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Microarray analysis identifies a death-from-
cancer signature predicting therapy failure  

in patients with multiple types of cancer
Gennadi V. Glinsky, Olga Berezovska, and Anna B. Glinskii

Sidney Kimmel Cancer Center, San Diego, California, USA.

Activation in transformed cells of normal stem cells’ self-renewal pathways might contribute to the survival 
life cycle of cancer stem cells and promote tumor progression. The BMI-1 oncogene–driven gene expression 
pathway is essential for the self-renewal of hematopoietic and neural stem cells. We applied a mouse/human 
comparative translational genomics approach to identify an 11-gene signature that consistently displays a stem 
cell–resembling expression profile in distant metastatic lesions as revealed by the analysis of metastases and 
primary tumors from a transgenic mouse model of prostate cancer and cancer patients. To further validate these 
results, we examined the prognostic power of the 11-gene signature in several independent therapy-outcome  
sets of clinical samples obtained from 1,153 cancer patients diagnosed with 11 different types of cancer, includ-
ing 5 epithelial malignancies (prostate, breast, lung, ovarian, and bladder cancers) and 5 nonepithelial malig-
nancies (lymphoma, mesothelioma, medulloblastoma, glioma, and acute myeloid leukemia). Kaplan-Meier 
analysis demonstrated that a stem cell–like expression profile of the 11-gene signature in primary tumors is 
a consistent powerful predictor of a short interval to disease recurrence, distant metastasis, and death after 
therapy in cancer patients diagnosed with 11 distinct types of cancer. These data suggest the presence of a con-
served BMI-1–driven pathway, which is similarly engaged in both normal stem cells and a highly malignant 
subset of human cancers diagnosed in a wide range of organs and uniformly exhibiting a marked propensity 
toward metastatic dissemination as well as a high probability of unfavorable therapy outcome.

Introduction
Recent studies indicate that the Polycomb group (PcG) gene Bmi-1 
determines the proliferative potential of normal and leukemic stem 
cells (1) and is required for the self-renewal of hematopoietic and 
neural stem cells (1–3). Self-renewal ability is an essential defining 
property of a pluripotent stem cell–like phenotype distinguishing 
stem cells from other cell types (4). An emerging concept of “tumor 
stem cells” argues that the presence of a rare stem cell–resembling 
population of cancer cells among the heterogeneous mix of cells 
constituting a tumor is essential for tumor progression and metas-
tasis of epithelial malignancies (5–7). The concept of tumor stem 
cells implies that common genetic pathways might define critical 
stem cell–like functions in both normal and neoplastic stem cells 
(1, 5). Bmi-1 oncogene is expressed in all primary myeloid leukemia 
and leukemic cell lines analyzed so far (1, 8), and overexpression 
of Bmi-1 causes neoplastic transformation of lymphocytes (9, 10). 
Recently, BMI-1 expression was reported in human non-small-cell 
lung cancer (11) and breast cancer cell lines (12); this suggests an 
oncogenic role for BMI-1 activation in epithelial malignancies.

Expression profiling of prostate tumor samples using oligo-
nucleotide or cDNA microarray technology rapidly emerged 

as a powerful tool to reveal multiple gene expression signa-
tures associated with human prostate cancer (13–27), includ-
ing potential prostate cancer prognosis markers (14, 15, 18, 
24–26). However, one of the major limitations of these studies 
was that the same clinical data set was used for both signature 
discovery and validation. Furthermore, microarray analysis typi-
cally identifies vast data sets of candidate markers, and usually 
only a single hit or a few hits were validated using independent 
methods and independent clinical data sets; this diminished the 
potential advantage of the use of a panel of markers over a single 
marker in diagnostic and/or prognostic applications. Recently 
we attempted to address some of these limitations by using 
microarray-based gene expression profiling to identify molecu-
lar signatures that comprise small clusters of coregulated tran-
scripts and distinguish subgroups of prostate cancer patients 
with differing outcomes after therapy (15). In these experiments 
for signature discovery and validation, we used 2 independent 
cohorts of prostate cancer patients (15). The proposed prostate 
cancer prognosis predictor algorithm uses a panel of 3 molecu-
lar signatures and appears to demonstrate high discrimination 
accuracy between subgroups of patients with distinct clinical 
outcome after therapy, providing additional predictive value 
over conventional markers of outcome (15).

Most recently, the global gene expression profiling approach 
was successfully used to identify molecular signatures associ-
ated with activation of oncogenic pathways (28), targeted genet-
ic manipulations (29), and cellular responses to physiological 
stimuli (30) and to build robust transcriptional identifiers that 
reliably recognize the engagement of corresponding pathways 
within the highly complex patterns of gene expression in experi-
mental and clinical samples.
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We hypothesized that molecular signatures associated with acti-
vation of a normal stem cell’s self-renewal program in metastatic 
cancer cells might be detectable by searching for genes exhibit-
ing concordant patterns of regulation in metastatic lesions and 
normal stem cells in Bmi-1+/+ versus Bmi-1–/– genetic backgrounds. 
Here we report that the expression of Bmi-1 is elevated and a stem 
cell–like BMI-1–associated gene expression pathway is activated 
in metastatic prostate tumors. We provide evidence that the stem 
cell–resembling expression profile of the 11-gene signature in pri-

mary prostate tumors predicts therapy failure in prostate cancer 
patients. We show that expression of the 11-gene signature is a 
powerful predictor of a short interval to distant metastasis and 
poor survival after therapy in breast and lung cancer patients diag-
nosed with an early-stage disease. Finally, we extend our therapy-
outcome analysis to include 1,153 cancer patients diagnosed with 
11 different cancer types and demonstrate that prognostic power 
of the 11-gene signature is informative in all 11 different types of 
human cancer diagnosed in multiple organs.

Figure 1
Microarray (A–D) and RT-PCR (E) analyses reveal increased expression of BMI-1 mRNA in multiple human prostate cancer cell lines established 
from metastatic tumors (PC-3, LNCap, DuCap, VCap, etc.) compared with normal human prostate epithelial cells (NPEC) (A and E); in xenograft-
derived human prostate cancer cell line variants (PC-3M, PC-3MLN4, PC-3MPro4) compared with the plastic-maintained parental cells (PC-3) 
(B); in highly metastatic human prostate carcinoma xenografts (PC-3MLN4) compared with the less metastatic parental counterparts (PC-3)  
growing orthotopically in nude mice (C); in lymph node metastases of human prostate cancer growing in the prostate of nude mice (MET) (C); 
and in invasive primary prostate tumors and distant metastatic lesions in the TRAMP transgenic mouse model of prostate cancer (D). Prostate 
tissues from age-matched wild-type C57BL/6 mice served as control samples in Figure 1D. The numbers 4, 5, and 7 indicate the age of TRAMP 
mice (in months). Each sample represents a pool of tissues from 3–5 mice. P values were obtained using a 2-tailed t test. LN3, LNCapLN3; LN4, 
PC-3MLN4; PRO4, PC-3MPRO4; PRO5, LNCapPRO5; SV, seminal vesicles; X, human xenograft tumors in nude mice.
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Results
BMI-1 oncogene expression is elevated in prostate cancer. Recent experi-
mental observations documented an increased Bmi-1 expression in 
human non-small-cell lung cancer (11), human breast carcinomas 
(31), and established breast cancer cell lines (12), suggesting that 
an oncogenic role of Bmi-1 activation may be extended beyond leu-
kemia and, perhaps, may affect progression of the epithelial malig-
nancies as well. Microarray gene expression analysis of established 
cancer cell lines representing multiple experimental models of 
human prostate cancer (16) revealed that BMI-1 expression seems 
to be consistently elevated in human prostate cancer cell lines 
compared with the primary cultures of normal human prostate 
epithelial cells (Figure 1, A and B). To validate the results of the 
microarray experiments, we confirmed these observations using 
quantitative RT-PCR (Q-RT-PCR) analysis of BMI-1 mRNA expres-
sion (Table 1; and see Supplemental Figure 1; supplemental mate-
rial available online with this article; doi:10.1172/JCI23412DS1). 
Thus, results of expression profiling experiments appear to sup-
port the notion that transcriptional activation of the BMI-1 gene 
is frequently associated with human prostate cancer.

Interestingly, microarray analysis shows markedly higher BMI-1  
expression levels in lymph node metastases and highly meta-
static orthotopic xenografts of human prostate carcinoma in 
nude mice compared with the less metastatic counterparts (Fig-
ure 1C), implying that BMI-1 activation might be associated with 
aggressive malignant behavior of prostate carcinoma cells. To test 
this hypothesis, we carried out expression profiling analysis of 
approximately 12,000 transcripts in a transgenic mouse model of 
metastatic prostate cancer (32). Microarray experiments detected 
increased levels of Bmi-1 mRNA expression in late-stage invasive 
primary tumors and multiple distant metastatic lesions in the 
TRAMP transgenic mouse model of prostate cancer (Figure 1D), 
thus lending more credence to the idea that activation of a BMI-1– 
associated pathway is linked with prostate cancer metastasis. It 
should be pointed out that despite the apparently consistent pat-
tern of increased Bmi-1 expression in prostate cancer, there is con-
siderable variability in the degree of elevation of Bmi-1 expression 
at the distinct sites of malignant growth in vivo (Figure 1D). We 
carried out the Q-RT-PCR analysis of Bmi-1 mRNA expression in 4 
additional late-stage invasive primary prostate tumors of the 6- to 
7-month old TRAMP mice and confirmed the 2- to 8-fold increase 
in Bmi-1 expression in all 4 tumors (data not shown).

Identification of a BMI-1–pathway signature with concordant expression 
profiles in normal stem cells and distant metastatic lesions in a transgenic 
mouse model of prostate cancer. Recent experiments established that 
the Bmi-1 gene is required for self-renewal of hematopoietic and 
neural stem cells (1–3) and identified BMI-1–regulated genes in 
neural stem cells that are presumably engaged in an execution of 
self-renewal programs in a state of both central nervous system 
(CNS) and peripheral nervous system (PNS) neurospheres (3). We 
hypothesized that molecular signatures associated with activation 
of a normal-stem cell’s self-renewal program in metastatic cancer 
cells might be detectable by looking for genes manifesting concor-
dant patterns of regulation in metastasis and normal stem cells in 
Bmi-1+/+ versus Bmi-1–/– genetic backgrounds. Therefore, we set out 
to determine whether expression profiles of transcripts activated 
and suppressed in prostate cancer metastases would recapitulate 
the expression profile of the BMI-1–regulated genes in normal 
stem cells, by comparing the sets of differentially regulated genes 
in search of intersection of lists for both up- and downregulat-
ed transcripts (see Figures 2 and 3, Methods, and supplemental 
material for description of a signature discovery protocol). This 
analysis identified genes exhibiting highly concordant profiles of 
transcript-abundance behavior in prostate cancer metastases and 
Bmi-1+/+ versus Bmi-1–/– PNS neurospheres, suggesting the presence 
of a conserved BMI-1–regulated pathway(s) similarly engaged in 
both normal stem cells and distant metastatic lesions of prostate 
carcinoma (Figures 2 and 3).

The metastatic TRAMP tumor sample (MTTS) signature is 
likely to be enriched for genes discriminative for the metastatic 
phenotype. It is reasonable to assume that many gene expres-
sion patterns wired into the MTTS signature would manifest 
the power to discriminate the metastatic phenotype and would 
have no relation to the transcriptional program of normal stem 
cells. We sought to use these features of the MTTS signature for 
identification of the gene expression components of a stem cell 
transcriptome that are coordinately expressed in metastatic cancer 
cells and might manifest discriminative diagnostic power for the 
malignant phenotype. Sets of differentially regulated transcripts 
were independently identified for distant metastatic lesions and 
primary prostate tumors versus age-matched control samples in 
a transgenic TRAMP mouse model of metastatic prostate cancer 
(MTTS signature) as well as PNS (PNS signature) and CNS (CNS 
signature) neurospheres in Bmi-1+/+ versus Bmi-1–/– backgrounds. 
This analytical step defined 3 large parent signatures (Figure 3): 
MTTS signature comprising 868 upregulated and 477 downregu-
lated transcripts; PNS signature comprising 885 upregulated and 
1,088 downregulated transcripts; and CNS signature comprising 
769 upregulated and 778 downregulated transcripts.

Next we intersected the MTSS signature with the stem cell 
signatures in the state of PNS and CNS neurospheres to iden-
tify concordant sets of genes and define the stem cell signatures 
embedded into MTSS signature (Figures 2 and 3). Subsets of 
transcripts exhibiting concordant expression changes in MTTS 
(MTTS signature) as well as PNS (PNS signature) and CNS (CNS 
signature) neurospheres in Bmi-1+/+ versus Bmi-1–/– backgrounds 
were identified. Thus, 2 concordant subsets of transcripts were 
identified corresponding to each binary comparison of metastatic 
TRAMP tumors and neural stem cell samples in a state of PNS and 
CNS neurospheres (141 upregulated and 58 downregulated tran-
scripts for PNS neurospheres [r = 0.7593; P < 0.0001; Figure 2A]  
and 40 upregulated and 24 downregulated transcripts for CNS 

Table 1
Q-RT-PCR analysis of BMI-1 mRNA expression in human pros-
tate carcinoma cell lines

Cell line Average expression valueA SD P valueB

NPEC 0.090656645 0.0154152
LNCap 0.216610094 0.0311867 0.0013481
LNCapPro5 0.292913482 0.0222714 1.472 × 10–5

LNCapLN3 0.235569094 0.0429103 0.0038571
PC-3 1.030811318 0.1271548 0.000586
PC-3MLN4 0.635668126 0.0892679 0.0009314
PC-3MPro4 1.424229109 0.1758348 0.0005788
VCap 0.192483261 0.012621 6.494 × 10–5

DuCap 0.128637764 0.012266 0.0092371

ANormalized average expression value from 4 measurements. BTwo-tailed 
Student’s t test compared with normal human prostate epithelial cells.
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neurospheres [r = 0.7679; P < 0.0001]). A third concordant sub-
set of 27 genes comprising 15 upregulated and 12 downregulated 
transcripts was selected for intersection common to all 3 signa-
tures (r = 0.8002; P < 0.0001).

This analysis also identified a stem cell–like expression profile 
for transcripts coordinately expressed in metastatic cancer cells 
and normal stem cells, which can be used as a consistent reference 
standard to interrogate independent data sets for possible pres-
ence of a stem cell–like expression signature (Figure 2). Practical 
considerations essential for future development of genetic diag-
nostic tests using an analytical platform most compatible with the 
state-of-the-art clinical laboratory practice prompted us to select 
from concordant gene sets small gene expression signatures com-
prising transcripts with a high level of expression correlation in 
metastatic cancer cells and stem cells (the selection threshold for 
small signatures was arbitrarily set at Pearson correlation coeffi-
cients greater than 0.95). The reduction in the signature transcript 
number was terminated when further elimination of a transcript 
did not increase the value of the Pearson correlation coefficient. 
Using this approach, a single candidate prognostic gene expres-
sion signature was selected for each binary intersection of the 
MTTS signature and parent stem cell signatures (Figure 3). Then 

small signatures (1 11-gene signature for the PNS set, 1 11-gene 
signature for the CNS set, and one 14-gene signature for the com-
mon PNS/CNS set) were tested for the power to discriminate the 
metastatic phenotype (using 1 mouse prostate cancer data set and 
1 human prostate cancer data set comprising primary and meta-
static tumors) and therapy-outcome classification performance 
(using human prostate cancer therapy outcome set 1). Based on 
diagnostic and prognostic classification performance, a single 
best-performing 11-gene MTTS/PNS signature was selected for 
further validation analysis (Figures 3 and 4).

During the malignant-phenotype classification performance 
tests (Figure 4), we asked whether individual metastatic lesions 
and primary prostate tumors would exhibit a stem cell–like expres-
sion profile of the candidate prognostic signatures. We selected 
for this analysis 3 small signatures demonstrating the most sig-
nificant correlation (Figures 2 and 3) of expression profiles in 
stem cells and prostate cancer metastasis. To assess a degree of 
similarity of the signature expression profiles in individual tumor 
samples and normal stem cells, we calculated a Pearson correla-
tion coefficient for each sample by comparing signature expres-
sion profile in an individual sample to the stem cell–associated 
expression profile of the corresponding small signatures. Based on 

Figure 2
Distant metastatic lesions in the TRAMP transgenic mouse model of prostate cancer exhibit stem cell–like expression signatures of the BMI-1 
pathway. Transcripts differentially regulated in distant metastatic lesions of 6-month-old TRAMP mice (MTTS signature) were compared with 
the BMI-1–regulated genes in neural stem cells (3) in search of intersection of lists. (A) Expression profiles and the corresponding Pearson cor-
relation coefficient for 199 genes (141 upregulated and 58 downregulated) comprising concordant differentially regulated sets of transcripts in 
metastatic TRAMP samples and PNS neurospheres are shown. Small gene expression signatures comprising transcripts with a high level of 
expression correlation in metastatic cancer cells and stem cells (the selection threshold for small signatures was arbitrarily set at Pearson cor-
relation coefficients greater than 0.95) were selected from large concordant sets. The reduction in the signature transcript number was terminated 
when further elimination of a transcript did not increase the value of the Pearson correlation coefficient. Using this approach, a single candidate 
prognostic gene expression signature was selected for each binary intersection of the MTTS signature and parent stem cell signatures (Figure 3).  
Consecutive steps of selection from the 199-gene concordant set of a subset of 20 genes (A and B) and a small MTTS/PNS 11-gene signature (C 
and D) are shown. In D, r = 0.9897, P < 0.0001 between gene groups, and n = 11 per group. Complete lists of genes and corresponding concordant 
subsets are shown in Supplemental Table 2. See text, Figure 3, and Table 3 for details.
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expected similarity of the prognostic signatures in stem cells and 
prostate cancer metastasis, we named the corresponding Pearson 
correlation coefficients measured for individual samples the stem 
cell–like phenotype association indices (SPAIs; see Methods for a 
description of definition and measurement of SPAIs). As shown 
in Figure 4, A, D, and G, 2 of 3 late-stage invasive primary tumors 
and all distant metastatic lesions in the TRAMP transgenic mouse 
model of prostate cancer have positive SPAIs, thus manifesting a 
stem cell–like expression profile of the small signatures.

Distant metastatic lesions and primary prostate tumors from cancer 
patients with differing therapy outcome display distinct expression profiles 
of the 11-gene MTTS/PNS signature. To perform similar analysis for 
human tumors, we translated the murine small signatures into 
a list of human homologs using the NCBI UniGene database 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene) and 
retrieved the expression data for corresponding Affymetrix probe 
sets (Tables 2 and 3 and Supplemental Table 2). We calculated the 
SPAIs for each of the 9 metastatic tumors and 23 primary pros-
tate carcinomas and determined that 7 of 9 samples of distant 
metastatic lesions from prostate cancer patients exhibited a stem 
cell–like expression profile of the 11-gene MTTS/PNS signature 
(Figure 4B). In contrast, a majority of primary prostate tumors 
seemed to display a distinct expression profile of the 11-gene  
MTTS/PNS signature as manifested in negative SPAI values  
(Figure 4B). Interestingly, a subset of samples of primary prostate 

carcinomas manifested expres-
sion profiles of the 11-gene 
MTTS/PNS signature similar to 
those of the metastatic tumors, 
as reflected in positive correla-
tion coefficients (positive SPAI 
values in Figure 4B), suggesting 
that primary prostate tumors 
with distinct expression profiles 
of the PNS neurosphere–derived 
11-gene signature (e.g., positive 
and negative SPAI values) may 
have different biological features 
and distinct clinical courses of 
disease progression. Validation 
analysis using the CNS neu-
rosphere–derived MTTS/CNS  
11-gene signature and MTTS/
PNS/CNS 14-gene signature 
indicates that application of 
these signatures is less informa-
tive in distinguishing metastatic 
and primary human prostate 
tumors (Figure 4, E and H).

To evaluate the potential 
biological signif icance and 
clinical utility of the 11-gene 
MTTS/PNS signature expres-
sion in human prostate cancer, 
we set out to examine whether 
the detection of a stem cell–like 
expression profile in primary 
prostate tumors of individual 
cancer patients would help in 
patients’ stratification at the 

time of diagnosis into subgroups with distinct courses of dis-
ease progression based on differing therapy outcome after radi-
cal prostatectomy (RP). We assessed the prognostic power of the 
11-gene signature based on ability to segregate the patients with 
recurrent and nonrecurrent course of disease progression after 
RP into distinct subgroups. We calculated a Pearson correlation 
coefficient for each of 21 tumor samples of outcome set 1 by com-
paring the 11-gene signature expression profiles of individual 
samples with the stem cell–like expression profile of the 11-gene  
BMI-1–pathway signature in PNS neurospheres (Figure 2). To 
determine the prognostic power of the 11-gene signature, we 
performed the Kaplan-Meier survival analysis using, as a clini-
cal endpoint, the disease-free interval after therapy in prostate 
cancer patients with positive and negative SPAIs.

The Kaplan-Meier survival curves showed a highly significant 
difference in the probability that prostate cancer patients would 
remain disease-free after therapy between the groups with positive 
and negative SPAIs defined by the 11-gene MTTS/PNS signature 
(Figure 4C), suggesting that patients with positive SPAIs exhibit 
a poor outcome signature whereas patients with negative SPAIs 
manifest a good outcome signature. The estimated hazard ratio for 
disease recurrence after therapy in the group of patients with posi-
tive SPAIs as compared with the group of patients with negative 
SPAIs defined by the 11-gene MTTS/PNS signature (Figure 4C)  
was 9.259 (95% confidence interval of ratio, 1.545–26.07; P = 0.0104).  

Figure 3
Sequential analytical steps used for identification, selection, and validation of the 11-gene death-from-can-
cer signature. The figure shows an overview of the approach used for the development and validation of a 
cancer survival predictor based on gene expression monitoring.
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Fifty-eight percent of patients with positive SPAIs had a disease 
recurrence within 3 years after therapy, whereas 90% of patients 
with negative SPAIs remained relapse-free (Figure 4C). Five years 
after therapy, 69% of patients with positive SPAIs had a disease 
recurrence, whereas 90% of patients with negative SPAIs remained 
relapse-free (Figure 4C). In contrast to the PNS neurosphere–
derived signature, the CNS neurosphere–derived signature failed 

to stratify the prostate cancer patients into prognostic subgroups 
with distinct probability of disease relapse after therapy (P = 0.6501;  
Figure 4F). Similarly, the 14-gene MTTS/PNS/CNS signature 
failed in both classification-performance tests using human cancer 
specimens (P = 0.4916; Figure 4, H and I). Based on this analysis, 
we identified the 11-gene MTTS/PNS signature as a best-perform-
ing malignant-phenotype classifier and proposed to identify the 

Figure 4
Selection of the best-performing small signature based on evaluation of the metastatic-phenotype-discrimination performance and therapy-out-
come prediction power of candidate prognostic signatures. Expression profiles of the 3 small signatures (11-gene MTTS/PNS signature, A–C; 
11-gene MTTS/CNS signature, D–F; and 14-gene MTTS/PNS/CNS signature, G–I) were evaluated in metastatic lesions at multiple distant target 
organs and primary prostate carcinomas in the TRAMP transgenic mouse model of prostate cancer (A, D, and G) and prostate cancer patients 
(B, E, and H) for presence of a stem cell–like expression profile. (B, E, and H) Data from the analysis of 9 distant metastatic lesions and 23 pri-
mary human prostate carcinoma samples. (C, F, and I) Kaplan-Meier analysis of the probability that patients would remain disease-free among 
21 prostate cancer patients constituting clinical outcome set 1, according to whether they had a good-prognosis or a poor-prognosis signature as 
defined by the expression profiles of the small prognostic signatures. The y axes in A, B, D, E, G, and H show the SPAI values in corresponding 
metastatic and primary tumor samples (see Methods for a description of SPAI definition and calculation). CI, confidence interval.
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group of prostate cancer patients with positive values of the PNS 
neurosphere–derived 11-gene signature as a poor-prognosis group 
and the group of prostate cancer patients with negative values of 
the 11-gene signature as a good-prognosis group.

The identified signature genes were defined based on a strong 
correlative behavior in multiple independent sets of experimental 
and clinical samples obtained from 2 species (mice and humans). 
To test by independent methods the suspected association of the 
expression of BMI-1–pathway target genes with the expression of 
the BMI-1 gene product in the context of human cancer cells, we 
subjected human prostate carcinoma cells to small interfering 
RNA–mediated (siRNA-mediated) silencing of expression of the 
endogenous BMI-1 gene. The PC-3-32 human prostate carcinoma 
cells were transfected with BMI-1 or control siRNAs and continu-
ously monitored for mRNA expression levels of BMI-1 and a select-
ed set of genes using RT-PCR and Q-RT-PCR methods (data not 
shown). Q-RT-PCR and RT-PCR analyses showed that the siRNA-
mediated BMI-1–silencing protocol allowed for approximately 90% 
inhibition of the endogenous BMI-1 mRNA expression. We vali-
dated the effect of siRNA-mediated BMI-1 silencing at the BMI-1 
protein expression level using immunofluorescent 
analysis. The BMI-1 silencing was specific, since the 
expression levels of 9 unrelated transcripts (such 
as GAPDH, EZH2, and several other genes) were 
not altered (data not shown). Consistent with the 
hypothesis that expression of genes comprising 
the BMI-1–pathway signature is associated with 
the expression of the BMI-1 gene product, mRNA 
abundance levels of 8 of 11 interrogated BMI-1–
pathway target genes were altered in the human 
prostate carcinoma cells with approximately 90% 
silenced BMI-1 gene.

Reduction of the BMI-1 mRNA and protein 
expression in human prostate carcinoma metas-
tasis precursor cells did not alter significantly 
the viability of adherent cultures grown at the 
optimal growth condition and in serum-starva-
tion experiments (data not shown) and had only 
modest inhibitory effect on proliferation (an 
approximately 25–30% reduction in the number 

of cells during the 3-day silencing protocol). However, the ability 
of human prostate carcinoma cells to survive in a nonadherent 
state was severely affected after siRNA-mediated reduction of the 
BMI-1 expression. Fluorescence-activated cell sorting (FACS) anal-
ysis revealed an approximately 3-fold increase of apoptosis in the 
BMI-1 siRNA–treated human prostate carcinoma cells cultured in 
nonadherent conditions. These data suggest that human prostate 
carcinoma cells expressing a high level of the BMI-1 protein are 
more resistant to apoptosis induced in cells of epithelial origin 
in response to attachment deprivation (anoikis) and, perhaps, 
would survive better in blood during metastatic dissemination, 
thus forming a pool of metastasis precursor cells that can sur-
vive circulatory stress. Thorough follow-up experiments would be 
required to establish to a full extent the biological and functional 
role of BMI-1 overexpression and BMI-1–pathway activation in 
the various epithelial cancers.

Expression of the 11-gene MTTS/PNS signature in primary prostate 
tumors is a predictor of a therapy failure in prostate cancer patients. To 
validate a survival prediction model based on the 11-gene MTTS/
PNS signature, we tested the prognostic performance of the model 
in multiple independent therapy-outcome data sets represent-
ing 5 epithelial and 5 nonepithelial cancers (Table 3). We divided 
patients within individual cohorts into a training set, which was 
used to select the cutoff threshold and to test the model, and a test 
set, which was used to evaluate the reproducibility of the classifica-
tion performance. Using the training set of samples, we selected 
the prognosis-discrimination cutoff value for a signature based 
on the highest level of statistical significance in patients’ strati-
fication into poor- and good-prognosis groups as determined by 
the log-rank test (lowest P value and highest hazard ratio in the 
training set). Clinical samples having the Pearson correlation coef-
ficient at or higher than the cutoff value were identified as having 
the poor-prognosis signature. Clinical samples with the Pearson 
correlation coefficient lower than the cutoff value were identified 
as having the good-prognosis signature. The same discrimination 
cutoff value was then applied to evaluate the reproducibility of 
the prognostic performance in the test set of patients. Lastly, we 
applied the model to the entire outcome set using the same cutoff 
threshold to confirm the classification performance. The training 
and test sets were balanced with respect to the total number of 

Table 2
Cancer types and number of cancer patients in the therapy-out-
come sets analyzed in this study

Cancer type No. of patients Reference
Prostate cancer 100 14, 15
Breast cancer 97 33
Lung cancer 211 34, 56
Ovarian cancer 81 57, 58
Bladder cancer 31 59
Lymphoma 298 60, 61
MCL 92 62
Mesothelioma 17 63
Medulloblastoma 60 64
Glioma 50 65
AML 116 66
Total 1,153 

MCL, mantle cell lymphoma; AML, acute myeloid leukemia.

Table 3
The 11-gene signature associated with poor prognosis of cancer patients diag-
nosed with multiple types of cancer

Gene UniGeneA Affymetrix MG-U74A  GenBank  UniGeneA  
 (Homo sapiens) probe set accession no. (Mus musculus)
Gbx2 Hs.184945 94200_at Z48800 Mm.204730
KI67 Hs.80976 99457_at X82786 Mm.4078
CCNB1 Hs.23960 160159_at X64713 Mm.318364
BUB1 Hs.469649 104097_at AF002823 Mm.2185
KNTC2 Hs.414407 93441_at AI595322 Mm.225956
USP22 Hs.462492 97960_at AW125800 Mm.30602
HCFC1 Hs.83634 100901_at U80821 Mm.248353
RNF2 Hs.124186 93164_at Y12783 Mm.31512
ANK3 Hs.499725 98477_s_at L40632 Mm.235960
FGFR2 Hs.533683 93090_at M23362 Mm.16340
CES1 Hs.499222 101538_i_at AW226939 Mm.292803

AUniGene IDs were updated to correspond with the UniGene cluster IDs in build 183 (NCBI 
UniGene website; http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene).
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patients, negative and positive therapy outcomes, and the length 
of survival. At this stage of the analysis, we did not carry out addi-
tional model training, development, or optimization steps, except 
for selection of a prognostic cutoff threshold in the training set. 
Throughout the study, we consistently used the same MTTS/PNS 
expression profile as a reference standard to quantify the Pearson 
correlation coefficients of the individual samples.

In addition to this analysis, we confirmed the model perfor-
mance using various sample-stratification approaches, such 
as terrain (TRN) clustering (Figure 5), support vector machine 
(SVM) classification (Supplemental Table 4), and weighted 
survival score algorithm (Figure 6E and Figure 7D). Finally, we 
evaluated the therapy outcome–predictive power of the 11-gene 
model in a prostate cancer setting using a prognostic test based 
on an independent method of gene expression analysis, namely 
the Q-RT-PCR method (Figure 6F).

To further validate the potential clinical utility of the 11-gene 
MTTS/PNS signature, we evaluated the prognostic power of the 
11-gene signature applied to an independent set of 79 clinical 
samples (prostate cancer outcome set 2) obtained from 37 prostate 
cancer patients who developed recurrence after the therapy and 42 
patients who remained disease-free. In this cohort of patients, the 
Kaplan-Meier survival analysis demonstrated a highly significant 
difference in the probability that prostate cancer patients would 
remain disease-free after therapy between the groups with positive 
and negative SPAIs defined by the 11-gene BMI-1–pathway signa-
ture (Figure 6, A–C). The estimated hazard ratio for disease recur-
rence after therapy in the group of patients with positive SPAIs as 
compared with the group of patients with negative SPAIs defined by 
the 11-gene MTTS/PNS signature (Figure 6C) was 3.74 (95% confi-
dence interval of ratio, 3.010–25.83; P < 0.0001). Sixty-seven percent 
of patients with positive SPAIs had a disease recurrence within 3 
years after therapy, whereas 70% of patients with negative SPAIs 
remained relapse-free (Figure 6C). Five years after therapy, 83% of 
patients with positive SPAIs had a disease recurrence, whereas 64% 
of patients with negative SPAIs remained relapse-free (Figure 6C).

The standard Kaplan-Meier log-rank statistic assesses the differ-
ence in the survival curves. However, it does not test for multiple 
hypotheses or account for random co-occurrence; this represents 
an inherent problem of the gene expression profiling experiments. 
We attempted to partly mitigate this problem by using an alterna-
tive biological endpoint to the patients’ survival during the signa-
ture selection process and by applying the survival analysis to a 
single signature, thus eliminating the multiple comparisons from 
the survival model building protocol. The MTTS signature is likely 
to carry many gene expression patterns displaying the power to 
discriminate the metastatic phenotype that have no relation to the 
transcriptional program of normal stem cells. One of our main 
goals was to identify the stem cell signature that is associated with 
the pluripotency self-renewal phenotype and is embedded into 
MTTS signature. This approach implies that a candidate marker 
signature would have a defined stem cell–like expression profile 
that can be used in the subsequent follow-up validation analyses as 
a reference standard to look for expression of a stem cell–like sig-
nature in clinical samples. To further assess the statistical validity 
of the 11-gene stem cell–like profile, we performed 1,000 random 
permutations of the 11-gene stem cell profiles randomly selected 
from the 1,973-gene PNS signature. For each random 11-gene 
stem cell profile, we assessed its metastatic phenotype–discrimi-
native performance in the TRAMP transgenic mouse model at the 
discriminative confidence levels of the 11-gene BMI-1-pathway 
MTTS/PNS signature. Only 1 random 11-gene stem cell profile of 
the 1,000 permutations demonstrated classification power match-
ing the metastatic phenotype–discriminative performance of the 
11-gene MTTS/PNS signature. We performed 10,000 permuta-
tions to test the likelihood that small 11-gene signatures derived 
from the large MTTS signature would display high discrimination 
power to assess the significance at the 0.1% level. We carried out 
10,000 permutations of small 11-gene signatures derived from 
the large 1,345-gene MTTS signature and compared their sample-
stratification power with that of the 11-gene MTTS/PNS signature. 
The classification-performance cutoff P values were established by 

Figure 5
TRN analysis within the mRNA 
abundance space of genes con-
stituting the 11-gene MTTS/PNS 
signature reveals clustering pat-
terns, among prostate cancer 
(A and B) and breast cancer  
(C and D) patients, that are asso-
ciated with distinct frequencies of 
therapy failure (A and B) and dif-
fering probability of disease-free 
survival after therapy (C and D). 
A TRN clustering algorithm was 
applied to the 79 samples (A) con-
stituting prostate cancer therapy 
outcome set 2 and the 97 sam-
ples (C) constituting the breast 
cancer therapy outcome set. 
Kaplan-Meier analysis (B and D)  
was applied to subgroups of 
patients defined by the TRN 
clustering algorithm as shown in 
A and C.
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application of a 2-tailed Student’s t test to the 11-gene MTTS/PNS 
signature (P = 0.0005 for metastasis versus primary prostate cancer 
data set and P = 0.026 for recurrent versus nonrecurrent prostate 
cancer data set). We found that 10,000 permutations generated 7 
random 11-gene signatures performing at the sample-classifica-
tion level of the 11-gene MTTS/PNS signature.

Cox proportional hazard survival regression analysis. To ascertain the 
incremental statistical power of the individual covariates as predic-
tors of therapy outcome and unfavorable prognosis, we performed 
both univariate and multivariate Cox proportional hazard survival 
analyses (Table 4). Several individual gene members of the 11-gene 
signature, such as KI67 and Cyclin B1, have been described previ-
ously as significant predictors of prognosis and may reflect corre-
lation between proliferative fraction and poor therapy outcome as 
has been shown recently for the lymphoma survival predictor sig-
nature. However, our analysis appears to indicate that the 11-gene 
signature is a more uniform therapy-outcome predictor across the 
multiple data sets compared with the individual genes (see below) 
and, perhaps, is a better “integrator” and “sensor” of the biologi-
cal diversity across the spectrum of human cancers. We performed 
both univariate and multivariate Cox proportional hazard surviv-
al analyses to compare the prognostic performance of the entire  

11-gene signature and individual genes (Table 4 and Supplemen-
tal Table 3). In the univariate analysis, prognostic performance of 
KI67 expression as a predictor of therapy outcome varied in dif-
ferent outcome data sets. It was highly significant in the prostate 
cancer therapy outcome set 2 (Memorial Sloan-Kettering Cancer 
Center [MSKCC] data set); however, it showed only a trend toward 
statistical significance in the prostate cancer outcome set 1 (P = 0.1;  
Harvard data set) and the breast cancer outcome data set (P = 0.0533).  
In prostate cancer, the significant prognosis predictors in univari-
ate Cox regression analysis were KI67, ANK3, FGFR2, CES, and the 
11-gene MTTS/PNS signature. In breast cancer, the significant 
prognosis predictors in univariate analysis were Cyclin B1, BUB1, 
HEC, and the 11-gene signature. Thus, our analysis seems to indi-
cate that individual genes demonstrate a variable performance 
across multiple outcome data sets, and we were unable to identify 
a single gene uniformly predictive of the poor therapy outcome.

In the multivariate analysis (Table 5), the most significant pros-
tate cancer recurrence predictor was the model that included 11 
covariates (11-gene signature; 4 individual genes [KI67, ANK3, 
FGFR2, and CES1]; and 6 clinico-pathological features [pre-RP 
PSA, RP Gleason sum, surgical margins, seminal vesicle invasion, 
age, and extracapsular extension]). Interestingly, several covari-

Figure 6
Classification of prostate cancer patients into subgroups with distinct therapy outcome based on expression profile of the 11-gene MTTS/PNS signa-
ture. (A–C) Kaplan-Meier analysis of the probability that patients would remain disease-free among 79 prostate cancer patients constituting clinical 
outcome set 2, according to whether they had a good-prognosis or a poor-prognosis signature as defined by the expression profiles of the 11-gene 
MTTS/PNS signature. The patients’ stratification cutoff value of 0.4 was defined in the training set of 40 patients (19 poor prognosis and 21 good 
prognosis; A), validated in a test set of 39 patients (18 poor prognosis and 21 good prognosis; B) and confirmed in an entire cohort of 79 patients 
(C). (D) Kaplan-Meier survival curves for distinct subgroups of prostate cancer patients diagnosed with early-stage disease (stages 1C and 2A).  
(E) Kaplan-Meier survival curves for 79 prostate cancer patients stratified into distinct subgroups using a weighted survival predictor score algorithm. 
(F) Kaplan-Meier survival curves for 20 prostate cancer patients stratified into distinct subgroups using Q-RT-PCR assay of the 11-gene signature.
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Figure 7
Classification of 
pa t ien ts  d iag -
nosed with 4 dif-
ferent types of epi-
thelial cancer into 
subgroups with 
distinct therapy 
outcome based 
on expression pro-
file of the 11-gene  
MTTS/PNS signa-
ture. Kaplan-Meier 
analysis of the 
probabil i ty that 
pat ients would 
remain metastasis-
free (for the breast 
cancer group) or 
survive after ther-
apy (for the other 
groups) among 97 
early-stage breast 
cancer patients 
(A–D), 125 lung 
adenocarcinoma 
patients of all stag-
es (E–G), 35 lung 
adenocarcinoma 
pa t ien ts  d iag -
nosed with stage 
1A disease (H), 
37 ovarian can-
cer patients of all 
stages (I–K), and 
31 bladder cancer 
patients (L–N),  
according to whe-
ther they had a 
good-prognosis 
or a poor-prog-
nosis signature 
as defined by the 
expression pro-
files of the 11-gene  
MTTS/PNS sig-
nature. For each 
type of cancer, the 
patient’s stratifica-
tion cutoff value 
was defined in the 
training set, vali-
dated in a test set, 
and confirmed in 
an entire cohort. 
D and I–K show 
the Kaplan-Meier 
survival curves 
for 97 breast can-
cer patients and 
37 ovarian cancer 
patients, respec-
tively, stratified into 
distinct subgroups 
using a weighted 
survival predictor 
score algorithm.
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ates, such as the 11-gene signature, KI67, CES1, pre-RP prostate-
specific antigen (PSA) level, surgical margins, and extracapsular 
extension, remained statistically significant prognostic markers in 
the multivariate analysis (Table 5). Thus, while prognostic perfor-
mance of individual gene members of the 11-gene signature var-
ied greatly in different outcome data sets, the identified 11-gene  
signature seems to perform as the most consistent predictor of 
poor therapy outcome across multiple independent outcome data 
sets comprising over 1,000 clinical samples and representing 11 
distinct types of human cancer (see below). Yet the statistically 
best-performing multivariate cancer type–specific model seems 
to require a combination of calls based on expression levels of 
individual genes, a gene expression signature, and clinico-patho-
logical covariates (Tables 4 and 5).

We sought to use an alternative statistical metric to further eval-
uate the prognostic power of the genes constituting the 11-gene  
signature. We implemented the weighted survival score analy-
sis to reflect the incremental statistical power of the individual 

covariates as predictors of therapy outcome based 
on a multicomponent prognostic model (Figure 6E). 
Final survival predictor score comprises a sum of 
scores for individual genes and reflects the relative 
contribution of each of the 11 genes in the multi-
variate analysis. The negative weighting values imply 
that higher expression correlates with longer survival 
and favorable prognosis, whereas the positive score 
values indicate that higher expression correlates 
with poor outcome and shorter survival. Applica-
tion of the weighted survival predictor model based 
on a cumulative score of the weighted expression 
values of 11 genes confirmed the prognostic power 
of the identified 11-gene signature in stratification 
of prostate cancer patients into subgroups with sta-
tistically distinct probability of relapse-free survival 
after RP (Figure 6E).

Expression of the 11-gene MTTS/PNS signature is a 
predictor of a short relapse-free survival after therapy in 
prostate cancer patients with an early-stage disease. Iden-
tification of patients with high likelihood of poor 
outcome after therapy would be particularly desir-
able in a cohort of patients diagnosed with a seem-
ingly localized early-stage prostate cancer. Next we 
determined whether the 11-gene MTTS/PNS sig-
nature would be useful in defining subgroups of 
patients diagnosed with an early-stage prostate can-
cer and having a statistically significant difference 
in the likelihood of disease relapse after therapy. In 
the group of patients diagnosed with stage 1C or 
2A prostate cancer (Figure 6D), the median relapse-
free survival after therapy in the poor-prognosis 
subgroup defined by the 11-gene BMI-1–pathway 
signature was 27 months. In contrast, the median 
relapse-free survival after therapy in the good-prog-
nosis group was 82.4 months. Eighty-eight percent 
of patients in the poor-prognosis subgroup had 
a disease recurrence within 5 years after therapy. 
Conversely, 64% of patients in the good-prognosis 
subgroup remained relapse-free (Figure 6D). The 
estimated hazard ratio for disease recurrence after 
therapy in the poor-prognosis subgroup as com-

pared with the good-prognosis subgroup of patients defined 
by the 11-gene signature was 3.907 (95% confidence interval of 
ratio, 2.687–34.84; P = 0.0005).

Validation of the prognostic performance of the 11-gene BMI-1–pathway 
signature using a Q-RT-PCR–based assay. Routine clinical use of prog-
nostic tests based on microarray-derived gene expression signa-
tures would require prospective validation study of the utility of 
identified markers in an experimental setting highly compatible 
with state-of-the-art clinical laboratory practice. Since microarray-
based assay format is not readily available for application in the 
clinical laboratory, we considered the Q-RT-PCR–based test as an 
alternative clinically compatible analytical platform suitable for 
measurements of mRNA expression level of marker genes. Expres-
sion of mRNA for 11 genes (Supplemental Table 1) and an endog-
enous control gene (GAPDH) was measured by real-time PCR in 20 
specimens of primary prostate cancer obtained from patients with 
documented PSA recurrence within 5 years after RP and patients 
who remained disease-free for at least 5 years after RP (10 patients 

Table 4
Cox proportional hazard survival regression analysis

Prostate cancer  
Covariates Statistics Remarks
Gbx2 χ2 = 1.5817; df = 1; P = 0.2085 
KI67 χ2 = 9.9016; df = 1; P = 0.0017 
cyclin B1 χ2 = 0.1370; df = 1; P = 0.7113 
BUB1 χ2 = 0.9193; df = 1; P = 0.3377 
HEC χ2 = 2.3450; df = 1; P = 0.1257 
KIAA1063 χ2 = 0.1376; df = 1; P = 0.7106 
HCFC1 χ2 = 2.2379; df = 1; P = 0.1347 
RNF2 χ2 = 1.6235; df = 1; P = 0.2026 
ANK3 χ2 = 8.9237; df = 1; P = 0.0028 
FGFR2 χ2 = 7.7985; df = 1; P = 0.0052 
CES χ2 = 9.3565; df = 1; P = 0.0022 
Signature χ2 = 3.9990; df = 1; P = 0.0455 
5 Covariates χ2 = 26.6628; df = 5; P = 0.0001  Signature + 4 genes
6 Covariates χ2 = 26.9003; df = 6; P = 0.0002  Signature + 5 genes
11 Covariates χ2 = 26.9684; df = 11; P = 0.0046  11 Genes
12 Covariates χ2 = 29.2850; df = 12; P = 0.0036  Signature + 11 genes
11 Covariates χ2 = 50.7039; df = 11; P = 0.0000  Signature + 4 genes +  
  6 clinico-pathological features

Breast cancer
Covariates Statistics Remarks
Gbx2 χ2 = 0.0021; df = 1; P = 0.9631 
KI67 χ2 = 3.7357; df = 1; P = 0.0533 
cyclin B1 χ2 = 4.6430; df = 1; P = 0.0312 
BUB1 χ2 = 10.4330; df = 1; P = 0.0012 
HEC χ2 = 15.6837; df = 1; P = 0.0001 
KIAA1063 χ2 = 0.5386; df = 1; P = 0.4630 
HCFC1 χ2 = 0.7418; df = 1; P = 0.3891 
RNF2 χ2 = 0.0360; df = 1; P = 0.8495 
ANK3 χ2 = 2.5573; df = 1; P = 0.1098 
FGFR2 χ2 = 0.2834; df = 1; P = 0.5945 
CES χ2 = 0.0477; df = 1; P = 0.8272 
Signature χ2 = 7.1372; df = 1; P = 0.0076 
4 Covariates χ2 = 16.4355; df = 4; P = 0.0025  Signature + 3 genes
5 Covariates χ2 = 16.7995; df = 5; P = 0.0049  Signature + 4 genes
11 Covariates χ2 = 28.7740; df = 11; P = 0.0025  11 Genes
12 Covariates χ2 = 29.3656; df = 12; P = 0.0035  Signature + 11 genes

df, degrees of freedom.
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in each group). As shown in Figure 6F, a prostate cancer therapy 
outcome test based on measurements of mRNA expression lev-
els of 11 genes using Q-RT-PCR discriminates prostate cancer 
patients into subgroups with statistically distinct probability of 
relapse-free survival after RP.

The Kaplan-Meier survival analysis demonstrated that appli-
cation of the 11-gene Q-RT-PCR–based prostate cancer therapy 
outcome test segregates prostate cancer patients into subgroups 
with statistically significant difference in the probability of 
remaining relapse-free after the therapy (Figure 6F). The estimat-
ed hazard ratio for disease recurrence after therapy in the poor-
prognosis group of patients as compared with the good-progno-
sis group defined by the test was 21.3 (95% confidence interval of 
ratio, 5.741–98.39; P < 0.0001). One hundred percent of patients 
in the poor-prognosis group had a disease recurrence within 4 
years after RP, whereas 91% of patients in the good-prognosis 
group remained relapse-free (Figure 6F).

Expression of the 11-gene MTTS/PNS signature predicts metastatic 
recurrence and poor survival after therapy in breast cancer and lung 
adenocarcinoma patients diagnosed with an early-stage disease. BMI-1 
expression was previously implicated in human breast and lung 
cancers (11, 12, 31), which suggests that activation of BMI-1–
associated pathway(s) might be relevant to these types of carcino-
mas as well. We therefore sought to investigate whether measure-
ments of expression of the 11-gene MTTS/PNS signature would 
be informative in the prediction of the patients’ prognosis in a 
group of 97 young women diagnosed with sporadic lymph node–
negative early-stage breast cancer who were analyzed in a recent 
expression profiling study of early-stage breast cancer (33). (This 
group comprises 46 patients who developed distant metastases 
within 5 years and 51 patients who continued to be disease-free 
at least 5 years after therapy; they constitute clinically defined 
poor-prognosis and good-prognosis groups, correspondingly.) 
Kaplan-Meier analysis indicates that breast cancer patients with 
tumors displaying a stem cell–like expression profile of the 11-
gene signature have a significantly higher probability of develop-
ing distant metastases within 5 years after therapy and therefore 
can be identified as a poor-prognosis subgroup (Figure 7, A–D). 
Median metastasis-free survival after therapy in the poor-prog-
nosis subgroup of breast cancer patients defined by the 11-gene 

signature was 26 months. Eighty-four percent 
of patients in the poor-prognosis subgroup 
were diagnosed with distant metastasis within 
5 years after therapy (Figure 7C). In contrast, 
62% of patients in the good-prognosis sub-
group remained metastasis-free (Figure 7C). 
The estimated hazard ratio for metastasis-free 
survival after therapy in the poor-prognosis 
subgroup as compared with the good-prog-
nosis subgroup of patients defined by the 
11-gene signature was 3.762 (95% confidence 
interval of ratio, 3.421–20.27; P < 0.0001). 
Thus, the expression pattern of the 11-gene 
MTTS/PNS signature is strongly predictive 
of a short postdiagnosis and post-treatment 
interval to distant metastases in early-stage 
breast cancer patients.

Next we asked whether expression analy-
sis of the 11-gene signature would be infor-
mative in patients’ stratification into sub-

groups with distinct survival probability after therapy in a 
group of 125 patients diagnosed with lung adenocarcinoma 
(34). Similarly to the prostate and breast cancer patients, the 
Kaplan-Meier analysis shows that patients with tumors dis-
playing a stem cell–like expression profile of the 11-gene  
signature have significantly higher risk of death after therapy 
and therefore can be defined as a poor-prognosis subgroup  
(Figure 7, E–H). Median survival after therapy in the poor-prog-
nosis subgroup of lung adenocarcinoma patients defined by the 
11-gene BMI-1–pathway signature was 15.2 months (Figure 7G).  
In contrast, the median survival after therapy in the good-
prognosis subgroup was 48.8 months. One hundred percent 
of patients in the poor-prognosis subgroup died within 3 years 
after therapy. Conversely, 58% of patients in the good-progno-
sis subgroup remained alive (Figure 7G). The estimated hazard 
ratio for death after therapy in the poor-prognosis subgroup as 
compared with the good-prognosis subgroup of patients defined 
by the 11-gene signature was 3.589 (95% confidence interval of 
ratio, 2.910–46.67; P = 0.0005).

Next we examined whether the 11-gene MTTS/PNS signature 
would be useful in defining subgroups of patients diagnosed with 
an early-stage lung adenocarcinoma and having a statistically 
significant difference in survival probability after therapy. In the 
group of patients diagnosed with stage 1A lung adenocarcinoma 
(Figure 7H), the median survival after therapy in the poor-progno-
sis subgroup defined by the 11-gene signature was 49.6 months. 
Fifty-three percent of patients in the poor-prognosis subgroup 
died within 5 years after therapy. In contrast, 92% of patients 
remained alive in the good-prognosis subgroup (Figure 7H). The 
estimated hazard ratio for death after therapy in the poor-progno-
sis subgroup as compared with the good-prognosis subgroup of 
patients defined by the 11-gene signature was 8.909 (95% confi-
dence interval of ratio, 1.418–13.12; P = 0.01).

Based on this analysis, we concluded that detection of a stem 
cell–like expression profile of the 11-gene MTTS/PNS signature 
in primary tumors from patients diagnosed with early-stage 
prostate, breast, and lung carcinomas is associated with a high 
propensity toward metastatic dissemination and significantly 
higher risk of poor therapy outcome. Interestingly, therapy out-
come in cancer patients diagnosed with other types of epithelial 

Table 5
11-Covariate prostate cancer recurrence predictor model

Covariate Coefficient SE Significance,  Confidence  Confidence  
   P interval, low 95% interval, high 95%
Signature  –2.3537  0.9858  0.0170  –4.2858  –0.4215
KI67 2.2832  0.7823  0.0035  0.7499  3.8166
ANK3 –0.1563  0.7197  0.8280  –1.5670  1.2543
FGFR2 –0.8295  0.4955  0.0941  –1.8007  0.1418
CES –1.6403  0.8113  0.0432  –3.2303  –0.0502
Pre-RP PSA 0.0493  0.0251  0.0495  0.0001  0.0985
RP GLSN SUM  0.2850  0.2385  0.2322  –0.1825  0.7525
SM  1.0609  0.4648  0.0225  0.1499  1.9720
Sem Ves Inv  0.6016  0.5064  0.2348  –0.3909 1.5941
Age 0.0311  0.0351  0.3755  –0.0377  0.0999
ECE 0.9296  0.4360  0.0330  0.0751 1.7842

RP, radical prostatectomy; PSA, prostate-specific antigen; GLSN SUM, Gleason sum; SM, sur-
gical margins; Sem Ves Inv, seminal vesicle invasion; ECE, extracapsular extension.
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cancers, such as ovarian and bladder cancers, seems to manifest 
similar association with distinct patterns of expression of the 
11-gene signature (Figure 7, I–N).

Expression of the 11-gene signature predicts therapy outcome in patients 
diagnosed with nonepithelial malignancies. Altered BMI-1 expression was 
implicated recently in several nonepithelial malignancies, such as B 
cell non-Hodgkin lymphoma (35) and pediatric brain tumors (36). 
We therefore sought to analyze whether the 11-gene MTTS/PNS  
signature would be useful in defining subgroups of patients 
diagnosed with nonepithelial cancers and having a statistically 
significant difference in survival probability after therapy. Using 
Kaplan-Meier method, we analyzed the prognostic power of the 
11-gene signature in patients diagnosed with diffuse large B cell 
lymphoma, mantle cell lymphoma, acute myeloid leukemia, meso-
thelioma, medulloblastoma, and glioma (Table 2). Kaplan-Meier 
analysis demonstrates that a stem cell–like expression profile of 
the 11-gene signature in primary tumors is a consistent powerful 
predictor of a therapy failure and short survival in cancer patients 
diagnosed with 5 distinct types of nonepithelial cancers (Figure 8, 
A–F). Consistent with our findings, an increased BMI-1 expression 
in human medulloblastomas was demonstrated in a recent study 
(37). Taken together, these data seem to imply the presence of a 
conserved BMI-1–associated pathway(s) similarly engaged in both 

neural stem cells and a highly malignant subset of human cancers 
diagnosed in a wide range of organs and uniformly exhibiting a 
marked propensity toward metastatic dissemination as well as a 
high probability of unfavorable therapy outcome.

Discussion
A growing number of expression profiling studies provide experi-
mental evidence indicating the presence of a transcriptionally 
distinct subtype of human solid tumors manifesting a marked 
propensity toward metastatic dissemination, highly malignant 
clinical behavior, and a high probability of poor therapy out-
come in cancer patients diagnosed with early-stage carcinomas 
of various origins (refs. 15, 38–40; this study). These results are 
consistent with the idea that, at least in a subset of human solid 
tumors, the acquisition of full metastatic potential, including an 
emergence and seeding of potent metastasis precursor cells, is a 
relatively early event in tumor progression. Collectively, these data 
suggest an early involvement, in development of this transcrip-
tionally defined subtype of human carcinomas, of a highly malig-
nant combination of mutant alleles conferring the proclivity to 
metastasize (40) and/or an engagement of unique unconventional 
cellular targets such as stem cells and/or early progenitor cells in 
transformation and tumor progression.

Figure 8
Classification of cancer patients diagnosed with different types of nonepithelial malignancies into subgroups with distinct therapy outcome based 
on expression profile of the 11-gene MTTS/PNS signature. Kaplan-Meier survival analysis of the probability of a therapy failure in cancer patients 
diagnosed with different types of nonepithelial cancers and having distinct expression profiles of the 11-gene MTTS/PNS signature is shown. Data 
from lymphoma patients (A), malignant glioma patients (B), mesothelioma patients (C), medulloblastoma patients (D), mantle cell lymphoma 
patients (E), and acute myeloid leukemia patients (F) are shown.
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One of the hallmark biological features of normal stem cells is 
the ability to fuse spontaneously in vitro and in vivo with other cell 
types, leading to formation of reprogrammed viable somatic cell 
hybrids (41–44). Accumulation of normal stem cells in experimen-
tal tumors in vivo has been demonstrated in several studies (45, 46).  
Furthermore, most recent studies demonstrated that committed 
myelomonocytic cells such as macrophages can produce func-
tional epithelial cells by in vivo fusion (47), thus extending the 
number of cell types that might serve as hypothetically “eligible” 
fusion partners for tumor cells. It would be of interest to study 
how cancer cells co-opt stem cell–like transcriptome into progres-
sion pathways and whether some human carcinomas could attract 
stem cells by mimicking a stem cell “niche” microenvironment, 
thus directly engaging normal stem cells into malignant process 
via cell fusion. One interesting endpoint of our analysis is that a 
relatively small set of coregulated transcripts appears to predict 
clinical outcome in a large number of human tumors represent-
ing 10 distinct types of cancer. Perhaps inclusion of a relevant bio-
logical model in the signature discovery protocol was an essential 
component of the successful hit selection, since recent metaanaly-
sis of cancer microarray data that was based solely on statistical 
approaches did not identify an outcome signature common to 
multiple cancer types (48).

It has been suggested that sets of coordinately expressed genes 
defined as cancer-associated gene expression signatures might 
reflect the cell of origin of cancer (49). Unlike stem cells in the 
state of CNS neurospheres that are recovered from the CNS, 
stem cells in the state of PNS neurospheres might be present in 
many (if not all) peripheral tissues and therefore are more likely 
and readily accessible cellular targets for direct involvement into 
malignant process. It remains to be elucidated whether the pre-
cision of analytical protocols used in this study was sufficient to 
identify the broadly applicable gene expression markers of the 
BMI-1-pathway activation and normal stem cell engagement in 
malignant progression of human cancers. Protein products of 
2 genes upregulated in the MTTS/PNS signature profile (BUB1 
and HEC1) are known to play an important role in the spindle 
assembly mitotic checkpoint. A recent study suggested a novel 
mechanism leading to development of frequent aneuploidy in 
human cancer due to aberrant expression of Mad2 protein, inap-
propriate activation of the spindle checkpoint, and, eventually, 
aneuploidy (50). Both BUB1 and HEC1 proteins play a key role 
in the assembly of checkpoint proteins, being required for Mad2 
recruitment to the kinetochores (51, 52); this suggests that aber-
rant BUB1 and HEC1 expression might contribute to and/or 
reflect the altered function of the mitotic checkpoint in meta-
static cancer cells.

In conclusion, using a mouse/human comparative transla-
tional genomics approach, we identified an 11-gene signature 
that consistently displays a stem cell–like expression pattern 
in metastatic lesions of prostate carcinomas recovered from 
multiple distant target organs. Our results indicate that a stem 
cell–resembling expression profile of the 11-gene signature is 
associated with a highly malignant clinical course of disease pro-
gression and predicts high likelihood of therapy failure in mul-
tiple types of human cancer. Statistically significant negative 
prognostic value of a stem cell–like expression of the 11-gene 
signature in early-stage primary solid tumors of diverse origin 
suggests the presence of a genetically distinct subtype of human 
carcinomas with high propensity toward metastatic dissemina-

tion even at the early stage of disease progression. Further elu-
cidation of possible causal relationships between activation of 
a stem cell–resembling gene expression program and malignant 
behavior of human carcinoma cells should have considerable 
theoretical and practical implications.

Methods
Clinical samples. Expression profiling data of primary tumor samples 
obtained from 1,122 cancer patients representing therapy-outcome 
cohorts for 10 types of human cancer (Table 2) were analyzed in this 
study. Microarray analysis and associated clinical information for 32 
clinical samples (23 primary prostate tumors and 9 distant metastatic 
lesions) used to delineate the expression profiles of human prostate 
cancer metastases were reported previously (13). Two clinical outcome 
sets comprising 21 (outcome set 1) and 79 (outcome set 2) samples were 
used for analysis of the association of the therapy outcome with distinct 
expression profiles of the 11-gene signature. Original gene expression 
profiles of the 21 clinical samples analyzed in this study were report-
ed elsewhere (14). Primary gene expression data files of clinical sam-
ples as well as associated clinical information can be found at http:// 
www-genome.wi.mit.edu/cancer/.

The prostate tumor tissues constituting the second clinical outcome set 
were obtained from 79 prostate cancer patients undergoing therapeutic or 
diagnostic procedures performed as part of routine clinical management 
at the MSKCC (New York, New York, USA). Clinical and pathological fea-
tures of 79 prostate cancer cases constituting the validation outcome set 
are presented elsewhere (15). Median follow-up after therapy in this cohort 
of patients was 70 months. Samples were snap-frozen in liquid nitrogen 
and stored at –80°C. Each sample was examined histologically using 
H&E-stained cryostat sections. Care was taken to remove nonneoplastic 
tissues from tumor samples. Cells of interest were manually dissected from 
the frozen block and other tissues trimmed away. All of the studies were 
approved by the MSKCC Institutional Review Board.

Expression analysis data for tumor samples obtained from 125 lung 
adenocarcinoma patients as well as associated clinical information were 
reported elsewhere (34). Original work describing gene expression profiles 
of the set of 97 clinical samples of early-stage breast cancer was reported 
elsewhere (33). Primary gene expression data files of clinical samples as 
well as associated clinical information have been previously described 
(33). To date, our analysis includes 1,153 therapy-outcome samples from 
patients diagnosed with 11 distinct types of cancer (Table 2): prostate can-
cer (100 patients); breast cancer (97 patients); lung adenocarcinoma (211 
patients); ovarian cancer (50 patients); bladder cancer (31 patients); dif-
fuse large B cell lymphoma (298 patients); mantle cell lymphoma (MCL, 
92 patients); mesothelioma (17 patients); medulloblastoma (60 patients); 
glioma (50 patients); and acute myeloid leukemia (116 patients).

Cell culture. Cell lines used in this study were previously described (16). 
The LNCap- and PC-3–derived cell lines were developed by consecutive 
serial orthotopic implantation, either from metastases to the lymph 
node (for the LN series) or reimplanted from the prostate (Pro series). 
This procedure generated cell variants with differing tumorigenicity, fre-
quency, and latency of regional lymph node metastasis (16). Except where 
noted, cell lines were grown in RPMI1640 supplemented with 10% FBS 
and gentamycin (GIBCO; Invitrogen Corp.) to 70–80% confluence and 
subjected to serum starvation as described previously (16), or maintained 
in fresh complete media, supplemented with 10% FBS.

Anoikis assay. Cells were harvested by 5-minute digestion with 0.25% 
trypsin/0.02% EDTA (Irvine Scientific), washed, and resuspended in 
serum-free medium. Cells at a concentration of 1.7 × 105 cells per well 
in 1 ml of serum-free medium were plated in 24-well Ultra Low Attach-
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ment polystyrene plates (Corning Inc.) and incubated at 37°C and 5% 
CO2 overnight. Viability of cell cultures subjected to anoikis assays was 
greater than 95% in a trypan blue dye exclusion test.

Apoptosis assay. Apoptotic cells were identified and quantified using the 
Annexin V-FITC kit (BD Biosciences — Pharmingen) according to the 
manufacturer’s instructions. The following controls were used to set up 
compensation and quadrants: (a) unstained cells; (b) cells stained with 
Annexin V-FITC (no propidium iodine); and (c) cells stained with prop-
idium iodine (no Annexin V-FITC). Each measurement was carried out in 
quadruplicate, and each experiment was repeated at least twice. Annexin 
V-FITC–positive cells were scored as early apoptotic cells; both Annexin 
V-FITC– and propidium iodine–positive cells were scored as late apoptotic 
cells; unstained Annexin V-FITC– and propidium iodine–negative cells 
were scored as viable or surviving cells. In selected experiments, apoptotic 
cell death was documented using the TUNEL assay.

Flow cytometry. Cells were washed in cold PBS and stained using the 
Annexin V-FITC Apoptosis Detection Kit (BD Biosciences) according 
to the manufacturer’s instructions. Flow analysis was performed with 
a FACSCalibur instrument (BD Biosciences). CellQuest software (BD 
Biosciences) was used for data acquisition and analysis. All measure-
ments were performed under the same instrument setting, analyzing 
103–104 cells per sample.

Orthotopic xenografts. Orthotopic xenografts of human prostate PC-3 
cells and sublines used in this study were developed by surgical ortho-
topic implantation as previously described (15, 16). Briefly, 2 × 106 
cultured PC-3 cells or cells of the PC-3M or PC-3MLN4 subline were 
injected s.c. into male athymic mice, and allowed to develop into firm 
palpable and visible tumors over the course of 2–4 weeks. Intact tissue 
was harvested from a single s.c. tumor and surgically implanted in the 
ventral lateral lobes of the prostate gland in a series of 6 athymic mice 
per cell line subtype as described earlier (16).

Transgenic mouse model of prostate cancer. A breeding colony of TRAMP 
(transgenic adenocarcinoma of the mouse prostate) mice is maintained 
on C57BL/6 background in the Animal Care Facility at the Sidney Kim-
mel Cancer Center (53). The TRAMP mouse colony is based on a breed-
ing pair of TRAMP mice kindly provided by Norman Greenberg (Baylor 
College of Medicine, Houston, Texas, USA). Standard PCR assay was car-
ried out to monitor the presence of the SV-40 large T antigen in new 
litters. Twenty-one PCR-confirmed male TRAMP mice were defined for 
microarray analysis carried out in this study. Animals were killed at dif-
ferent ages according to the established time course of the disease pro-
gression (32), and prostates as well as primary and metastatic tumors 
were immediately removed and snap-frozen in liquid nitrogen. Prostate 
tissues from age-matched wild-type C57BL/6 mice served as control 
samples in our microarray analysis of the TRAMP model of prostate can-
cer. Necropsies with gross microscopic examination were carried out. All 
procedures were approved by the Sidney Kimmel Cancer Center Insti-
tutional Animal Care and Use Committee and followed Sidney Kimmel 
Cancer Center Standard Operating Procedures in accordance with the 
NIH Guide for the Care and Use of Laboratory Animals.

Tissue processing for mRNA and RNA isolation. Fresh-frozen orthotopic 
and transgenic primary tumors, metastases, and mouse prostates were 
examined by use of H&E-stained frozen sections. Orthotopic tumors of 
all sublines exhibited similar morphology consisting of sheets of monot-
onous closely packed tumor cells with little evidence of differentiation, 
interrupted by only occasional zones of largely stromal components, 
vascular lakes, or lymphocytic infiltrates. Fragments of tumor judged 
free of these nonepithelial clusters were used for mRNA preparation. 
Frozen tissue (1–3 mm × 1–3 mm) was submerged in liquid nitrogen 
in a ceramic mortar and ground to powder. The frozen tissue powder 

was dissolved and immediately processed for mRNA isolation using a 
FastTrack kit for mRNA extraction (Invitrogen Corp.) according to the 
manufacturer’s instructions.

RNA and mRNA extraction. For gene expression analysis, cells were har-
vested in lysis buffer 2 hours after the last media change at 70–80% conflu-
ence, and total RNA or mRNA was extracted using the RNeasy (QIAGEN) 
or FastTrack kit (Invitrogen Corp.). Cell lines were not split more than 5 
times before RNA extraction, except where noted.

Affymetrix arrays. The protocol for mRNA quality control and gene 
expression analysis was that recommended by Affymetrix. In brief, approx-
imately 1 μg of mRNA was reverse-transcribed with an oligo-dT primer 
that has a T7 RNA polymerase promoter at the 5′ end. Second-strand syn-
thesis was followed by complementary RNA (cRNA) production incor-
porating a biotinylated base. Hybridization to Affymetrix U95Av2 arrays 
representing 12,625 transcripts overnight for 16 hours was followed by 
washing and labeling using a fluorescently labeled antibody. The arrays 
were read and data processed using Affymetrix equipment and software 
as reported previously (13, 15, 16).

Data analysis. Detailed protocols for data analysis and documentation of 
the sensitivity, reproducibility, and other aspects of the quantitative statis-
tical microarray analysis using Affymetrix technology have been reported 
previously (15, 16). Forty to fifty percent of the surveyed genes were called 
present by Affymetrix Microarray Suite version 5.0 software in these experi-
ments. The concordance analysis of differential gene expression across the 
data sets was performed using Affymetrix MicroDB version 3.0 and DMT 
version 3.0 software as described previously (13, 15, 16). We processed the 
microarray data using the Affymetrix Microarray Suite version 5.0 soft-
ware and performed statistical analysis of the expression data set using the 
Affymetrix MicroDB and Affymetrix DMT software. The Pearson correla-
tion coefficient for individual test samples and the appropriate reference 
standard were determined using Microsoft Excel version 2002 (Microsoft 
Corp.) and GraphPad Prism version 4.00 software (GraphPad Software). 
We calculated the significance of the overlap between the lists of stem 
cell–associated and prostate cancer–associated genes by using the hyper-
geometric distribution test (54). Analytical protocol of identification and 
validation of the 11-gene BMI-1–pathway signature is described below and 
presented in Figure 3. We used MultiExperiment Viewer (MEV) software 
version 3.0.3 of the Institute for Genomic Research for SVM classification 
and TRN clustering algorithm data analysis and visualization.

Protocol of discovery and validation of the 11-gene BMI-1–pathway signature. 
We hypothesized that molecular signatures associated with activation of 
a normal stem cell’s self-renewal and/or survival program in metastatic 
cancer cells might be detectable by looking for genes manifesting concor-
dant patterns of regulation in distant metastatic lesions and stem cells 
in Bmi-1+/+ versus Bmi-1–/– genetic backgrounds. Therefore, we sought to 
determine whether expression profiles of transcripts activated and sup-
pressed in prostate cancer metastases would recapitulate the expression 
profile of the BMI-1–regulated genes in neural stem cells, by compar-
ing the sets of differentially regulated genes in search of intersection of 
lists for both up- and downregulated transcripts. Thus, according to this 
model the primary criterion for transcript selection should be the con-
cordance of changes in expression rather than a magnitude of changes 
(e.g., fold change). One of the predictions of this model is that transcripts 
of interest would be expected to have a tightly controlled “rank order” of 
expression within a cluster of coregulated genes, reflecting a balance of 
up- and downregulated mRNAs as a desired regulatory endpoint in a cell. 
A degree of resemblance of the transcript-abundance rank order within a 
gene cluster between a test sample and reference standard is measured by 
a Pearson correlation coefficient and designated as a phenotype associa-
tion index (PAI). Samples with stem cell–resembling expression profiles 
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of PAI (SPAIs) are expected to have positive values of Pearson correlation 
coefficients. Detailed prognostic signature identification and validation 
protocol are described below and shown in Figure 3.

Step 1. Sets of differentially regulated transcripts were independently 
identified for distant metastatic lesions and primary prostate tumors ver-
sus age-matched control samples in a transgenic TRAMP mouse model of 
metastatic prostate cancer (MTTS signature) as well as PNS (PNS signa-
ture) and CNS (CNS signature) neurospheres in BMI-1+/+ versus BMI-1–/–  
backgrounds using the Affymetrix microarray processing and statisti-
cal analysis software package (Affymetrix Microarray Suite version 5.0, 
MicroDB version 3.0, and DMT version 3.0) as described above and in 
previous publications (15, 16). Transcripts with negative signal-intensity 
values in both experimental and control sets were eliminated from fur-
ther consideration. At least 2-fold changes of the mRNA abundance levels 
in experimental versus control samples for both upregulated and down-
regulated genes were required for inclusion in the lists of differentially 
regulated transcripts. Fold expression changes of the mRNA abundance 
levels for each transcript were calculated as ratios of the average intensity 
values for a given transcript in experimental versus control samples for 
both upregulated and downregulated genes and log10-transformed for 
further analysis. Thus, this analytical step defined 3 large parent signa-
tures (see Figure 3): MTTS signature comprising 868 upregulated and 477 
downregulated transcripts; PNS signature comprising 885 upregulated 
and 1,088 downregulated transcripts; and CNS signature comprising 769 
upregulated and 778 downregulated transcripts.

Step 2. Subsets of transcripts exhibiting concordant expression changes 
in metastatic TRAMP tumor samples (MTTS signature) as well as PNS 
(PNS signature) and CNS (CNS signature) neurospheres in BMI-1+/+ ver-
sus BMI-1–/– backgrounds were identified. Concordant lists of transcripts 
were obtained by intersecting the 2 lists each of upregulated and down-
regulated genes. Thus, 2 concordant subsets of transcripts were identi-
fied corresponding to each binary comparison of metastatic TRAMP 
tumors and neural stem cell samples in a state of PNS and CNS neuro-
spheres (141 upregulated and 58 downregulated transcripts for PNS neu-
rospheres [r = 0.7593; P < 0.0001; Figure 2A] and 40 upregulated and 24 
downregulated transcripts for CNS neurospheres [r = 0.7679; P < 0.0001]). 
A third concordant subset of 27 genes comprising 15 upregulated and 12 
downregulated transcripts was selected for intersection common to all 3 
signatures (r = 0.8002; P < 0.0001).

Step 3. Selection of small gene clusters was performed from subsets of 
genes exhibiting concordant changes of transcript-abundance behavior 
in metastatic TRAMP tumor samples and PNS and CNS neurospheres in 
BMI-1+/+ versus BMI-1–/– backgrounds. Expression profiles were presented 
as log10 average fold changes for each transcript and processed for visual-
ization and Pearson correlation analysis using Microsoft Excel software 
(Microsoft Corp.). For the concordant differentially expressed genes, vec-
tors of log10 average fold change were determined for both experimental 
settings, and the correlation between 2 vectors was determined. Practical 
considerations essential for future development of genetic diagnostic tests 
prompted us to select from concordant gene sets small gene expression sig-
natures comprising transcripts with a high level of expression correlation 
in metastatic cancer cells and stem cells. The concordant list of differen-
tially expressed genes was reduced by removing those genes whose removal 
led to the largest increase in the correlation coefficient. The reduction in 
the signature transcript number was terminated when further elimination 
of a transcript did not increase the value of the Pearson correlation coef-
ficient. The cutoff criterion for signature reduction was arbitrarily set to 
exceed a Pearson correlation coefficient of 0.95 (P < 0.0001). Using this 
approach, a single candidate prognostic gene expression signature was 
selected for each intersection of the MTTS signature and parent stem cell 

signatures (Figure 3). Thus, 3 highly concordant small signatures were 
identified corresponding to 3 concordant subsets of genes defined in step 2  
(a set of 11 genes comprising 8 upregulated and 3 downregulated tran-
scripts for PNS neurospheres, i.e., the 11-gene MTTS/PNS signature; a set 
of 11 genes comprising 7 upregulated and 4 downregulated transcripts for 
CNS neurospheres, i.e., the 11-gene MTTS/CNS signature; and a set of 14 
genes comprising 8 upregulated and 6 downregulated transcripts, i.e., the 
MTTS/PNS/CNS signature).

Step 4. The small signatures identified in step 3 (one 11-gene signature 
for the PNS set, one 11-gene signature for the CNS set, and one 14-gene 
signature for the common PNS/CNS set) were tested for the power to dis-
criminate the metastatic phenotype (using 1 mouse prostate cancer data 
set and 1 human prostate cancer data set comprising primary and meta-
static tumors) and therapy-outcome classification performance (using 
human prostate cancer therapy outcome set 1). Three identified small 
signatures were evaluated for their ability to discriminate metastatic and 
primary prostate tumors in a TRAMP mouse model of prostate cancer, 
and clinical samples of 9 metastatic versus 23 primary prostate tumors as 
well as primary prostate tumors from 21 patients with distinct outcome 
after the therapy (8 recurrent and 13 nonrecurrent samples). To assess a 
potential diagnostic and prognostic relevance of small signatures, we cal-
culated a Pearson correlation coefficient for each individual tumor sample 
by comparing the expression profiles of individual samples with the refer-
ence expression profile in either PNS or CNS neurospheres in BMI-1+/+  
versus BMI-1–/– backgrounds. Fold expression changes in individual clini-
cal samples were calculated for each gene as a ratio of the expression value 
in a given sample to the “average” expression value of the gene across 
the entire data set of clinical samples. For each data set, the vector (X) of 
average gene expression was determined, and then the relative expression 
vector (R) was determined for each sample (R = X/X). The relative expres-
sion vectors were log10-transformed and correlated with the fixed vectors 
of gene expression determined in step 3. Negative expression values were 
treated as missing data. Based on the expected correlation of expression 
profiles of identified gene clusters with stem cell–like expression profiles, 
we named the corresponding correlation coefficients calculated for indi-
vidual samples the SPAIs. We evaluated the prognostic power of identified 
small signatures based on their ability to discriminate metastatic versus 
primary tumors (criterion 1) and to segregate the patients with recurrent 
and nonrecurrent prostate tumors into distinct subgroups (criterion 2) 
and selected a single best-performing small signature for subsequent 
validation analysis (Figures 3 and 4). Based on diagnostic and prognostic 
classification performance, a single best-performing 11-gene MTTS/PNS 
signature was selected for further validation analysis (Figures 3 and 4). 
The fixed numerical vector describing the stem cell–like signature in 11 
genes is shown in Supplemental Tables 2, 3, and 5.

Step 5. To assess the incremental statistical power of the individual genet-
ic and clinical covariates as predictors of therapy outcome and unfavorable 
prognosis in prostate cancer patients, we performed both univariate and 
multivariate Cox proportional hazard survival analyses (Table 4).

Step 6. To validate a survival prediction model based on the 11-gene 
MTTS/PNS signature, we tested the prognostic performance of the 
model in the multiple independent therapy-outcome data sets repre-
senting 5 epithelial and 5 nonepithelial cancers. We divided the patients 
within individual cohorts into a training set, which was used to select the 
cutoff threshold and to test the model, and a test set, which was used to 
evaluate the reproducibility of the classification performance. We used 
the training set to select the prognosis-discrimination cutoff value for a 
signature based on the highest level of statistical significance in patients’ 
stratification into poor- and good-prognosis groups as determined by the 
log-rank test (lowest P value and highest hazard ratio in the training set). 
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Clinical samples having the Pearson correlation coefficient at or higher 
than the cutoff value were identified as having the poor-prognosis sig-
nature. Clinical samples with the Pearson correlation coefficient below 
the cutoff value were identified as having the good-prognosis signature. 
Each training set was used to estimate a threshold of the correlation coef-
ficients before a survival analysis was performed. These thresholds are 
shown in the legends to Figures 6 and 7. The same discrimination cutoff 
value was then applied to evaluate the reproducibility of the prognostic 
performance in the test set of patients. Lastly, we applied the model to 
the entire outcome set using the same cutoff threshold to confirm the 
classification performance. The average gene expression vectors were 
determined for each gene and applied separately on the training, test, and 
combined data sets. The training and test sets were balanced with respect 
to the total number of patients, negative and positive therapy outcomes, 
and the length of survival. For the breast cancer data set, we maintained 
the patients’ distribution among training and test data sets described 
in the original publication (33). At this stage of the analysis, we did not 
carry out additional model training, development, or optimization steps, 
except for selection of a prognostic cutoff threshold in the training set. 
The same MTTS/PNS expression profile was consistently used through-
out the study as a reference standard to quantify the Pearson correlation 
coefficients of the individual samples. The distribution of the patients 
in the training and validation sets as well as the threshold values that 
separate the samples into good- and poor-prognostic groups are shown 
in the legends to Figures 6 and 7.

The cohort of 97 breast cancer patients (shown together in Figure 7C) 
was divided into a training set (78 patients; 34 poor prognosis and 44 
good prognosis) (Figure 7A) and a test set (19 patients; 12 poor prog-
nosis and 7 good prognosis) (Figure 7B) as described in the original 
publication (33). One hundred twenty-five lung cancer patients (shown 
together in Figure 7G) were divided into a training set (63 patients; 36 
poor prognosis and 27 good prognosis) (Figure 7E) and a test set (62 
patients; 35 poor prognosis and 27 good prognosis) (Figure 7F). Thirty-
seven ovarian cancer patients (shown together in Figure 7K) were divid-
ed into a training set (19 patients; 8 poor prognosis and 11 good prog-
nosis) (Figure 7I) and a test set (18 patients; 7 poor prognosis and 11 
good prognosis) (Figure 7J). Thirty-one bladder cancer patients (shown 
together in Figure 7N) were divided into a training set (16 patients;  
11 poor prognosis and 5 good prognosis) (Figure 7L) and a test set  
(15 patients; 10 poor prognosis and 5 good prognosis) (Figure 7M). The 
cutoff values used for classification were 0.56, 0.75, 1.16, and 0.35 for 
breast, lung, ovarian, and bladder cancer data sets, respectively.

Step 7. We tested the model performance using various sample-stratifi-
cation approaches, such as TRN clustering (Figure 5), SVM classification 
(Supplemental Table 4), and weighted survival score algorithm (Figures 
6E and 7D). We evaluated the therapy outcome–predictive power of 
the 11-gene model in a prostate cancer setting using a prognostic test 
based on an independent method of gene expression analysis, namely  
Q-RT-PCR (Figure 6F). In order to facilitate the evaluation of the 11-gene  
model, the average expression vector for different cancer types and the 
thresholds that separate the samples into good- and poor-prognostic 
groups are shown in Supplemental Table 6.

SPAI. Definition of the Pearson correlation coefficient as a phenotype 
association index is based on highly concordant behavior of the 11-gene 
signature between neural stem cells in the state of PNS neurospheres and 
prostate cancer metastasis (Figure 2, C and D; r = 0.9897; P < 0.0001). 
Values for a standard PNS neurosphere and for TRAMP metastasis were 
established as described in the signature discovery protocol and shown in 
Figure 2D. They were used consistently throughout the study as uniform 
reference standards for measurements of Pearson correlation coefficients 

for clinical samples. A degree of resemblance of the transcript-abundance 
rank order within a gene cluster between a test sample and reference stan-
dard is measured by a Pearson correlation coefficient and designated as a 
PAI. Samples with stem cell–resembling expression profiles of PAI (SPAIs) 
are expected to have positive values of Pearson correlation coefficients.

Random co-occurrence test. We performed 10,000 permutations to test the 
likelihood that small 11-gene signatures derived from the large MTTS sig-
nature would display high discrimination power to assess the significance 
at the 0.1% level. We carried out 10,000 permutations of small 11-gene sig-
natures derived from the large 1,345-gene MTTS signature and compared 
their sample-stratification power with that of the 11-gene MTTS/PNS 
signature. The classification-performance cutoff P values were established 
by application of a 2-tailed Student’s t test to the 11-gene MTTS/PNS sig-
nature (P = 0.0005 for metastasis versus primary prostate cancer data set 
and P = 0.026 for recurrent versus nonrecurrent prostate cancer data set). 
Random concordant gene sets comprising approximately 200 transcripts 
were generated using a mouse transcriptome data set representing expres-
sion profiling data of approximately 12,000 transcripts across 38 normal 
tissues (55). Inter- and intraspecies probe set match between different array 
types was performed at 95% or greater identity level using the Affymetrix 
database (www.affymetrix.com). To assess discrimination of random  
11-gene signatures derived from the 1,345-gene MTTS signature, a 2-tailed 
Student’s t test was carried out for metastatic versus primary prostate can-
cer data set (32 samples) and recurrent versus nonrecurrent prostate cancer 
data set (21 samples). The signatures were ranked based on P values, and 
ranking metrics of each random 11-gene signature were compared with the 
11-gene MTTS/PNS signature P values. We found that 10,000 permuta-
tions generated 7 random 11-gene signatures performing at the sample-
classification level of the 11-gene MTTS/PNS signature.

Weighted survival predictor score algorithm. We implemented the weighted 
survival score analysis to reflect the incremental statistical power of the 
individual covariates as predictors of therapy outcome based on a multi-
component prognostic model. The microarray-based or Q-RT-PCR–derived 
gene expression values were normalized and log-transformed on a base 10 
scale. The log-transformed normalized expression values for each data set 
were analyzed in a multivariate Cox proportional hazard regression model, 
with overall survival or event-free survival as the dependent variable. To 
calculate the survival/prognosis predictor score for each patient, we mul-
tiplied the log-transformed normalized gene expression value measured 
for each gene by a coefficient derived from the multivariate Cox propor-
tional hazard regression analysis. Final survival predictor score comprises 
a sum of scores for individual genes and reflects the relative contribution 
of each of the 11 genes in the multivariate analysis. The negative weighting 
values indicate that higher expression correlates with longer survival and 
favorable prognosis, whereas the positive score values indicate that higher 
expression correlates with poor outcome and shorter survival. Thus, the 
weighted survival predictor model is based on a cumulative score of the 
weighted expression values of 11 genes. For example, the following equa-
tion describes the relapse-free survival predictor score for prostate can-
cer patients (see Table 5): relapse-free survival score = (–0.403 × Gbx2) + 
(1.2494 × KI67) + (–0.3105 × cyclin B1) + (–0.1226 × BUB1) + (0.0077 × HEC) 
+ (0.0369 × KIAA1063) + (–1.7493 × HCFC1) + (–1.1853 × RNF2) + (1.5242 
× ANK3) + (–0.5628 × FGFR2) + (–0.4333 × CES1).

BMI-1 siRNA experiments. The target siRNA SMART pools for BMI-1  
and control luciferase siRNAs were purchased from Dharmacon Research 
Inc. They were transfected into PC-3-32 human prostate carcinoma cells 
according to the manufacturer’s protocols. Cell cultures were continu-
ously monitored for growth and viability and assayed for mRNA expres-
sion levels of BMI-1 and selected sets of genes (Table 2 and Figure 7)  
using RT-PCR and Q-RT-PCR methods.
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Q-RT-PCR analysis. The real-time PCR method measures the accumula-
tion of PCR products with a fluorescence detector system and allows for 
quantification of the amount of amplified PCR products in the log phase 
of the reaction. Total RNA was extracted using RNeasy Mini Kit (QIAGEN) 
according to the manufacturer’s instructions. A measure of 1 μg (tumor 
samples), or 2 μg and 4 μg (independent preparations of reference cDNA 
samples), of total RNA was used then as a template for cDNA synthesis 
with SuperScript II (Invitrogen Corp.). Q-RT-PCR primer sequences were 
selected for each cDNA with the aid of Primer Express software (Applied 
Biosystems). PCR amplification was performed with the gene-specific 
primers listed in Supplemental Table 1.

Q-RT-PCR reactions and measurements were performed with SYBR 
Green and ROX (Applied Biosystems) as a passive reference, using the ABI 
7900HT Sequence Detection System (Applied Biosystems). Conditions for 
the PCR were as follows: 1 cycle of 10 minutes at 95°C; and 40 cycles of 
0.20 minutes at 94°C, 0.20 minutes at 60°C, and 0.30 minutes at 72°C. 
The results were normalized to the relative amount of expression of an 
endogenous control gene, GAPDH.

Expression of mRNA for 11 genes (Supplemental Table 1) and an endog-
enous control gene (GAPDH) was measured by real-time PCR on an ABI 
PRISM 7900HT Sequence Detection System (Applied Biosystems) in 20 spec-
imens of primary prostate cancer obtained from patients with documented 
PSA recurrence within 5 years after RP and patients who remained disease-
free for at least 5 years after RP (10 patients in each group). For each gene, at 
least 2 sets of primers were tested, and the set-up with highest amplification 
efficiency was selected for the assay used in this study. Specificity of the assay 
for mRNA measurements was confirmed by the absence of the expected PCR 
products when genomic DNA was used as a template. GAPDH (5′-CCCT-
CAACGACCACTTTGTCA-3′ and 5′-TTCCTCTTGTGCTCTTGCTGG- 3′)  
was used as the endogenous RNA and cDNA quantity normalization con-
trol. For calibration and generation of standard curves, we used several ref-
erence cDNAs: cDNA prepared from primary in vitro cultures of normal 
human prostate epithelial cells (15, 16), cDNA derived from the PC-3M  
human prostate carcinoma cell line (15, 16), and cDNA prepared from nor-
mal human prostate (15, 16). Expression analysis of all genes was assessed in 
2 independent experiments using reference cDNAs to control for variations 
among different Q-RT-PCR experiments. Before statistical analysis, the nor-
malized gene expression values were log-transformed (on a base 10 scale) 
similarly to the transformation of the array-based gene expression data.

Survival analysis. The Kaplan-Meier survival analysis was carried out 
using GraphPad Prism version 4.00 software (GraphPad Software). The 
endpoint for survival analysis in prostate cancer was the biochemical 
recurrence defined by the serum PSA increase after therapy. Disease-free 
interval was defined as the time period between the date of RP and the 
date of PSA relapse (for the recurrence group) or the date of last follow-up 
(for the nonrecurrence group). Statistical significance of the difference 
between the survival curves for different groups of patients was assessed 
using χ2 and log-rank tests. To evaluate the incremental statistical power 
of the individual covariates as predictors of therapy outcome and unfa-
vorable prognosis, we performed both univariate and multivariate Cox 
proportional hazard survival analyses.
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