Chromogranin A (CHGA) and its derived peptides, which are stored and released from dense-core secretory granules of neuroendocrine cells, have been implicated as playing multiple roles in the endocrine, cardiovascular, and nervous systems. In this issue of the JCI, Mahapatra et al. present in vivo evidence for 2 important functions of CHGA: the regulation of catecholamine-containing dense-core chromaffin granule biogenesis in the adrenal gland and the control of blood pressure (see the related article beginning on page 1942). Obliteration of CHGA expression in a KO mouse model led to decreased size and number of chromaffin granules as well as hypertension in these animals. Transgenic expression of human Chga and exogenous injection of human catenatin, a CHGA-derived nicotinic cholinergic antagonist, restored normal blood pressure in these mice. These results suggest a coupled relationship between CHGA-mediated chromaffin granule biogenesis, necessary for catecholamine storage, and catenatin-induced inhibition of cholinergic-stimulated catecholamine release, which regulates autonomic control of blood pressure.

Role of CHGA in regulating secretory granule biogenesis

Formation of dense-core secretory granules is a critical step in the storage and sequestration of bioactive molecules from (neuro)endocrine cells such as the chromaffin cells in the adrenal medulla. In chromaffin cells, catecholamine and ATP are bound to CHGA and are together packaged with proenkephalin and neuropeptide Y in dense-core chromaffin granules. Previous studies using cell lines have demonstrated a role for CHGA and other members of the granin family in the physical formation of the granules. When CHGA and chromogranin B (CHGB) were expressed in nonendocrine cells, dense-core secretory granule-like vesicles formed within the cells (2, 8, 9), which suggests that proteins with these aggregative properties are granulogenic (i.e., they can physically initiate granule formation). However, the ability to regulate the number of granules formed in neuroendocrine cells is unique to CHGA. In PC12 cells, a neuroendocrine cell line, the depletion of CHGA, but not CHGB, severely impaired granule formation (2).

Concomitantly, other granule proteins such as CHGB, carboxypeptidase E (CPE), and synaptopagmin were degraded in the absence of CHGA in these cells. However, transfection of CHGA into these cells rescued the degradation of these proteins. It was therefore proposed that CHGA may regulate the number of granules formed by controlling the stability and availability of granule proteins at the posttranslational level (10). Indeed, the data from Chga KO mice presented by Mahapatra et al. (7) provide evidence in support of such a role for CHGA in regulating dense-core secretory granule biogenesis in vivo. These mice showed decreased numbers of granules formed in adrenal chromaffin cells lacking CHGA. In addition, morphological analysis of the granules formed revealed that they were significantly altered, showing a decrease in their size and electron density. Moreover, the expression levels of other granule proteins such as CHGB and dopamine β-hydroxylase were decreased. These results are strikingly similar to the ex vivo evidence obtained from using CHGA-deficient PC12 cells (2) and verify the importance of CHGA in regulating granule biogenesis in vivo. Furthermore, we have recently obtained similar results in a mouse model expressing antisense RNA against CHGA to partially deplete CHGA expression. In this transgenic mouse model, reduction of CHGA levels resulted in a significant decrease in the number of dense-core granules as well as a reduction in CHGB and dopamine β-hydroxylase levels in chromaffin cells (our unpublished observations). While there was some controversy and debate over the role of CHGA in granule biogenesis based on studies by several groups using cell lines (11, 12), the evidence from the Chga KO mice reported in this issue by Mahapatra et al. (7) and from our transgenic mouse model (our unpublished

Nonstandard abbreviations used: CHGA, chromogranin A; CPE, carboxypeptidase E.

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J. Clin. Invest. 115:1711–1713 (2005). doi:10.1172/JCI25706.
In their study, the elevated corticosterone in Chga–/– mice is consistent with the observation that blood pressure increases (7). Therefore, those Chga–/– mice serve as a model for hypertension studies. The elevated corticosterone levels in Chga KO mice, which are known to upregulate Chga gene expression in adrenal chromaffin cells, may be considered a compensatory mechanism to overcome the lack of CHGA. The increase of mRNAs for other granule proteins may be a side effect of the increased glucocorticoid levels in these animals. Nevertheless, the total levels of CHGB and dopamine β-hydroxylase gene products in the adrenals were significantly decreased in Chga–/– mice. This result is reminiscent of the low levels of granule proteins CHGB, CPE, and synaptotagmin observed in PC12 cells lacking CHGA, which are due to degradation (2). The levels of granule proteins correlated with the amount of CHGA present in the PC12 cells and their degradation was recovered by re-expression of CHGA in these cells, which suggests that CHGA plays a role in regulating granule protein stability and hence affects the levels available for dense-core granule biogenesis. It remains to be determined whether these granule proteins are synthesized and degraded in the absence of CHGA in the Chga KO mouse.

CHGA and blood pressure regulation

Primary (genetic or essential) hypertension is complex, as multiple factors derived from cardiovascular, neuronal, renal, and adrenal sources contribute to it. For the last 20 years, a link between CHGA and hypertension has been postulated. Sympathoadrenal activity mediated by catecholamine acts on cardiovascular target cells to increase blood pressure by a so-called “flight or fight” response. After catecholamine is synthesized in the cytoplasm of chromaffin cells, it is transported into dense-core granules via vesicular monoamine transporters. Catecholamine then binds CHGA for storage in the core of the granules (13, 14). Upon stimulation by acetylcholine, catecholamine is coreleased with CHGA and catestatin from the granules. Secreted catecholamine triggers cardiovascular target cells to augment blood flow. This sympathoadrenal activity is then antagonized by the action of catestatin on cholinergic receptors to inhibit catecholamine secretion. [Ca2+], intracellular calcium concentration.

Figure 1

Relationship of CHGA-mediated dense-core secretory granule (DCG) biogenesis, catecholamine (CA) secretion, and its subsequent inhibition by the CHGA-derived peptide catestatin in the maintenance of blood pressure by the adrenal gland. CHGA, as a full-length molecule, initiates dense-core secretory granule biogenesis at the trans-Golgi network of adrenal chromaffin cells. Current data suggests that CHGA enhances granule biogenesis by preventing posttranslational degradation of other granule proteins in the Golgi complex. In the cytoplasm, catecholamine is synthesized and transported into the dense-core secretory granules via vesicular monoamine transporters. Upon stimulation by acetylcholine (Ach), catecholamine is coreleased with CHGA and catestatin from the granules. Secreted catecholamine triggers cardiovascular target cells to augment blood flow. This sympathoadrenal activity is then antagonized by the action of catestatin on cholinergic receptors to inhibit catecholamine secretion. [Ca2+], intracellular calcium concentration.
Alternatively, these patients may undergo a pathological upregulation of cholinergic input, which could lead to enhanced exocytosis of chromaffin granules that have not fully matured and secretion of unprocessed CHGA, since processing of CHGA into cathestatin takes place in the granules (18). Uninhibited stimulation of chromaffin granule exocytosis with lowered cathestatin levels would account for the higher sympathetic activity and elevated catecholamine levels that are observed in patients with familial or genetic hypertension (19).

In conclusion, the study by Mahapatra et al. (7) describes a mechanism that links the requirement of CHGA for sustained chromaffin granule biogenesis and catecholamine storage to the extracellular inhibition of catecholamine secretion by the CHGA-derived peptide cathestatin in the autonomic control of blood pressure in vivo (Figure 1). Their work has several clinical implications. One is the possibility that cathestatin may be useful as a therapeutic agent in the treatment of hypertension, in humans, although the extent to which the lack of cathestatin contributes to human hypertension remains to be determined. Furthermore, screening for polymorphisms in the cathestatin domain (19) of the Chga gene in humans could provide insight into the observed genetic predisposition to hypertension.

Address correspondence to: Y. Peng Loh, National Institute of Child Health and Human Development, NIH, 49 Convent Drive, Mail Stop Code 4480, Bethesda, Maryland 20892, USA. Phone: (301) 496-3239; Fax: (301) 496-9939; E-mail: lohp@mail.nih.gov.