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CD36 mediates the transfer of fatty acids (FAs) across the plasma membranes of muscle and adipose cells,
thus playing an important role in regulating peripheral FA metabolism in vivo. In the proximal intestine,
CD36 is localized in abundant quantities on the apical surface of epithelial cells, a pattern similar to that of
other proteins implicated in the uptake of dietary FAs. To define the role of CD36 in the intestine, we exam-
ined FA utilization and lipoprotein secretion by WT and CD36-null mice in response to acute and chronic
fat feeding. CD36-null mice given a fat bolus by gavage or fed a high-fat diet accumulated neutral lipid in the
proximal intestine, which indicated abnormal lipid processing. Using a model in which mice were equipped
with lymph fistulae, we obtained evidence of defective lipoprotein secretion by directly measuring lipid
output. The secretion defect appeared to reflect an impaired ability of CD36-null enterocytes to efficient-
ly synthesize triacylglycerols from dietary FAs in the endoplasmic reticulum. In the plasma of intact mice,
the reduced intestinal lipid secretion was masked by slow clearance of intestine-derived lipoproteins. The
impaired clearance occurred despite normal lipoprotein lipase activity and likely reflected feedback inhibi-
tion of the lipase by FAs due to their defective removal from the plasma. We conclude that CD36 is important
for both secretion and clearance of intestinal lipoproteins. CD36 deficiency results in hypertriglyceridemia
both in the postprandial and fasting states and in humans may constitute a risk factor for diet-induced type

2 diabetes and cardiovascular disease.

Introduction

CD36 is a multiligand scavenger receptor expressed on the plas-
ma membrane by many cells such as platelets, monocytes, and
adipocytes, as well as epithelial cells of the retina, mammary gland,
and small intestine (reviewed in ref. 1). CD36 appears to be involved
in many cellular functions such as cell adhesion (2), angiogenesis
(3), and lipoprotein binding/endocytosis (4). The protein is also
known as fatty acid (FA) translocase, or FAT, since it is implicated
in facilitating uptake of long-chain FAs (5).

Genetic ablation of the Cd36 gene in mice results in impaired
FA uptake by numerous tissues (5). Fasting plasma triacylglycerol
(TAG) levels are also increased (6) and redistributed from LDL to
VLDL. On the other hand, muscle-targeted CD36 overexpression
reduces plasma FA and VLDL-associated TAG levels (7). In the
spontaneously hypertensive rat, mutations in the Cd36 gene were
identified and linked to the hypertriglyceridemia, high FA levels,
and insulin resistance that are characteristic of this model (8-10),
and these symptoms are improved by expression of the WT protein.
In summary, the findings from studies on rodents document a role
for CD36 in the metabolism of FAs and TAGs.
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Triton WR-1339.
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In humans, CD36 deficiency was first identified in patients
with refractoriness to multiple platelet transfusions (11) and
is relatively common (2-7%) in persons of Asian and African
descent (12, 13). CD36-deficient subjects may present with high
blood pressure and insulin resistance (14) as well as plasma lipid
abnormalities. With fasting, high plasma TAG and reduced
HDL-associated cholesterol levels were reported by Miyaoka et
al. (14), while Yanai et al. observed elevated levels of LDL-associ-
ated cholesterol (12). In white people, common polymorphisms
in the CD36 gene are associated with elevated blood FA levels
(15). Kuwasako et al. further reported increased plasma levels of
TAGs and apoB-48 in the postprandial state (16). Thus, CD36
deficiency or mutations in the CD36 gene are associated with
abnormal plasma lipid levels in humans.

The role of CD36 in modulating the uptake and utilization
of intestine-derived lipids is currently unknown. In humans
and mice, CD36 is detected in epithelial cells of the small intes-
tine along the gastrocolic and crypt-to-villus axes in a pattern
paralleling that of other proteins implicated in FA uptake,
such as intestinal and liver FA-binding proteins (17-19).
Immunofluorescence studies revealed a polarized distribution
of CD36 along the apical, brush border membranes, the primary
site of intestinal FA uptake (19). To directly examine whether
CD36 facilitates the utilization of dietary FAs, we measured FA
uptake and processing by intestines of WT and CD36-deficient
mice. Intestinal lipid secretion into lymph and appearance of
TAGs in plasma were determined following intragastric gavage
with FAs or olive oil.
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Figure 1

Accumulation of FA analogs in the small intestine after gavage with olive oil. (A) BMIPP levels 2 hours after gavage. WT (black bars) and CD36-
null (white bars) mice (n = 3) were administered BMIPP by gavage with olive oil. After 2 hours, intestinal segments (Sl) were harvested from the
mice and flushed with PBS. Levels of the FA analogs were determined by y-ray spectroscopy. *P < 0.005. (B) FA uptake in primary enterocytes.
Enterocytes were isolated from WT (filled squares) and CD36-null mice (open triangles). FA uptake at the indicated times was determined as
described in Methods. (C) IPPA levels 72 hours after gavage. WT (black bars) and CD36-null (white bars) mice (n = 3) were administered IPPA
by gavage with olive oil. After 72 hours, intestinal segments were harvested from the mice and flushed with PBS. Levels of the FA analogs were

determined by y-ray spectroscopy. **P < 0.0001.

Results

Lipids accumulate in the proximal small intestine of CD36-deficient mice
in vivo. [12°1]15-(p-iodophenyl)-3-(R,S)-methyl pentadecanoic acid
(BMIPP) and ['?°I|15-p-iodophenyl pentadecanoic acid (IPPA) are
FA analogs used to study FA uptake in humans (20) and mice (5).
Incorporation of these analogs into cellular lipids is similar to that
of native long-chain FAs. BMIPP, which is 3-methylated, is slowly
oxidized and retained longer in tissues, thus providing more sen-
sitivity, while the straight-chain IPPA is rapidly oxidized like native
FA. We used these analogs to study the effects of CD36 deficiency
on intestinal FA uptake and secretion in vivo following intragas-
tric gavage. BMIPP levels 2 hours after gavage were significantly
increased in proximal segments of the small intestine of CD36-null
mice but unaffected in the distal segments and colon (Figure 1A).
These data suggested either increased FA uptake or reduced FA
secretion by intestines of CD36-null mice.

As shown in Figure 1B, uptake of FAs was not altered in iso-
lated CD36-null enterocytes. Fecal TAG levels were comparable
in WT and CD36-null mice fed a high-fat diet (3.15 £ 0.51 vs.
2.76 + 0.62 ug/mg of feces; n = 7; P = 0.31). In addition, these
data indicated no global defect in fat absorption in CD36-
deficient mice, consistent with the study by Goudriaan et al.
(21) and with the report that other proteins such as FA trans-
fer protein-4 (FATP4) may facilitate FA uptake by enterocytes
(22). Thus, we hypothesized that intestinal lipid output may
be impaired, leading to accumulation of the FA analog. To test
this, we administered IPPA by gavage, and radioactivity in the
gastrointestinal segments was measured at an extended time
point (72 hours after gavage) to identify alterations in lipid out-
put as opposed to uptake. As shown in Figure 1C, IPPA levels
were elevated in the proximal small intestine following the pat-
tern observed with BMIPP.

To determine whether the apparent defect in intestinal lipid out-
put affected intracellular TAG levels under conditions of high-fat
loading, we examined intestinal sections obtained from mice fed
a high-fat diet for 6 weeks using light microscopy. Sections from
CD36-null mice showed abundant oil red O staining, while WT
controls did not (Figure 2). In the CD36-deficient sections, stain-
ing was concentrated within the enterocytes of the upper villi and
absent from the submucosa or serous coat.
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CD36 is required for efficient intestinal lipid secretion. To examine lipid
secretion directly, we equipped mice with duodenal and intestinal
lymph duct fistulae (23). A lipid emulsion of [3H|TAGs was then
infused via the duodenal fistula, and we determined secretion of
TAGs into the mesenteric lymph by monitoring glycerol mass in
the lymph fistula. As shown in Figure 3A, lymph TAG recovery in
CD36-null mice reached 23% of the infusate at 6 hours compared
with 67% in WT mice. 3H recovery in the lymph mirrored the TAG
mass (at 6 hours: WT, 56.0% + 14.0%; CD36-null, 23.5% + 4.5%;
P=0.006). Together, these data indicated that lipid secretion from
the intestine is significantly impaired in CD36-null mice.

We next examined whether the defect in TAG secretion in CD36-
deficient intestines reflected impaired FA delivery to the endoplas-

CD36-null

R . :

Figure 2

Accumulation of neutral lipid in intestine from mice fed a high-fat diet.
WT and CD36-null mice were fed a high-fat diet ad libitum for 6 weeks.
Intestinal segments were fixed in paraformaldehyde/sucrose and pre-
pared for histology using standard techniques. Frozen sections were
prepared, stained with oil red O and hematoxylin, and visualized by
light microscopy at the indicated magnifications. L, intestinal lumen; M,
mucosa; SC, serous coat; SM, submucosa.
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Lipid trafficking in the intestine. (A) Duodenal and intestinal lymph duct fistulae were sur-

gically implanted in anesthetized WT (filled squares) and CD36-null (o

(n = 4-6). Following duodenal infusion of the lipid emulsion, lymph was collected from the

lymph duct fistula. The amount of TAG mass recovered per hour in the

as a percentage of the infusate) was determined by scintillation spectroscopy. *P < 0.05;
***P < 0.001. (B) Primary enterocytes from anesthetized WT (black bars) and CD36-null

(white bars) mice were prepared and pulsed with a lipid mixture contai

The relative incorporation of 3H into microsomal lipids was determined. The combined data

from 2 experiments (n = 4 plates per experiment) is shown. CE, choleste

cylglycerol; PL, phospholipid. #P = 0.03; TP < 0.00001. (C) Fixed segments of the proximal
intestine were stained with uranyl acetate and embedded using standard methods. Ultrathin
sections were prepared, stained with Reynolds’ lead citrate, and examined under a Hitachi
H-600 electron microscope. Red arrows indicate the positions of lipid droplets.

mic reticulum (ER), which contains the TAG synthetic enzymes and
chylomicron assembly machinery. Primary enterocytes obtained
from either WT or CD36-null mice were pulsed with micellar
[*H]oleic acid. Microsomal fractions were then prepared, and incor-
poration of the label into the major lipid classes was determined.
As shown in Figure 3B, recovery of *H into microsomal TAGs was
reduced by 47% in CD36-null enterocytes, which indicated a defect
in microsomal TAG synthesis from exogenous FAs. Incorpora-
tion into diacylglycerol (DAG) also trended lower in CD36-null
enterocytes (P =0.07), and the DAG/TAG ratio was unaltered and
similar to that observed in WT cells (data not shown). The lack of
change in this ratio argued against impairment being at the level
of DAG conversion to TAG by the enzyme diacylglycerol O-acyl-
transferase (Dgat). In line with this, abundance of mRNA for Dgat1
and Dgat2, measured by quantitative PCR, was not altered by CD36
deficiency (data not shown). In contrast to incorporation into TAG,
H into cholesteryl esters trended higher in CD36-null enterocytes,
and a significant increase was measured for phospholipids. FA/TAG
trafficking was also evaluated by electron microscopy of the
proximal intestine after duodenal infusion of triolein. Large and
centrally located lipid vacuoles were observed in CD36-deficient
enterocytes, while WT cells exhibited mostly small and peripheral
1292
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droplets (Figure 3C, arrows). These data were
consistent with abnormal intracellular target-
ing of the FAs in CD36-deficient enterocytes.
Clearance of TAG-rich lipoproteins is defective in
CD36-deficient mice. Since the fistula studies
indicated reduced intestinal lipid secretion

t
in CD36-null mice, the net effect of an olive
oil gavage on the postprandial rise in plasma
TAG concentration was examined. In WT
PL DAG TAG

mice, the level of plasma TAGs (determined by
measuring plasma glycerol) was only modestly
increased after an olive oil gavage (Figure 4A).
In contrast, CD36-null mice displayed signifi-
cantly higher plasma TAG levels, which per-
sisted for more than 4 hours. These findings
were surprising and inconsistent with a reduc-
tion of intestinal lipid secretion. To clarify this
issue, we tested whether a decrease in chylomi-
cron clearance might be masking the reduced
intestinal lipid output from CD36-null mice.
Thirty minutes prior to an intragastric olive oil
gavage, mice were administered saline or Triton
WR-1339 (triton) by i.p. injection. Three hours
after the gavage, the level of plasma TAGs was
dramatically increased in WT mice given tri-
ton (Figure 4B), which indicated that plasma
lipase activity and thus chylomicron clearance
were blocked. In contrast, plasma TAG levels
in CD36-null mice were similar whether or not
triton was administered and were comparable
to those of WT mice that received triton. Also,
changes in hepatic VLDL secretion during the
course of the experiment could not explain the
differences in plasma TAG levels. Plasma TAG
levels in triton-treated fasted mice were com-
parable in both genotypes (Figure 4C). These
data strongly suggested that CD36 deficiency
interferes with lipase activity in vivo.
Chylomicrons are secreted from the intestine as large particles,
which become smaller through the lipolytic actions of lipoprotein
lipase (LPL); thus, chylomicron size can provide a measure of lipase
activity in vivo. Chylomicrons were isolated from the plasma of
mice 3 hours after an olive oil gavage, and their size was measured
by negative-staining electron microscopy. Chylomicrons from WT
mice were primarily (97%) less than 101 nm in diameter (Figure 4D),
while the majority of chylomicrons from CD36-null mice (78%) were
201-700 nm in diameter, which further indicated a lipase defect.
We also examined the plasma levels of the major apolipoproteins
involved in chylomicron assembly and clearance. ApoB is the main
protein component of chylomicrons, and elevated plasma TAG
levels are typically associated with elevated plasma apoB levels. As
expected, apoB concentrations tended to be higher in the plasma of
olive oil-fed CD36-null mice compared with WT mice (118.2 + 34.8
vs. 68.0 + 5.7 mg/l; n = 5; P = 0.09), even though fasting apoB lev-
els were not increased in CD36-null mice (data not shown). ApoE
binds TAG-rich lipoproteins and is required for the clearance of
chylomicron remnants by the liver. To measure both the levels of
apoE and its association with postprandial lipids, we isolated the
VLDL/chylomicron fractions from the plasma by size-exclusion
chromatography. As shown in Figure 5, relative apoE levels in these
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fractions were higher in CD36-null mice independent of the dietary
status, and the highest apoE levels covaried with plasma TAG levels.
An oral fat load elevated the apoE level in these fractions in both
WT and CD36-null mice.

CD36-deficient mice have normal postheparin lipase activity. Posthepa-
rin LPL and hepatic lipase (HL) activity in plasma did not differ
between WT and CD36-null mice (Figure 6A). Cell-associated lipase
activity was also measured in heart tissue collected in the absence
of heparin, and no decrease in LPL activity was observed (data not
shown). LPL activity can be inhibited by plasma FAs (24). CD36-
null mice have elevated fasting plasma FA levels (6, 25), but it is
not known whether FA levels also rise postprandially and interfere
with LPL activity and lipoprotein clearance. As shown in Figure 6B,
plasma FA levels measured after olive oil gavage were significantly
higher in CD36-null mice and were tightly correlated with plasma
TAG levels (Figure 6C) (r=0.7452; P=0.0001; n = 19).

Apoc3 mRNA abundance is altered in CD36-null mice. LPL activity
can be modulated by apolipoproteins, particularly apoC-I, apoC-II,
and apoC-III. The abundance of the mRNAs — Apocl, Apoc2, and
Apoc3, respectively — encoding these proteins was measured in the
proximal intestine (Apoc2/Apoc3) and liver (Apocl/Apoc2/Apoc3).
No significant differences in the abundance of the ApocI or Apoc2
mRNAs were detected between WT and CD36-null mice following
olive oil gavage (Figure 7). On the other hand, the mRNA encod-
ing apoC-III, a potent LPL inhibitor, was significantly increased
in CD36-null mice in both intestine and liver. Apoc3 mRNA lev-
els in the intestine correlated with plasma TAG levels (r = 0.4141;
P=0.039, n =19), and a similar trend was detected in the liver
(r=0.3720; P=0.059; n = 19).

Discussion

The role of CD36 in FA uptake in muscle and adipose tissue has
been well documented both in vitro and in vivo. The current
study illustrates for the first time to our knowledge that CD36 is
important for optimal utilization of dietary FAs and triglycerides.
In CD36-null mice, secretion of lipid into the mesenteric lymph
is significantly reduced, but this effect is masked in vivo, as CD36
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Figure 4

Plasma TAG metabolism in vivo. (A) Postprandial plasma TAGs. WT
(filled squares) and CD36-null (open squares) mice (n = 4) received
an intragastric gavage of olive oil (16.5 ul/g). Plasma was collected
at the indicated time points and TAG levels measured. *P < 0.05;
**P < 0.001. (B) Effect of triton on postprandial plasma TAGs. WT
(black bars) and CD36-null (white bars) mice (n = 3) received i.p. injec-
tions of saline or triton 30 minutes before an intragastric gavage of
olive oil (16.5 ul/g) was administered. Plasma was collected 3 hours
after injection and TAG levels measured. #P < 0.0001. (C) Effect of tri-
ton on fasting plasma TAGs. WT (filled squares) and CD36-null (open
squares) mice (n = 4) received i.p. injections of triton. Plasma was
collected at the indicated time points and TAG levels measured. (D)
Chylomicron size after an oral fat load. Chylomicrons were isolated
from the plasma of WT (black bars) and CD36-null (white bars) mice 3
hours after an intragastric gavage of olive oil (16.5 ul/g). Particle size
was determined by negative-staining electron microscopy.

also appears to regulate the catabolism of TAG-rich chylomi-
crons from the plasma.

Enterocyte CD36 may target the FAs to the TAG secretion pool. The
reduced TAG output into intestinal lymph in CD36-null mice
appeared to reflect mis-targeting of the FAs. Fat feeding or oral
administration of FA analogs resulted in accumulation of neu-
tral lipid in CD36-deficient enterocytes. However, these cells
also exhibited reduced incorporation of exogenous FAs into
microsomal TAGs. Enteric neutral lipid has been proposed to
existin at least 2 pools: a cytosolic storage pool and a microsomal
secretion-coupled pool (reviewed in ref. 26). It is thought that
de novo synthesis in the ER lumen is the major source of chy-
lomicron TAGs. The data strongly suggest that CD36 deficien-
cy results in impaired FA targeting to the ER for chylomicron
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Figure 5

TAG-associated apoE from plasma. WT (filled squares) and CD36-null
(open circles) mice (n = 3) received an intragastric gavage of saline or
olive oil (16.5 ul/g). After 2 hours, plasma was collected and pooled and
the VLDL/chylomicron fraction isolated by size-exclusion chromatogra-
phy. Plasma TAG and apoE levels were measured in each fraction.
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assembly. The mechanism by which CD36 would target dietary
long-chain FAs to the secretion-coupled pool in the ER is com-
pletely unknown but may involve intracellular trafficking of the
protein, which has been shown to cycle between the cell surface
and intracellular membranes (27). A working hypothesis is that
following an oral fat load, CD36-rich membrane vesicles help
shuttle FAs to ER enzymes required for TAG synthesis (Figure 8).
For example Dgatl (28) has been postulated to localize on the
luminal side of the ER (29), and FA delivery to Dgatl and other
esterification enzymes could become limiting.

Defect in tissue FA clearance inhibits lipolysis of blood TAGs. Several
lines of evidence indicate that CD36 deficiency results in defec-
tive lipoprotein lipolysis by LPL. Under fasting conditions, the
level of VLDL-associated TAGs is elevated in mice that lack CD36,
while LDL-associated TAGs are practically absent (6). Olive oil
gavage greatly increased plasma TAG levels in CD36-null mice as
compared with WT mice. Triton, a potent inhibitor of LPL and
HL, caused a 6-fold increase in the level of plasma TAGs in WT
mice following olive oil gavage but had no significant effect in
CD36-null mice. In addition, WT and CD36-null mice had similar
plasma TAG levels following triton administration in the absence
of an olive oil gavage, which indicates that hepatic TAG secretion
was not a contributing factor. Also, in the absence of triton, chy-
lomicrons remained large in CD36-null mice, unlike particles in
WT mice. All the above data support the interpretation that CD36
deficiency impairs chylomicron catabolism. Analysis of plasma
apolipoprotein levels indicated that chylomicrons from WT and
CD36-null mice had appropriate levels of apoB and apoE. It is
thus unlikely that the decreased catabolism was due to the par-
ticles having abnormal structural components.

Plasma LPL and HL and cell-associated lipase activity were not
reduced in CD36-deficient mice, which implied that local factors
were modulating lipase activity in vivo. FAs can displace LPL from
the cell surface, thereby reducing its activity (24, 30, 31). Converse-
ly, promotion of tissue FA esterification and trapping with acyla-
tion-stimulating protein enhances adipocyte LPL activity (32).
CD36 is required for efficient tissue FA uptake (5), so inhibition
of LPL activity in CD36-deficient mice likely results from the lack
of peripheral FA removal. In line with this, a tight correlation was
observed between plasma TAG and FA levels in WT and CD36-null
mice following an oral fat load.

Additional factors may contribute to or account for the reduced
plasma TAG hydrolysis in vivo. Induction of Apoc3 gene expression
in the liver and intestine may increase plasma apoC-III levels and
thus inhibit LPL activity. In addition, CD36 is a receptor for many
1294
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lipoprotein classes in vitro (33) and may serve as a docking site for
lipoproteins on the cell surface (as suggested in ref. 12), which can
then be lipolyzed by cell-associated LPL.

The data presented herein suggest that CD36 regulates
intestinal lipid secretion and peripheral clearance of intestine-
derived lipoproteins (Figure 8), thus linking dietary fat intake
and utilization. A high-fat diet increases Cd36 mRNA abun-
dance in the intestine as well as in the heart and adipose tissue
(19, 34, 35). This coordinate regulation favors intestinal TAG
synthesis/chylomicron secretion and peripheral chylomicron
hydrolysis via increased FA clearance and elevated LPL activ-
ity. It may also promote FA oxidation by muscle (36) and TAG
storage by adipose tissue (35), processes that appear to be rate
limited by FA uptake and CD36 levels.

Postprandial lipemia in human CD36 deficiency. CD36-deficient
humans exhibit abnormalities of plasma lipid profiles including
higher postprandial TAG levels (12, 14, 16). Based on the data
presented here, human dyslipidemia during CD36 deficiency may
result from defects in the clearance of both FAs and TAGs in both
the fed and fasted conditions. Defective clearance of dietary TAGs
has not been documented in CD36-deficient humans but would
be implied by the observed increase of plasma apoB-48 levels (16).
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Figure 7

Intestinal and hepatic Apoc mRNA levels. Fasted WT (black bars) and
CD36-null (white bars) mice (n = 4-6) received olive oil (3.5 ul/g) by
gavage. Intestinal and hepatic tissues were harvested 2—3 hours after
gavage and used to prepare total RNA. Hepatic and intestinal Apoc1,
Apoc2, and Apoc3 mRNA abundance was measured by quantitative
RT-PCR and related to that of cyclophilin. For each gene, the abundance
in saline-treated WT mice was taken as 1 (dashed line). *P < 0.001.
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CD36 and dietary FA utilization. In the presence of CD36, FAs are tar-
geted to a secretion-coupled pool within the ER and efficiently packaged
into TAG chylomicrons. In the plasma, LPL acts to liberate the FAs from
chylomicron-associated TAGs. Clearance of released FAs by periph-
eral tissues via CD36 prevents feedback inhibition of LPL (33, 34).
Coordinated upregulation of CD36 expression by dietary FAs (37)
would enhance both FA absorption and peripheral utilization.

Since apoB-48 in humans is only produced in the intestine, a high
level of plasma apoB-48 is consistent with impaired chylomicron
clearance and TAG hydrolysis. Hypertriglyceridemia has been
linked to the etiology of type 2 diabetes and atherosclerosis (37),
and it is important to examine whether CD36 deficiency alters sus-
ceptibility to these pathologies, particularly when they result from
high-fat diets. In this context, Ma et al. (15) reported that a com-
mon haplotype at the CD36 locus was associated with an increased
risk of cardiovascular disease in type 2 diabetes.

Diabetic subjects exhibit extended postprandial lipemia, and as
our data suggest, a potential mechanism for this abnormality is
the high level of plasma FA that is common in diabetes (38). Our
findings further emphasize the importance of treatments aimed
at improving tissue FA clearance in patients with diabetes. Thus,
enhancing tissue FA uptake by upregulation of CD36 may mediate
a significant component of the beneficial effects of thiazolidin-
ediones on blood lipids and energy utilization (38-40).

Methods

Animals. CD36-null mice backcrossed to the C57BL6/J background (5)
and WT (C57BL6/J) mice (8-12 weeks of age) were maintained on stan-
dard rodent chow (unless otherwise indicated) under a normal light-dark
cycle. All experimental procedures were approved by the Institutional
Animal Care and Use Committee of the Division of Laboratory Animal
Resources at the State University of New York at Stony Brook. Primary
enterocytes were prepared from intestinal segments of starved mice as
described in ref. 41.

Intestinal lipid analysis. For in vivo studies, mixtures of FA analogs were pre-
pared as follows: 40 uCi of either BMIPP or IPPA (Oak Ridge National Labo-
ratory) was evaporated under N, in a glass vial and resuspended in 2 ml
warm olive oil by gentle sonication. Triton (500 mg/kg) was administered
to fasted (8-12 hours) mice by i.p. injection, and 30 minutes later, the FA
analog/olive oil mixture (6 ul/g) was administered by intragastric gavage.
Mice were sacrificed 2 or 72 hours after gavage as indicated in Figure 1, and
4 intestinal segments of equal length plus the colon were collected, saline-
washed, and associated radioactivity measured using y-ray spectroscopy.

For in vitro studies in primary enterocytes, [14C|palmitate:BSA com-
plexes were prepared in a solution of 160 uM sodium palmitate (Sigma-
Aldrich), 5 mM glucose, and 40 uM FA-free albumin (Fraction V; Sigma-
Aldrich) in Krebs-Ringer HEPES (KRH) buffer (pH 7.4). While stirring,
we added 0.5 uCi/ml of [1-!4C]palmitic acid (55 mCi/mmol; ICN Bio-

medicals Inc.) and unlabeled palmitic acid to produce a 1:1 solution.
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Primary enterocytes (25 ul) resuspended in KRH were added to a 25-ul
aliquot of [“C]palmitate:BSA complex for the indicated times. The uptake
reaction was stopped by the addition of ice-cold stop solution (200 ul;
300 uM phloretin [Sigma-Aldrich] in KRH) and immediately overlaid on
an ice-cold plug of Ficoll-Paque (Amersham Biosciences; diluted 6-fold in
PBS) in 6 x 44 mm microcentrifuge tubes. Cells were separated from free
[**C]palmitate by centrifugation at 12,000 g for 1 minute. The cell pellet
was cut from the bottom of the tube, incubated overnight in scintillation
fluid, and quantitated by scintillation spectroscopy. Background uptake
and/or nonspecific cell association of the ["*C]palmitate were routinely
subtracted from results and were determined by adding the enterocytes
to ice-cold mixtures of ["*C|palmitate:BSA and stop solution. The sam-
ples were then processed as described above. No difference in background
uptake was observed between enterocytes isolated from WT and CD36-null
mice (data not shown).

To measure FA partitioning, primary enterocytes were plated and pulsed
with a labeling mixture (DMEM containing 0.4 mM sodium taurocho-
late, 0.52 mM sodium taurodeoxycholate, 0.29 mM phosphatidylcholine,
0.45 mM oleic acid, 0.16 mM 1-oleoyl-rac-glycerol, 0.05 mM cholesterol)
containing 3.3 uCi/ml [9,10-H(N)]oleic acid for 1 hour at 37°C/5% CO,.
Cells were washed by centrifugation in cold PBS and microsomes were
prepared as described in ref. 42. Lipids were extracted using the method
of Folch et al. (43), resuspended in chloroform, and separated by TLC in
hexane/isopropyl ether/glacial acetic acid 60:40:4 (vol/vol/vol). After the
different lipid species were identified according to standards, bands cor-
responding to the lipids indicated in Figure 1 were scraped, incubated over-
night in Scintilene scintillation fluid (Fisher Scientific International Inc.),
and quantified by scintillation spectroscopy. The distribution of 3H in the
different lipid classes is expressed as a percentage of total cellular counts,
with levels in WT cells taken as 100%.

Levels of fecal TAG were determined from mice fed a high-fat, high-
carbohydrate diet (F3282; Bioserve) ad libitum. TAGs were extracted
as described above and quantitated using the Triglycerides Reagent
(Thermo Electron Corp.) and standard curves generated with Glycerol
Standard (Sigma-Aldrich).

Lipid secretion into mesenteric lymph. Live animals equipped with duo-
denal and intestinal lymph duct fistulae (23) were infused with a lipid
emulsion containing 13.3 mM [3H]triolein, 2.6 mM cholesterol, 2.9 mM
egg phosphatidylcholine, and 19.0 mM sodium taurocholate in PBS
(pH 6.4) at a rate of 0.3 ml/h. Lymph was collected hourly for 6 hours
and the recovery of 3H or TAGs (expressed as a percentage of the infusate)
determined by scintillation spectroscopy or using Triglycerides Reagent
as described above, respectively.

Plasma lipid and lipoprotein analysis. Whole blood was collected from the
tail vein into EDTA-treated tubes, and the plasma was isolated by low-
speed centrifugation. TAG levels were measured using the Triglycerides
Reagent as described above.

We quantified apoB in plasma using an automated immunoturbidi-
metric assay (44). For quantification of apoE, the plasma was first frac-
tionated using size exclusion chromatography as described in ref. 45. We
subjected the VLDL/chylomicron fractions to SDS-PAGE on 10% gels, and
after transferring them to nitrocellulose, used a-apoE and the ECL kit for
immunodetection (Amersham Biosciences).

Lipase activity. Lipase activity in postheparin plasma and in homogenized
hearts was analyzed as previously described (46, 47).

Histology. Intestines were obtained from mice fed a high-fat, high-carbo-
hydrate diet (F3282; Bioserve) ad libitum for 6 weeks. They were divided
into 3 segments of equal length, and the proximal segment was gently
flushed with PBS and fixed by 2 overnight incubations at 4°C, first in 4%
paraformaldehyde and then in 30% sucrose. Intestinal rings (0.5 cm) were
Volume 115 1295
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cut from the fixed segments and frozen in cryoembedding media (OCT)
for subsequent cryostat sectioning at 7-10 wm. Sections were applied to
gelatin-coated glass slides, stained with oil red O and hematoxylin, and
mounted with glycerol/water (50:50) media.

Electron microscopy. To measure lipoprotein size, we layered pooled
aliquots of sera (200 ul) under 600 ul 0.15 M NaCl and subjected them to
centrifugation at 117,320 g for 30 minutes in a tabletop ultracentrifuge.
We removed chylomicrons, subjected them to negative-staining electron
microscopy using aqueous uranyl acetate, and viewed them under a Zeiss
902 electron microscope.

To asses FA trafficking, we administered an emulsion of triolein to
WT and Cd36-null mice via a duodenal fistula as described above. Proxi-
mal intestinal sections were then prepared and visualized essentially as
described in ref. 48. Briefly, intestinal tissue was fixed for 2 hours in 2% glu-
taraldehyde and for an additional 2 hours in 0.1 M cacodylate buffer. The
tissue was then postfixed in 1% osmium tetroxide and stained en bloc in
uranyl acetate. Following dehydration, samples were infiltrated in acetone/
Spurr’s mixture and embedded in Spurt’s resin. Ultrathin sections were cut
on a Reichert Ultracut ultramicrotome, stained with Reynolds’ lead citrate,
and examined under a Hitachi H-600 electron microscope.

Apolipoprotein mRNA abundance. Fasted (8-12 hours) mice were adminis-
tered an intragastric gavage of saline or olive oil, and tissues were harvested
2.5 hours later. Total RNA isolation, reverse transcription, and real-time
quantitative PCR were performed as previously described (45). Gene-specific,
intron-spanning oligonucleotides and SYBR Green I (Sigma-Aldrich) were
used to detect amplicon production in a GeneAmp PCR System 9700 (Applied
Biosystems). Cyclophilin was used as internal control. For each gene, nRNA
abundance in saline-treated WT mice was taken as 1. The primer sequences
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were: cyclophilin, 5" TCCAAAGACAGCAGAAAACTTTCG, 5'-TCTTCTT-
GCTGGTCTTGCCATTCC; Apocl, 5'-TGTCCTGATTGTGGTCGTAGCC,
5'-CAAATAGCCTCTAGAGAACCAGGC; Apoc2, 5'- TCCTGGTCATCCT-
GATGTTGGG, §'- TGCCTAGCGTAAGTGCTCATGGC; Apoc3, 5'-CTACTC-
CAGGTACGTAGGTGCC, 5'"-TGGTCCTCAGGGTTAGAATCCC.

Statistical analysis. The data shown are mean + SEM. Differences between
treatment groups were evaluated using Student’s ¢ test or ANOVA
(Bartlett’s test for equal variances and the Bonferroni multiple comparison
test. Correlation coefficients (r) were determined using the Pearson prod-
uct-moment method. P < 0.05 was considered statistically significant.
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