA enhancer within the Th2 locus. GATA1/2 and Ikaros, factors with opposing roles in chromatin remodeling, acted at these sites. We propose that GATA and Ikaros proteins coordinately fine-tune accessibility at the Il4 locus during development to variably regulate IL-4 expression. These events likely contribute to the genetically determined heterogeneity in Th1 responses that underlie susceptibility to many diseases.

Authors

Gregory D. Gregory, Shveta S. Raju, Susan Winandy, Melissa A. Brown

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement