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The mapping of disease genes to specific loci has received a great deal of attention in the last decade, and many 
advances in therapeutics have resulted. Here we review family-based and population-based methods for association 
analysis. We define the factors that determine statistical power and show how study design and analysis should be 
designed to maximize the probability of localizing disease genes.

Introduction
The recent completion of the draft sequence of the human 
genome (1, 2) raises interesting possibilities regarding the appli-
cation of genomics (see Glossary) to medicine in the twenty-first 
century (3). By genomics, we mean the functions and interactions 
of all genes in the genome. As Guttmacher and Collins (3) point 
out, knowledge of genomics may well lead to better management 
of common medical conditions and in some cases the prevention 
of fatalities due to known adverse reactions for individuals with 
certain genetic conditions. This observation underscores the need 
for clinicians to be familiar with the basics of genomics and gene 
mapping. For those clinicians planning to work in gene mapping 
studies, it is vitally important to understand the underlying sta-
tistical methods used, so that they can design studies that have 
maximal probability of finding genes. Such methods generally 
fall under the category of linkage or association methods. Link-
age methods involve estimation of the recombination fraction 
between 2 loci, 1 that is observed and 1 that is typically unob-
served (the disease locus). Association methods are concerned 
with testing whether single-locus allele or genotype frequencies 
(or more generally, multilocus haplotype frequencies) are differ-
ent between 2 groups, cases and controls. The use of association 
methods to map disease genes has received a great deal of atten-
tion in the last decade (4, 5). One purpose of this review is thus to 
provide a background of the major statistical issues involved in 
disease gene mapping using association methods.

We begin with some basic concepts in statistical genetics. We 
follow that with a brief history of population-based and family-
based association methods. We conclude with a discussion of fac-
tors, including effect size (genotype relative risk), allele frequency 
differences between the trait and marker loci, and genotype errors 
that can affect the probability of finding disease genes. Because 
errors are often ignored or minimized (6), we consider it particu-
larly important to document their effects and to address ways to 
achieve maximum probability of disease gene localization even in 
the presence of errors.

Basic concepts of statistical genetics
By locus (also referred as marker or marker locus), we mean any 
polymorphic stretch of DNA in the human genome. A locus can 
be as small as a single nucleotide (referred to as single nucleotide 
polymorphism [SNP]) and includes (but is not restricted to) genes. 
The specific string of DNA at the locus is called the allele. The pair 
of alleles at a locus for any individual is called the genotype. The 
ABO blood gene is an example of a polymorphic locus. The set of 
alleles is (A, B, or O) with genotypes AA, AB, AO, etc. By haplotype, 
we mean a specific set of alleles on a person’s chromosome (7). We 
provide an example in Figure 1.

In the process of meiosis (the cell division that leads to the for-
mation of egg or sperm cells), homologous chromosomes first pair 
up and then separate (7). In the process of separation, the homolo-
gous chromosomes maintain 1 or more regions of contact known 
as chiasmata. At these regions, exchange of chromosomal mate-
rial among the pair of chromosomes takes place. This exchange 
is referred to as a recombination. An example presented in Figure 
1 represents a recombination taking place between the first locus 
(with alleles A and a) and the second locus (with alleles B and b). 
The resultant haplotypes (shown as strings of letters on the right-
hand side) are: ABC, Abc, aBC, and abc.

The term recombination fraction refers to the probability that 
a recombination will take place between 2 loci. Theoretically, the 
range of the recombination fraction between 2 loci is 0–0.5. A 
recombination fraction of 0 means that no recombination ever 
takes place between the 2 loci and indicates that they are extremely 
close to one another on a chromosome. A 0.5 recombination frac-
tion means that the loci are “unlinked.” For example, 2 loci on 2 
different chromosomes have a recombination fraction of 0.5. Simi-
larly, loci that are on opposite ends of a chromosome may have a 
recombination fraction very close to 0.5.

Statistical methods that estimate the recombination fraction 
between 2 loci using genotype data from families (usually with a 
disease of interest) are referred to as linkage methods. Such meth-
ods have been highly successfully in finding disease genes for very 
rare diseases that act in a dominant or recessive fashion (8).

The term linkage disequilibrium (LD) refers to a nonrandom 
relationship between 2 alleles that typically arises because those 
alleles are closely linked on a chromosome and therefore infre-
quently separated from one another by recombination. In this 
case, the frequency of each allele in the population does not allow 
one to predict the frequency at which they occur together. Typi-
cally, one of the loci is an observed marker locus, and the other is 
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the disease locus. One of the common measures of LD is D′, a stan-
dardized measure of LD (9), which ranges between 0 and 1. When 
2 loci are completely unlinked (for example, if they are on different 
chromosomes), D′ = 0. If the 2 loci are identical (for example, a 
marker locus is the disease locus), then D′ = 1. Values of D′ closer to 
1 suggest that the marker locus is closer to the disease locus. It has 
been shown that, under certain circumstances, statistical methods 
involving LD have a significantly higher probability of finding dis-
ease genes than do linkage methods (5). Thus, LD methods are of 
critical importance in mapping disease loci.

By Hardy-Weinberg equilibrium (HWE), we mean that the gen-
otype frequencies for a locus can be completely described by the 
allele frequencies. Here, the term frequency refers to the propor-
tion of either an allele or a genotype in the population. As an exam-
ple, suppose we have a diallelic SNP locus with alleles A and B. If 
the frequency of the A allele is pA and the frequency of the B allele 
is pB, then, in the condition of HWE, the genotype frequencies for 
AA, AB, and BB are pA

2, 2pApB, and pB
2, respectively.

Penetrance refers to the probability that an individual is affected 
if that individual has a certain genotype at the disease locus. For 
a diallelic disease locus, there will be 3 genotypes (having 0, 1, or 
2 copies of the disease allele). Formally, fi = Pr(affected | i copies 
of disease allele) (i = 0, 1, 2), where f indicates penetrance and Pr 
indicates probability. That is, f0 is the probability of being affected 
in individuals who have 0 copies of the disease gene, f1 is the prob-
ability with 1 copy of the disease gene, f2 is the probability with 2 
copies. Example penetrances for different diseases are: f0 = f1 = 0,  
f2 = 1 for cystic fibrosis (10), a recessive disease, and f0 = 0.08,  
f1 = 0.82, f2 = 0.82 for certain groups of patients with the BRCA1 
mutation for breast cancer (11), a dominant disease. More gener-
ally, recessive diseases are those for which f0 = f1, and dominant 
diseases are those for which f1 = f2.

The term phenotype refers to an observed disease status. Exam-
ple disease phenotypes are presence or absence of: diabetes, heart 
disease, colon cancer, breast cancer, male prostate cancer, psoriasis, 
Alzheimer disease, and schizophrenia. Typically, those who have 
the presence of a disease phenotype are called cases and those who 
have an absence of the disease phenotype are called controls.

We illustrate the concept of statistical power with an example. 
When an (unobserved) disease locus is situated near an (observed) 
marker locus, the genotype frequencies in individuals affected with 
the disease will differ from frequencies in individuals who are not 
affected with the disease. One statistical test designed to detect these 
differences is the Pearson χ2 test of independence. An example of its 

application is provided in Table 1. If the value of the test statistic is 
sufficiently large, then we correctly reject the null hypothesis that 
there is no association between the disease phenotype and the mark-
er locus; that is, the test statistic indicates that the marker locus is 
in the proximity of a disease locus. Thus, power is the probability 
that the test statistic indicates (usually when the statistic has a large 
value) that the observed marker loci are near an (unobserved) dis-
ease locus. The concept of power is intimately related to the concept 
of type I error. The type I error rate is the probability that the test 
statistic indicates that the observed marker loci are near a disease 
locus when in fact there is no disease locus nearby. One controls the 
type I error by setting appropriate thresholds for the test statistic. If 
the value of the statistic for a data set (of marker locus genotypes) is 
below the threshold, then we accept the null hypothesis that there in 
no disease gene in the vicinity of the marker locus. Traditionally, we 
write this as accepting the null hypothesis that there is no association 
between the marker and the disease phenotype. The type I error rate and 
power of a study are the 2 key design parameters of a study.

Misclassification refers to either an observed phenotype or geno-
type that is different from the true underlying phenotype or geno-
type, respectively. Historically, the term misclassification has been 
used in statistics (12, 13) to mean the same as phenotype or geno-
type error in statistical genetics and genetics. Hereafter, we use the 
term error to mean misclassification in the statistical sense. An 
example of phenotype misclassification involves use of the pros-
tate-specific antigen (PSA) test for diagnosis of male prostate can-
cer (14). There may be a lack of PSA elevation in some men with 
prostate cancer, resulting in an affected individual (case) being 
misclassified as an unaffected individual (control). An example of 
genotype misclassification for a marker locus with genotypes AA, 
AB, and BB is a heterozygote individual (AB) being recorded as 
having either an AA or BB genotype (15).

Finally, for tests of association applied to contingency tables, 
we use the abbreviation PL to mean power loss for a fixed sample 
size and given type I error rate in the presence of errors; and the 
abbreviation MSSN to mean the minimal sample size necessary to 
maintain constant power for a given type I error rate. For example, 
suppose that we have collected data from 100 cases and 100 con-
trols that we have genotyped at a diallelic SNP locus with alleles 
A and B. Suppose further that both case and control populations 
are in HWE before the introduction of genotype error and have 
A allele frequencies of 0.05 and 0.10, respectively. Furthermore, 
assume that any homozygote is randomly misclassified as the 
heterozygote with a 0.01 probability and similarly the heterozygote 
is randomly misclassified as either homozygote with a 0.01 prob-
ability. Then the power to detect association using the χ2 test of 
independence (also see “Population-based association/Statistical 
methods” below) is 38% at the 5% type I error rate when no misclas-
sification errors are present, and it is 35% when random errors are 
present, resulting in a PL of 0.376 – 0.353 = 0.023 (16, 17). That is, 

Figure 1
Pictorial example of recombination. Left: The 2 pairs of chromosomes 
(solid lines, dashed lines) represent the (duplicated) chromosomes in 
meiosis before recombination takes place. Right: The set of chromo-
somes after recombination has taken place. The first and last chromo-
somes are nonrecombinant, since they are identical to chromosomes 
on the left. The second and third chromosomes on the right are recombi-
nant, since each contains a portion of the chromosomes on the left. Note 
that the recombination takes place between the first and second locus.
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the probability of detecting a nearby disease locus is reduced by 
2.3%. Similarly, if we have the same genotype frequency settings in 
cases and controls and we wish to compute the MSSN to achieve 
95% statistical power with equal numbers of cases and controls for 
the χ2 test on genotypes, then we require 432 cases and 432 con-
trols when no errors are present; and we require a minimal sample 
size of 463 cases and 463 controls when random genotype errors 
are present in the data. The presence of genotype errors results in a 
7.26% increase in MSSN to maintain the same statistical power.

Other critical concepts that are basic to an understanding of sta-
tistical methods for disease gene mapping are replication and mul-
tiple testing. Often, statistical evidence for association may be due to 
chance. A way to eliminate chance as an explanation for the associa-
tion is to replicate the findings in an independent data set (8). Another 
way that false positive findings can occur is through multiple testing. 
Suppose that we wish to test 2 markers, 1 on each end of every one of 
the human chromosomes with the exception of the sex chromosomes 
(a total of 22 chromosomes), for association with a given disease phe-
notype. We would then conduct a total of 44 (2 × 22) independent 
tests. If we select a type I error rate of 5%, then the probability that at 
least 1 of the test statistics will reject the null hypothesis even when 
it is true can be shown to be approximately 88%. That means that, 
even if there is no disease gene in the entire genome, at least 1 marker 
would return a statistical test value suggesting the proximity of a dis-
ease locus 88% of the time. There have been numerous proposals on 
how to correct for this inflation in type I error (18, 19).

Population-based association

Statistical methods
By population-based association, we refer to gene-mapping studies 
in which the data collected are for unrelated cases and controls. 
The data used to test for association are often presented in the 
form of contingency tables (20). The contingency tables for our 
purposes are ones in which rows describe an affection status (case 
or control) and the columns refer to either specific alleles, geno-
types, or haplotypes (7, 21). An example of a contingency table for 
case and control individuals genotyped at a diallelic SNP locus 
is presented in Table 1. Let us assume that the individuals rep-
resented in that table were categorized according to whether or 
not they have a disease such as breast cancer. A commonly used 
test statistic for association testing with such data is the χ2 test 
of independence. For the example data set we provide in Table 1, 
the value of the χ2 statistic is 8.17 with a corresponding P value of 
0.017. Because the P value is less than 0.05, based on the result, we 

reject the null hypothesis of no association between colon cancer 
and this marker locus at the 5% type I error rate. In other words, 
this marker locus appears to be in close proximity to such a suscep-
tibility locus for colon cancer based on these data.

Mitra (22) computed the noncentrality parameter of the asymp-
totic distribution of the χ2 test on r × c contingency tables (r, rows;  
c, columns) for a specified alternative hypothesis. This noncentrality 
parameter is the key to computing power and sample size. It enables 
one to compute sample size requirements to guarantee a certain 
probability of detecting association at any given type I error rate 
before any data are collected. In the example above, where we specified 
a power of 95% to detect association at the 5% type I error rate, we 
used Mitra’s formulation of the noncentrality parameter to deter-
mine that we require a minimal sample size of 432 cases and 432 
controls with errorless data. We performed this calculation using 
the Power for Association with Errors (PAWE) web tool (http://link-
age.rockefeller.edu/pawe). Calculations such as these are critical for 
genetics researchers who wish to map susceptibility genes.

Family-based tests of linkage and association
Family-based methods of association were originally developed to 
address problems of population stratification in population-based 
methods of association. What is meant by population stratifica-
tion? It is a phenomenon in which case individuals are drawn from 
one population and control individuals are drawn from another. 
For example, suppose we have a marker locus with alleles A and B 
that is completely unlinked to a disease locus (for example, it is on a 
different chromosome). Furthermore, suppose that the A allele fre-
quency in white individuals is 0.5 and the A allele frequency in Afri-
can Americans is 0.1. Because the marker locus is unlinked to the 
disease locus, we expect the A allele frequency to be 0.5 for both cases 
and controls in the white population and 0.1 for both cases and con-
trols in the African American population. Therefore, if we draw 50 
cases from the white population and 50 controls from the African 
American population, the χ2 test of independence will indicate the 
presence of a nearby disease locus with probability of 100% for a 5% 
type I error rate. That is, the statistic will always falsely indicate the 
presence of a disease locus, even though we have specified that we 
want the test statistic to only falsely reject the true null hypothesis 
5% of the time. This is an example of Simpson’s paradox (23).

One of the problems with case-control studies is that control indi-
viduals may not be well matched to cases, and thus association tests 
such as the χ2 test of association may provide false positive results 
for association (7). For example, if the control population is taken 
from hospital blood donors, then this sample may not be represen-
tative of the population from which the case individuals are drawn, 
as hospital blood donors undergo more rigorous screening and are 
therefore considered to be “super-healthy” individuals (24).

Genomic control (25, 26) is one tool for dealing with this issue. 
Genomic control techniques use the markers from the genome to 
create appropriate corrections for population-based association 
tests. Other tools include statistical genetics methods that use fam-
ily-based controls and that are robust to population stratification. 
The first such family-based method was the haplotype relative risk 
(HRR) method developed by Falk and Rubinstein (27–29).

Another method using family-based controls was developed by 
Spielman et al. (30) and is called the transmission disequilibrium 
test (TDT). The TDT focuses on transmitted and nontransmitted 
alleles from heterozygous parents to an affected offspring. The 
authors applied their method to data collected from 94 families 

Table 1
Example contingency table for case and control individuals 
genotyped at a diallelic marker locus (hypothetical data)

 Genotype
Affection status AA AB BB Row total
Case 23 47 30 100
Control 12 40 48 100
Column total 35 98 67 200

Here we provide an example of a 2 × 3 (2 rows by 3 columns) contin-
gency table. Each cell represents the number of observed genotypes 
(AA, AB, or BB) for a given affection status group (case or control). Here 
we assume that the marker locus has 2 alleles designated A and B.
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with 2 or more children with insulin-dependent diabetes mellitus 
(IDDM). The marker locus for which individuals were genotyped 
was the 5′ flanking polymorphism adjacent to the insulin gene on 
chromosome 11p (31). Their results showed that 1 allele (the class 1 
allele) was transmitted 78 times from heterozygous parents to affect-
ed offspring as opposed to 42 times to unaffected offspring. The 
test statistic for these data was 11.5 with a corresponding P value of 
0.0007, which suggests linkage between this locus and IDDM.

Spielman and Ewens later documented (32) that their test sta-
tistic is valid even when multiple offspring from a pedigree are 
included, unlike the HRR methods, which inflate the type I error 
rate when multiple offspring are included. Because of the feature 
allowing for multiple offspring to be included, TDT methods have 
become very popular, and the original 1993 paper has been cited 
more than 1,600 times (according to the ISI Web of Science data-
base). Examples where the TDT has been applied include studies 
of IDDM (30), psoriasis (33), Graves disease (34), schizophrenia 
(35), and many other diseases.

We illustrate the TDT calculation as follows. Phenotype and 
genotype data are collected on trios consisting of a father, mother, 
and an affected child. Consider a fully penetrant recessive disease 
with no phenocopies (i.e., the penetrances are: f0 = 0, f1 = 0, f2 = 1) 
for which the disease locus is an SNP locus with 2 alleles desig-
nated A (disease) and B (nondisease). Then the father and mother 
must have genotype AB and the affected child must have genotype 
AA at the SNP locus. Any such trio provides a value of 2 for the 
number of heterozygous parents who transmit an A allele to an 
affected child, more than the 1 expected under the null hypothesis 
of independent transmission. We also display this information 
pictorially in Figure 2. In this figure, we present the configuration 
of genotypes most likely to be observed under the null and alterna-
tive hypotheses when the A allele frequency is 0.5. Note that under 
the null hypothesis, neither allele is preferentially transmitted to 
the affected child. Under the alternative hypothesis, the A allele is 
transmitted twice to the affected child.

In general, the TDT test detects an excess proportion of allele A 
transmissions to affected children. Among the extensions of the origi-
nal TDT paper is a family-based method of association called the pedi-
gree disequilibrium test (PDT), which is a valid test of association (i.e., 
does not increase type I error rate above the rate set by the researcher) 
even when multiple affected offspring from a pedigree are used (36). 
Other family-based tests of association that are valid for multiple 
affected siblings per family have also been developed (37, 38).

The TDT has limitations, however. The original statistic shows 
inflation in type I error rate where there is missing parental gen-
otype information (39) or undetected genotype errors (40, 41). 
Mitchell et al. (41) proved mathematically that ignoring undetect-
ed genotype errors in the TDT can lead to substantial increases in 
the type I error rate of the original TDT. In particular, they showed 
that such a procedure can cause apparent transmission distortion 
at markers with alleles of unequal frequency and that this distor-
tion is in the direction of indicating overtransmission of common 
alleles. Furthermore, they documented that in 79 published stud-
ies that they investigated, the most common allele was reported 
to be overtransmitted to affected offspring in 31 (39%) of them. 
They concluded that undetected genotype errors may contribute 
to an inflated type I (that is, false positive) rate among reported 
TDT-derived findings. The exact extent and practical implications 
of these properties are ambiguous.

Finally, the original TDT is most powerful when a multiplicative 
relative risk model for the disease holds (42). That is, the increase 
in risk of affection for an individual having 2 copies of the disease 
allele is the square of the increase in risk of affection for having 1 
copy of the disease allele [i.e., (f1 / f0)2 = f2 / f0]. One can see that this 
is a restrictive assumption. For example, it does not hold true for 
dominant diseases, where the increase in risk is equal whether an 
individual has 1 or both copies of the disease allele. As a result, the 
original TDT may lose power to localize genes when the underly-
ing disease inheritance is not multiplicative.

Extensions of the TDT method that allow for missing parental 
genotype information (43–45), genotype errors (40), and for more 
general disease models (45–47) have been developed. Recently, a 
TDT statistic that incorporates all 3 types of extensions has been 
developed (48). Software that performs the computations is pub-
licly available (TDTae [transmission disequilibrium test allowing 
for errors]; ftp://linkage.rockefeller.edu/software/tdtae2/).

Factors affecting power

Disease allele frequency
While LD is often mentioned as a critical (if not the critical) factor 
with regard to power to detect association (4), an often overlooked 
factor is the difference between the disease allele frequency and 
the frequency of either the single SNP or haplotype that is in LD 
with the disease allele. It has been shown that in the TDT (49, 50) 
and case-control (51, 52) methods, power is a function of both LD 
between disease allele and the marker allele or haplotype and the 
difference of the disease allele frequency and the frequency of the 
marker allele or haplotype in LD with the disease allele. Power is 
maximal (or, equivalently, sample size is minimal) when the LD is 
maximal (e.g., Lewontin’s D′ = 1; ref. 9), and the frequency differ-
ence is 0. Such a situation would occur, for example, if the marker 
allele were the disease allele.

Suppose that we consider cases and controls for Alzheimer 
disease, and the marker locus being considered is the apoE 

Figure 2
Example of genotype configurations for trio (father, mother, affected 
child) when null (left) and alternative hypotheses (right) are true. The 
left and right panels represent genotype configurations for a family con-
sisting of a father (rectangle), a mother (open circle), and an affected 
daughter (filled circle). The pair of letters below each individual is the 
genotype at a marker locus. In these examples, the marker locus has 2 
alleles, A and B, and each parent is heterozygous at the marker locus. 
In each panel, we present the genotype configuration that is most likely 
to be observed under the corresponding hypothesis when the A allele 
frequency is 0.5.
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locus on chromosome 19. For most populations, this locus 
has 3 alleles, designated ε2, ε3, and ε4. According to an often-
replicated finding, ε4 is the disease allele (53) with penetrances 
approximately satisfying the equations f1 = 3 f0 and f2 = 32 f0 = 9 f0.  
That is, every additional copy of the ε4 allele produces an approxi-
mate 3-fold increase in an individual’s probability of becoming 
affected. Note that this disease inheritance model is multiplica-
tive. Let us assume that the disease prevalence (that is, the prob-
ability that a randomly selected individual from the population 
has the disease) is 0.012; the disease allele (ε4) frequency is 0.2; 
the disease allele is in complete LD (D′ = 1) with an SNP marker 
locus allele A; the frequency of allele A is represented by pA; and 
there are no phenotype or genotype errors. In Figure 3, we pro-
vide minimal sample size requirements for power of 95% at the 
5% type I error rate with Pearson’s χ2 test applied to 2 × 3 con-
tingency tables. These sample size calculations were determined 
using the PAWE web tool (http://linkage.rockefeller.edu/pawe/) 
by making the following selections: on the first page, Sample size 
calculations for a fixed power, Genetic model based method, Gor-
don Heath Liu Ott error model, significance level = 0.05; on the 
second page, Power level between 0 and 1 = 0.95, Ratio of controls 
to cases = 1, Pr(affected | ++) = 0.0061, Pr(affected | +d) = 0.0184, 
Pr(affected | dd) = 0.0551, disease allele frequency = 0.2, SNP 
marker allele frequency = 0.2 to 0.8 in increments of 0.15, pro-
portion of total disequilibrium D′ = 1, ε1 = 0.00001, ε2 = 0.00001 
(error model parameters are not important, since we only look at 
results of data without error); on the third page, Data Without 
Error, Genotypic Test Results. Even when D′ = 1 between the dis-
ease and the marker loci, we see a 10-fold increase in MSSN when 
the SNP marker allele frequency is 0.8 compared with a frequency 
of 0.2 (the value of the disease allele frequency). This means that 
if we did not know the location of the ApoE gene and we typed 
SNP markers nearby the gene to test for association, our ability 
to detect association would depend heavily upon the SNP allele 

frequency being in LD with apoE ε4 allele. This result was actually 
observed in a proof-of-principle study of association for Alzheim-
er disease with SNP loci in or near the ApoE locus (54).

Genotype relative risk (effect size)
By genotype relative risk, we mean the ratios r1 = f1 / f0 and r2 = f2 / f0  
(46). From a clinical perspective, the larger the genotype relative 
risk, the more easily one can distinguish an individual’s disease 
genotype based on their disease phenotype (presence or absence 
of a disease). The LOD score method (55) used in mapping genes 
for Mendelian traits has been highly successful (8). By Mendelian, 
we mean traits that follow either a dominant or recessive underly-
ing disease inheritance and for which genotype relative risks are on 
the order of 1,000 or more. Examples of such traits include: cystic 
fibrosis (56–58), Huntington disease (59), breast cancer (11, 60), 
neurofibromatosis (61), and others (e.g., refs. 62–65).

Regarding complex (i.e., non-Mendelian) diseases, Page et al. (8) 
comment that there has been relatively little success “in the identi-
fication of genes responsible for complex diseases.” Some notable 
exceptions are Crohn disease (66) and psoriasis (33, 67). What is it 
about the diseases in which genes have been identified that enables 
causative polymorphisms to be more readily discovered? To be sure, 
one key feature is that these diseases are not characterized by large 
phenotype error. We would suggest that another key feature is that 
the genotype relative risks for these diseases are sufficiently large so 
that association can be established with small to moderate (fewer 
than 500 cases and controls or fewer than 300 trios) sample sizes. In a 
recent Crohn disease study, Franchimont et al. (68) documented that 
carrying certain alleles in both genes TLR4 and NOD2 is associated 
with a genotype relative risk of 4.7. In other recent publications, highly 
significant evidence was found for both linkage (69) and association 
(67, 70) with psoriasis in HLA region of chromosome 6. In the case of 
association, the statistical analyses were performed with trio (father, 
mother, affected offspring) and case-control designs with genotype 
relative risks estimated to be over 100. The interpretation is that if 
an individual has at least 1 copy of the disease allele for psoriasis, the 
probability that he or she will show the phenotype is at least 100 times 
the probability for a person without a copy of the disease allele.

Misclassification error
An often-overlooked factor in determining whether genes can 
be detected using association testing is the presence of pheno-
type and/or genotype misclassification error (71). Such errors 
are important because without some method of adjustment, the 
power to detect association and thus to map genes may be signifi-
cantly decreased (16, 72).

Breslow and Day (21) attribute the first statistical work on errors 
in association tests applied to contingency tables to Bross (72). In 
his work, Bross (72) focused on the χ2 test of independence applied 
to 2 × 2 contingency tables and what we term phenotype error, 
namely the effects of misclassifying a case subject as a control and 
vice versa. Bross found that there is no change in the level of sig-
nificance (i.e., the type I error rate remains constant), the power 
for the χ2 test is reduced, and estimates of the proportions of cases 
and controls are biased away from their true values. For example, 
if the true proportions of cases and controls were each 0.50, in the 
presence of phenotype error, one might estimate proportions of 
0.6 and 0.4 for cases and controls, respectively.

Mote and Anderson (73) proved mathematically that the power of 
the χ2 test with no error is always greater than or equal to the power 

Figure 3
Minimum sample size requirement (cases and controls) for case-con-
trol design for different values of SNP marker allele frequency. This 
figure provides the minimum number of cases and controls assum-
ing the following genetic model parameters: f0 = 0.0061, f1 = 0.0184,  
f2 = 0.0551, pd = 0.2, and LD measure D′ = 1 between disease allele 
and marker allele A. Note that the penetrances satisfy the equations: 
f1 = 3 f0, f2 = 9 f0. The marker allele frequency is denoted by pA and the 
disease allele frequency is denoted by pd. Using the genetic model 
parameters, it follows that the prevalence of the disease is 0.012 
(assuming that the 2 alleles at the disease locus are in HWE).
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of the test when errors are present and ignored. Sturmer et al. (74) 
point out that correction for error is rarely carried out in practice, 
particularly for case-control designs. One explanation these authors 
provide for this phenomenon is that appropriate software is not 
available. More specifically, methods incorporating misclassifica-
tion error have not been applied to genetic association studies with 
actual phenotype, genotype, or haplotype data. The implications are 
that researchers trying to map complex-trait genes will not know by 
how much they are underestimating their statistical power in the 
presence of error. Thus, for example, a study that would have 95% 
power to detect association based on a sample size of 100 observed 
cases and 100 observed controls provided that there were not phe-
notype errors, may in fact only have 85% power when 10% of the 
cases have been misclassified as controls and vice versa.

Phenotype error
Phenotype error is a principal concern in many epidemiology 
studies. Thomas et al. (75), Gustafson (76), and others provide an 
overview of issues and techniques (77–81). These works all deal 
with environmental as opposed to genetic association. Also, the 
problem of the “cost” of errors (that is, the percent increase in sam-
ple size necessary to maintain constant power in the presence of 
errors) has not been treated in these studies (see “What SNP geno-
type errors require largest minimal sample size” below). What are 
examples of phenotype error? One example comes from the study 
of Alzheimer disease. Some researchers may use clinical dementia 
tests as a means of diagnosing Alzheimer disease (82, 83). However, 
not all individuals who show clinical dementia necessarily develop 
Alzheimer disease (82). Another example of phenotype error is 
the one previously mentioned: use of the PSA test for diagnosis of 
male prostate cancer (14). There may be a lack of PSA elevation in 
some men with prostate cancer, resulting in an affected individual 
(case) being misclassified as an unaffected individual (control).

Arguably the most frequently documented form of phenotype 
error for Mendelian genetic traits is locus heterogeneity (7). By this 
we mean that individuals in different pedigrees may have phenotypi-
cally indistinguishable forms of a disease but show the phenotype 
due to mutations in different genes in the genome. For nonsyn-
dromic hearing loss alone, more than 100 genes have been estab-
lished by linkage (84), and each mutation leads to the same phe-
notype. Biologically, the explanation for locus heterogeneity is that 
any gene in a pathway being disrupted can result in the disease phe-

notype. Among the most well-known examples of diseases display-
ing locus heterogeneity are breast cancer (11), prostate cancer (85), 
nonsyndromic hearing loss (84), and macular degeneration (86).

Genotype errors in linkage and association studies
A number of authors have looked at the effects of genotype errors 
on linkage and association studies (13, 40, 87–95). Sobel et al. (6) 
provide a thorough summary. Gordon, Finch, et al. (16, 17) quan-
tified the loss in power for case-control studies of genetic associa-
tion due to genotype errors. Specifically, they calculated the effects 
that errors in genotype have on power and MSSN to maintain con-
stant type I error and power, using 3 published models of genotype 
errors on the χ2 test for independence in the 2 × 3 table. The PAWE 
website performs power and sample size calculations for genetic 
association analysis with case-control data based on this work.

For an example of the effects of genotype errors, consider the data 
in Table 1, representing 100 cases and 100 controls genotyped at a 
diallelic locus with alleles A and B. The data in Table 1 are without 
genotype error, and the probability of misclassifying a homozygote 
(either AA or AB) as the heterozygote AB is 10%; similarly, the prob-
ability of misclassifying AB as either AA or BB is 10% with 0% prob-
ability of misclassifying AA as BB or vice versa. Thus on average we 
would expect the genotype counts to change as follows: 10% of the 
23 AA genotypes (i.e., 2.3 on average) in cases would be misclassi-
fied as AB, and 10% of the 47 AB genotypes (i.e., 4.7 on average) in 
cases would be misclassified as AA genotypes, with the resultant 
effect of 4.7 – 2.3 ≈ 2 additional “observed” AA genotypes expected 
in cases, bringing the number to 25 “observed” AA genotypes in 
cases when genotype errors are present. Similarly, 4.7 of the AB 
genotypes on average would be misclassified as BB genotypes in 
cases, and 3 of the 30 BB genotypes on average in cases (10%) would 
be misclassified as AB genotypes, with a result of 4.7 – 2.3 ≈ 2 addi-
tional “observed” genotypes expected in cases with BB genotype, 
giving a total of 32 “observed” case BB genotypes in the presence of 
errors. The calculations were performed for all genotypes in Table 
1, and the results are shown in Table 2. If we apply the χ2 test to the 
data counts in Table 2, the test statistic is 5.66, with a correspond-
ing P value of 0.059. In other words, with these errors, our data set 
has gone from being significant to not being significant (at the 5% 
type I error rate). So, we may “miss” the signal.

Another approach to performing association analyses with cases 
and controls involves the pooling of multiple individuals’ geno-
types to estimate allele frequencies. This technique is known as 
DNA pooling. Its primary advantage is a reduction in the cost of 
genotyping (96). As with techniques that involve individual geno-
type counts, DNA pooling technologies are subject to misclassifi-
cation error. Recently, Zou and Zhao (97) have looked at the effects 
of genotype errors on the power of case-control association stud-
ies. These authors found that the majority of the positive findings 
from DNA pooling analyses may be false positives if measurement 
errors are not appropriately considered in the study design.

Statistical methods that detect or incorporate phenotype and/or 
genotype error
While there has been a significant amount of methodological work 
on statistical methods for association when data are misclassified 
(see “Misclassification error” above), there have been relatively few 
methods designed for the express purpose of association testing 
in a case-control design (98–103). Software is available only for the 
method described in ref. 103.

Table 2
Example contingency table for case and control individuals 
genotyped at a diallelic marker locus after genotype errors are 
introduced (hypothetical data)

 Genotype
Affection status AA AB BB Row total
Case 25 43 32 100
Control 15 38 47 100
Column total 40 81 79 200

Here we provide an example of a 2 × 3 (2 rows by 3 columns) contingency 
table. Each cell represents the number of observed genotypes (AA, AB, or 
BB) for a given affection status group (case or control). Here we assume 
that the marker locus has 2 alleles designated A and B. The expected error 
rates are 10% for misclassifying a heterozygote as either homozygote and 
10% for misclassifying a homozygote as a heterozygote.
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Glossary
Allele Specific string of DNA at a locus
Association methods Methods concerned with testing whether single-locus allele or genotype frequencies (or, more 
  generally, multilocus haplotype frequencies) are different between 2 groups (typically designated 
  cases and controls)
Chiasmata One or more regions of contact between homologous chromosomes during the process 
  of meiosis
Contingency table Table that consists of counts of a particular genotype (e.g., AA, AB, BB) for a particular disease 
  status (e.g., case or control)
Disease prevalence The probability that a randomly selected individual from the population has the disease
Dominant disease Refers to a disease in which an individual with 1 copy of a disease allele has the same probability 
  of showing disease phenotype as an individual who has 2 copies of the disease allele
Effect size A measurement of the separation of individuals’ phenotypes based on their genotypes 
  (see also Genotype relative risk)
Error (either phenotype See Misclassification
 or genotype)
Error model parameter The probability that a homozygote is misclassified as a heterozygote or that a heterozygote is 
  misclassified as a homozygote (see Figure 4) 
Family-based association Association methods (see above) in which data collected are from families. Typically, these methods 
  are methods designed to avoid inflation in type I error due to population stratification
Frequency The proportion of either an allele or a genotype in a given population
Fully penetrant recessive Disease in which the probability of showing a phenotype is 1 if and only if an individual is 
  homozygous for disease allele at disease locus
Genomic control techniques Statistical methods that attempt to avoid inflation in type I error rate when data derive from 
  population-based association studies
Genomics The functions and interactions of all genes in the genome
Genotype The pair of alleles at a locus
Genotype relative risk The ratio of different penetrances, ri = fi / f0, i = 1, 2. Here, fi = Pr(affected | i copies of disease allele) 
  (see also Penetrance)
Haplotype A set of closely linked genetic markers present on one chromosome which tend to be inherited 
  together. Some haplotypes may be in linkage disequilibrium. 
Haplotype relative risk  A specific statistical procedure designed to avoid inflation in type I error rates due to population 
 (HRR)  stratification
Hardy-Weinberg  The situation in which the genotype frequencies for a locus are determined by the allele frequencies
 equilibrium (HWE)
Heterozygote (adjective,  An individual who has 1 copy of 2 different alleles at a locus (e.g., AB genotype at ABO blood 
 heterozygous)  locus)
Homozygote (adjective,  An individual who has 2 copies of the same allele at a locus (e.g., OO genotype at ABO blood 
 homozygous)  locus)
Independence The situation in which the probability of 1 event occurring does not depend on another event; 
  for example, 2 alleles from 2 different loci on the same chromosome are independent if the 
  probability of observing 1 allele does not depend upon the presence of the other allele
Linkage disequilibrium (LD) A relationship between 2 alleles that arises more often than can be accounted for by chance, 
  since those alleles are physically close on a chromosome and infrequently separated from one 
  another by recombination.
Linkage methods Methods involving estimation of the recombination fraction between 2 loci, 1 that is observed 
  and 1 that is typically unobserved (the disease locus)
Locus (plural, loci) Any polymorphic stretch of DNA in the human genome
Mendelian diseases Diseases that follow either a dominant or recessive pattern and for which genotype relative risks 
  are on the order of 1,000 or more
Minimal sample size  The smallest sample size needed to achieve a specified power at a given type I error rate
 necessary (MSSN)
Misclassification The situation in which either an observed phenotype or genotype is different from the true 
  underlying phenotype or genotype, respectively
Noncentrality parameter Parameter that determines the power for statistical test given a specified type I error rate
Pedigree disequilibrium  A statistical method designed to test for LD in families that, unlike the HRR methods, can 
 test (PDT)  include multiple affected offspring from a family
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Regarding genotype error, much work has been done on the 
detection of genotype errors in linkage and association studies (6, 
87, 104–115). Recently, however, there has been work on the devel-
opment of methods that incorporate genotype errors explicitly 
into the statistical methodology for family-based linkage studies 
(6, 103, 116–118), TDT (40), and case-control genetic association 
tests (101, 102). Two noteworthy contributions for TDT include 
the work by Bernardinelli et al. (119) and Morris and Kaplan (120). 
Both groups of authors develop statistics that are valid for linkage 
in the presence of association when either genotype errors are pres-
ent or parental genotypes are missing (or both). Their methods are 
currently applicable only to trios (father, mother, affected child).

What SNP genotype errors require the largest minimal sample size?
Some recent work on the MSSN for genotype errors in case-con-
trol studies indicates that misclassifying a more common genotype 
as a less common genotype requires a greater minimal sample size 
than the reverse misclassification (121, 122). In particular, Kang et 
al. (121) document that, as the control SNP minor allele frequen-
cy approaches 0, the MSSN for misclassifying the more common 
homozygote as the less common homozygote and for misclassify-
ing the heterozygote as the less common homozygote both increase 
without bound. These results suggest that researchers should take 
special care when scoring less common homozygotes. The implica-
tions of this, as we have mentioned above, is that the probability of 
localizing disease genes is decreased. Consider the example of the 
fully penetrant recessive disease with no phenocopies we provided 
above (see “Family-based tests of linkage and association”), where 
the A allele is the disease allele and the B allele is the non-disease 
allele. If the disease is rare, then we expect that the A allele frequency 
is very small, and consequently the B allele frequency is large. If there 

is no genotype error in the data, then only those individuals who are 
homozygous for the A allele will be affected, and intuitively, we will 
detect that locus relatively easily. Imagine now that we randomly 
misclassify the more common homozygote BB as the less common 
homozygote. Then we may observe unaffected individuals who also 
show the AA genotype, thus diluting the effect of the signal.

Designing association studies that are robust to errors
At this point, we hope it is clear that the effects of errors are to 
decrease the probability of finding disease genes and in some 
situations (e.g., family-based tests of association) to increase the 
false-positive rate, thereby increasing the probability of following 
up with studies on regions of the genome that do not harbor any 
genes for a disease of interest.

What can be done to address the issue of errors at the design 
stage, before any phenotypes are measured or genotyped scored? 
We believe the simplest answer to that question is: design the study 
to have higher power. We provide an illustration of this point in 
Figure 4, which shows the results of computation of statisti-
cal power for the χ2 test of independence on 2 × 3 contingency 
tables (case patients and control individuals genotyped for a SNP 
marker locus) in the presence of genotype errors. Power is com-
puted as a function of power without errors (2 settings for power 
are used: 99% and 80%) and an error model parameter ε. This 
parameter is the probability that a homozygote is misclassified as 
a heterozygote and the probability that a heterozygote is misclas-
sified as a homozygote. It is assumed that homozygotes are not 
misclassified as other homozygotes (113). We consider 3 settings 
for the parameter ε: 1%, 3%, and 5%. Genotype frequencies for 
cases and controls are computed assuming the following genetic 
model parameters: f0 = 0.01, f1 = f2 = 0.02, pd = p1 = 0.1, D′ = 1.0. 

Penetrance The probability that an individual is affected with a specific disease if the individual has a certain 
  number of copies of a disease allele at the disease locus. Mathematically, it is written as
  fi = Pr(affected | i copies of disease allele)
Phenocopy The probability that an individual will show a phenotypically indistinguishable form of a 
  disease but the individual’s genotype at a disease locus is homozygous for non-disease allele
Population-based  Association methods (see above) in which data collected are from unrelated individuals in a
 association methods  population
Population stratification The mixing of chromosomes from 2 different populations; typically, haplotype frequencies 
  differ in these populations
Power The probability that the test statistic indicates (usually when the statistic has a large value) that 
  the observed data are near an (unobserved) disease locus
Power loss (PL) The reduction in power due to genotype or phenotype error
Recessive disease Refers to a disease in which an individual with 1 copy of a non-disease allele has the same 
  probability of being affected as an individual who has 2 copies of the non-disease allele 
  (assuming the disease locus has 2 alleles, a  non-disease allele and a disease allele)
Recombination The event in which an exchange of genetic material between homologous chromosomes 
  takes place
Recombination fraction The probability that a recombination takes place between 2 loci
Single nucleotide  A locus consisting of a single nucleotide base pair
 polymorphism (SNP)
Transmission disequilibrium A specific statistical method designed to test for linkage while avoiding an increase in type I 
 test (TDT)  error due to population stratification; unlike HRR methods, TDT methods can include 
  multiple affected offspring from a family
Type I error rate The probability that the test statistic indicates that the observed marker loci are near a disease 
  locus when in fact there is no disease locus nearby; this rate is determined by the researcher
Valid test A test that does not show inflation in type I error rate
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That is, we assume a dominant underlying disease inheritance 
for the disease where the SNP marker locus is the disease locus. 
The notation pd and p1 refer to the disease allele frequency and 
marker locus minor allele frequency, respectively. For a power of 
99%, a minimum of 606 case patients and 606 control individu-
als are required, assuming equal numbers of cases and controls. 
Similarly, for a power of 80%, a minimum of 307 case patients 
and 307 control individuals are required. PL, which is the differ-
ence of the power without errors and the power in the presence 
of errors, is represented graphically as the red portion of each 
bar. All power values were computed using the PAWE web tool 
(http://linkage.rockefeller.edu/pawe/). These power values were 
achieved by making the following selections: on the first page, 
Power calculations for a fixed sample size, Genetic model based 
method, Sobel Papp Lange error model, Significance level = 0.01; 
on the second page, Number of case individuals = Number of 
control individuals = 606 (99% power level) or 307 (80% power 
level), Pr(affected | ++) = 0.01, Pr(affected | +d) = 0.02, Pr(affected 
| dd) = 0.02, disease allele frequency = 0.1, SNP marker allele fre-
quency = 0.1, proportion of total disequilibrium D′ = 1, V1 = ε, 
V2 = 0.000001, V3 = ε (ε = 0.01, 0.03, or 0.05); on the third page, 

Data Without Error, Genotypic Test Results, Data With Error, 
Genotypic Test Results, Power Loss.

The PL when power without errors is 99% is always less than 
the corresponding PL (for a given value ε) when power without 
errors is 80%. In fact, the PL for the 99% settings is no more than 
one-fourth of the PL for the 80% settings, as in the example where 
ε = 5%. In that instance, PL for the 99% settings is 3.5%, as com-
pared with a loss of 14.6% for the 80% setting. This means that if 
we designed our study to have power of 99%, then we would still 
have 95.5% power after errors, whereas if we designed our study to 
have power of 80%, we would only have power of 65.4% after errors. 
This example demonstrates the added advantage of robustness to 
misclassification error when high power is specified at the design 
stage of an association study. In other words, by specifying a power 
of 99% and “paying the cost up front” by collecting 606 each of 
case patients and controls, we reduce the effect of genotype errors 
on the power of the χ2 test, as compared with the PL that would 
occur if we only designed our study to have 80% power and only 
collected 307 each of case patients and controls.

Conclusions
Here, we reviewed family-based and population-based methods 
for association, specified the factors that determine power, and 
showed that study design and analysis should examine a range of 
settings of the important factors. The factors we discussed include: 
the disease allele frequency or, more specifically, the difference of 
the disease allele frequency and the marker allele or haplotype fre-
quency in LD with the disease allele; genotype relative risk (effect 
size); and phenotype and genotype misclassification error rates. 
We focused on this third factor because it is commonly overlooked 
when the power to detect association is computed, even though 
random misclassification error always reduces power (73).

For TDT methods, random misclassification errors lead to an 
increase in the type I error rate of the test statistic, which may be an 
even more important problem than loss of power to detect associa-
tion. The TDTae method avoids this problem (40, 48).

To reduce costs and to increase the accuracy of association stud-
ies, it is vitally important to develop methods that either incorpo-
rate errors into the analysis or that quantify the effects of errors 
(in terms of PL or MSSN for different statistical tests). Developing 
statistical methods that achieve maximal power and correct type 
I error rates in the presence of errors saves researchers time and 
money, either by providing the researchers with statistical meth-
ods with sufficient power to detect associations even in the pres-
ence of errors or by protecting the researchers from finding and 
following up on false positive results in the genome.

Finally, what is a simple procedure to help insure that genetic asso-
ciation studies will be more robust to error? We recommend specify-
ing higher power values when computing sample size requirements.
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Figure 4
Power loss (PL) for genetic association as a function of errorless power 
threshold and error probability ε. In this figure, we compute statistical 
power for the χ2 test of independence on 2 × 3 contingency tables in 
the presence of genotype errors. Power is computed as a function of 
power without errors (2 settings for power used: 99% and 80%) and 
an error model parameter ε. This parameter is the probability that a 
homozygote is misclassified as a heterozygote and the probability that 
a heterozygote is misclassified as a homozygote. It is assumed that 
homozygotes are not misclassified as other homozygotes (113). We 
consider 3 settings for the parameter ε: 1%, 3%, and 5%. Each bar rep-
resents 2 values: power in the presence of errors (black portion of each 
bar) and PL, which is the difference of the power without errors and 
the power in the presence of errors (represented graphically as the red 
portion of each bar). Genotype frequencies for cases and controls are 
computed assuming the following genetic model parameters: f0 = 0.01, 
f1 = f2 = 0.02, pd = p1 = 0.1, D′ = 1.0. That is, we assume a dominant 
underlying disease inheritance for the disease where the SNP marker 
locus is the disease locus. For a power of 99% at the 1% type I error 
rate, a minimum of 606 cases and 606 controls are required, given that 
we have equal numbers of cases and controls. Similarly, for a power of 
80%, a minimum of 307 cases and 307 controls are required.
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