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Abstract

Familial partial lipodystrophy 2 (FPLD2) is a rare disease characterized by adipose
tissue loss and redistribution, and metabolic dysfunction. FPLD2 is caused by pathogenic
variants in the LMNA gene, encoding nuclear lamins A/C, structural proteins that control nuclear
function and gene expression. However, the mechanisms driving adipocyte loss in FPLD2
remain poorly defined. In this study, we recruited eight families with developing or established
FPLD2 and performed clinical, histological, and transcriptomic analyses of subcutaneous
adipose tissue biopsies. Bulk and single-nuclei RNA-sequencing revealed suppression of lipid
metabolism and mitochondrial pathways, alongside increased inflammation. These signatures
were mirrored in tamoxifen-inducible adipocyte-specific Lmna knockout mice, in which lamin
A/C-deficient adipocytes shrank and disappeared. Lmna-deficient fibroblasts shared similar
gene expression changes, linked to altered chromatin accessibility, underscoring lamin A/C’s
potential regulatory role in lipid metabolism and inflammatory programs. By directly comparing
atrophic and hypertrophic adipose depots in FPLD2, and integrating human, mouse, and in vitro
models, this study provides new insights into disease progression and potential therapeutic

targets.



Abbreviations:

ASPC: adipose stem and progenitor cells

BAT: brown adipose tissue

ECM: extracellular matrix

eWAT: epididymal white adipose tissue

FPLD2: familial partial lipodystrophy 2

GSEA: gene set enrichment analysis

HFD: high-fat diet

LEC: lymphatic endothelial cells

Lmna”®k®: adipocyte-specific lamin A/C knockout
Lmna™" lamin A/C floxed mice

Lmna"PkO: tamoxifen-inducible adipocyte-specific lamin A/C knockout
MEF: mouse embryonic fibroblasts

pmWAT: parametrial white adipose tissue

prWAT: perirenal white adipose tissue

psWAT: posterior subcutaneous white adipose tissue
rpWAT: retroperitoneal white adipose tissue

sWAT: subcutaneous white adipose tissue

SVC: stromal vascular cells

SVF: stromal vascular fraction

WAT: white adipose tissue



Introduction

Adipose tissue is a key metabolic and endocrine organ, and alterations in its mass or
function have major health consequences. Whereas excess adipose tissue contributes to
obesity and its comorbidities, lipodystrophy syndromes involve adipose loss, redistribution, and
dysfunction. Despite their contrasting phenotypes, both conditions cause metabolic
complications such as fatty liver, insulin resistance, and cardiovascular disease due to loss of
safe lipid storage (1, 2). Initially estimated to affect ~1 in 1 million (3), lipodystrophy prevalence
is now thought to be up to ~1 in 20,000, with genetic prevalence near ~1 in 7000 (4). The most
common form, familial partial lipodystrophy type 2 (FPLDZ2, Dunnigan’s disease), features
selective subcutaneous fat loss from limbs and trunk with redistribution to the face, neck, and
sometimes visceral depots (1, 5-7). Treatments include lifestyle interventions, management of
hyperlipidemia and insulin resistance, including with GLP1 receptor agonists (8, 9), and
recombinant leptin, which improves multiple metabolic abnormalities (10). However,
mechanisms driving adipose loss in FPLD2 remain unclear, and defining them could identify
new therapeutic targets.

FPLD2 arises from pathogenic LMNA missense variants encoding lamin A/C (11), key
intermediate filament proteins forming the nuclear lamina. This structure supports the nucleus,
regulates nuclear transport and mechanical responses, and organizes chromatin via lamina-
associated domains (12—14). Mutations disrupting lamin A/C cause diverse laminopathies
including muscular dystrophies, cardiomyopathies, neuropathies, and premature aging
syndromes. In FPLD2, substitutions of arginine 482 (R482Q/W/L) disrupt a DNA-binding region,
likely leading to transcriptional dysregulation (15—18). Thus, dissecting FPLD2 mechanisms may
reveal broader principles of tissue-specific disease in laminopathies.

Fundamental studies of Lmna knockout (KO) mouse embryonic fibroblasts (MEFs) show
abnormal nuclear morphology, altered nuclear pore complex distribution, and reduced cellular

stiffness (19, 20). In mice, global Lmna deletion causes muscular dystrophy and premature



death, limiting studies of metabolic tissues like adipose (19, 21). Overexpression of FPLD2-
associated LMNA R482Q/W in 3T3-L1 preadipocytes inhibits adipocyte differentiation, as does
overexpression of wild-type lamin A/C (22), suggesting that disruption of lamin stoichiometry can
impair adipogenesis. Transgenic mice overexpressing human R482Q lamin A under the aP2
(FABP4) promoter either lacked overt lipodystrophy (23) or developed mild adipose loss after
prolonged high-fat diet (HFD) (24). These mice exhibited increased extracellular matrix (ECM)
and fibrosis in white adipose tissue (WAT), even without lipodystrophy, implicating Lmna
variants in adipose ECM remodeling (23). However, overexpression models and the aP2
promoter’s macrophage activity (25) complicate interpretation, underscoring the need for better
adipocyte-specific models. Beyond cell culture and mouse models, studies of human WAT in
FPLD2 are rare due to limited tissue availability. Analyses of abdominal and thigh adipose tissue
revealed downregulated lipid metabolism genes and heterochromatin defects, whilst
dorsocervical fat, often hypertrophic in FPLD2, showed heterogeneous adipocyte morphology,
fibrosis, and brown adipose-like features (23, 26, 27). These findings suggest complex adipose
remodeling in FPLD2, but underlying mechanisms remain incompletely defined.

Our group previously developed an adipocyte-specific Lmna KO mouse (Lmna*PX°)
recapitulating FPLD2 features including progressive WAT loss and metabolic dysfunction (28).
Lmna”®k® mice failed to exhibit the normal diurnal oscillation in respiratory exchange ratio and
thus were metabolically inflexible, whereas patients with FPLD2 exhibit increased energy
expenditure and fat oxidation only upon dietary fat challenge, but not at baseline (29). Lmna”Pk®
mice exhibited smaller adipocytes without macrophage infiltration, suggesting cell-autonomous
mechanisms of adipocyte loss. Although lacking a pathogenic LMNA variant, the model
confirmed the essential role of lamin A/C in adipocyte maintenance.

In this study, we recruited eight families with confirmed LMNA variants and obtained
abdominal and upper neck subcutaneous biopsies for histologic and molecular WAT profiling.

With 16 participants, this represents the largest FPLD2 biopsy cohort to profile adipose



transcriptomes at single-cell resolution. We also developed a tamoxifen-inducible adipocyte-
specific Lmna KO model (LmnaAPk®) to trace adipocyte loss dynamics in adult mice. Integration
of human and mouse data revealed conserved suppression of lipid metabolism and activation of
inflammatory pathways contributing to adipocyte degeneration. Combining these findings with
chromatin accessibility analyses from Lmna KO MEFs demonstrated that lamin A/C deficiency
alters accessibility of lipid and immune regulatory genes. Taken together, these results define
shared molecular signatures upon loss or dysfunction of lamin A/C and highlight pathways of

therapeutic relevance for treatment in FPLD2.



Results
Participants with FPLD2 display loss of adipose tissue and metabolic dysfunction

To investigate how pathogenic LMNA variants drive FPLD2 progression, we recruited
eight families into the Longitudinal Evaluation of Adiposity Distribution and Adipocyte Biology in
Children with Lipodystrophy (LEAD-ABC) study. Participants were stratified into three groups:
Group C, unaffected family members or recruited controls; Group A, individuals with a
pathogenic variant but without extensive symptoms; and Group B, patients with overt FPLD2
(Figure 1A). Whole genome sequencing identified five disease-causing LMNA variants across
the eight pedigrees (Figure 1B). Participants with developing FPLD2 (Group A) retained visible
subcutaneous white adipose tissue (WAT) on limbs and trunk without visceral WAT
accumulation (Figure 1C). In contrast, participants with developed FPLD2 (Group B) exhibited
classical fat redistribution: loss of subcutaneous WAT, increased visceral adiposity, and
prominent fat accumulation in the upper neck and face (Figure 1D). These regional changes
were visualized using fat shadow imaging (Figure 1E, Supplemental Figure 1A). Quantitatively,
both developing and developed FPLD2 groups had reduced total body fat percentage compared
to controls (Figure 1F). Individuals with FPLD2 specifically had reduced leg fat (Figure 1G), and
those with developing FPLD2 already had decreased trunk fat (Figure 1H). MRI revealed no
significant hepatic fat accumulation in participants with FPLD2 (Figure 11 and J).

We next evaluated metabolic parameters across groups. Participants with developed
FPLD2 (Group B) exhibited increased glycated hemoglobin (Figure 1K), circulating triglycerides
(Figure 1L), non-esterified fatty acids (NEFA) (Figure 1M), and glucose area under the curve
(AUC) post-OGTT (Supplemental Figure 1B), indicating impaired metabolic control. However,
Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (Figure 1N), insulin AUC
(Supplemental Figure 1C), NEFA AUC (Supplemental Figure 1D), fasted insulin (Supplemental
Figure 1E), and the adipose tissue insulin resistance index Adipo-IR (Supplemental Figure 1F)

did not differ significantly between groups. Circulating leptin (Figure 10) and adiponectin (Figure



1P) were reduced in FPLD2, consistent with WAT loss. FGF21 (Figure 1Q) and GDF15
(Supplemental Figure 1G) were elevated in FPLD2, consistent with stress or metabolic
dysfunction (30). Clinical characteristics are summarized in Table 1. Collectively, these data
highlight patterns of adipose loss during FPLD2 progression and confirm that participants with

developed, but not developing, FPLD2 exhibit metabolic dysfunction (1,31).

WAT biopsies from participants with FPLD2 have decreased fatty acid metabolism and
increased inflammation gene expression

To study mechanisms of adipose loss, we collected subcutaneous WAT biopsies from
the abdomen (atrophic) and dorsocervical upper neck (expanding) regions (1). Comparing these
depots allows within-subject analysis of adipose redistribution in FPLD2. Histological analyses
and Picrosirius Red staining showed visibly increased fibrosis in abdominal WAT with disease
(Figure 2A), though variable sampling limited quantification. Adipocyte size was unchanged in
abdominal samples across disease states (Figure 2B and C). Similar results were observed in
the upper neck (Figure 2D-F). Skin biopsies were similar across groups (Supplemental Figure
1H). These data indicate that lipid-laden adipocytes remain morphologically comparable across
disease states.

We next examined molecular changes driving FPLD2. Combined abdomen and upper
neck biopsies within each group were analyzed by bulk RNA-seq (Figure 2G). Due to limited
sample size, developing and developed FPLD2 groups were combined to analyze broad
transcriptomic effects of LMNA variants. Gene Set Enrichment Analysis (GSEA) revealed
upregulated inflammation, intermediate filament, and muscle-related pathways (Figure 2G and
H), and downregulated mitochondrial, translational, and fatty acid metabolism pathways (Figure
21-K). Fibrosis- and extracellular matrix (ECM)-related genes were altered, including

downregulated TMND and upregulated PDGFA, MMP7, MMP16, and multiple collagen genes
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(Supplemental Figure 11). Thus, WAT from participants with LMNA variants shows decreased

metabolism and increased inflammation, suggesting these contribute to disease progression.

Single nuclei RNA-sequencing identifies depot differences between upper neck and
abdominal adipose biopsies

To define depot differences and identify cell types contributing to transcriptomic shifts
(Figure 2), we performed snRNA-seq (10x Genomics) on patient WAT biopsies (n = 4-5),
identifying seven major cell populations: adipocytes, adipose stem and progenitor cells
(ASPCs), macrophages, endothelial cells, T cells, pericytes, and lymphatic endothelial cells
(LEC) (Figure 3A and B) (32, 33). Other smaller cell populations such as mast cells, natural
killer cells, and dendritic cells were detected but grouped into broader categories for
downstream analysis.

In control tissues, the upper neck depot contained more adipocytes and fewer LECs,
macrophages, and ASPCs than abdominal WAT (Figure 3C). We next sought to characterize
the molecular differences in cell states between depots. Adipocytes formed two subclusters:
Cluster 1 (adipogenic) and Cluster 2 (proinflammatory) (Figure 3D), with no difference in
subcluster proportions between depots (Figure 3E). ASPCs divided into four subclusters; the
upper neck depot had more adipogenic ASPCs and fewer proinflammatory or mTOR-high
ASPCs, suggesting higher adipogenic potential in the upper neck depot (Figure 3F and G).

Among immune cells, lipid-associated macrophages (Cluster 3) were decreased in the
upper neck versus abdomen (Figure 3H and I), and low-inflammatory T cells (Cluster 2) were
also reduced (Figure 3J and K). High-inflammation endothelial cells (Cluster 3) were increased
in the upper neck (Supplemental Figure 2A and B), whereas high-myogenesis pericytes and

high-translation LECs were decreased (Supplemental Figure 2C-F). Thus, in healthy individuals,
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upper neck WAT harbors more proadipogenic ASPCs and fewer proinflammatory macrophages

without altering adipocyte identity.

snRNA-seq analyses reveal widespread shifts in cellular identity during FPLD2
progression

We next examined how cell type composition changes across disease states. We
generated UMAP plots combining both depots across our three patient groups (Figure 4A), as
well as stratified UMAPs by genotype (Supplemental Figure 3A) and sex (Supplemental Figure
3B). UMAPs combining both depots (Figure 4A) showed reduced adipocyte proportions in
abdominal WAT of developing and developed FPLD2 (Figure 4B and C), consistent with WAT
atrophy. LECs increased during developing FPLD2 but declined with progression (Figure 4B
and C). Macrophages and pericytes increased in FPLD2 abdominal WAT (Figure 4C). In the
upper neck, adipocytes decreased in developing FPLD2 but stabilized thereafter (Figure 4D and
E). LECs followed a similar transient pattern (Figure 4D and E). Depot differences seen in
controls (Figure 3C) persisted across genotypes (Figure 4F and G), suggesting intrinsic regional
identity.

After characterizing changes in cell-type proportions, we next studied how cell identities
change with FPLD2. GSEA of adipocytes showed reduced lipid metabolism and increased ECM
and inflammation (Figure 4H), with leading edge genes listed in Supplemental Table 1. These
data align closely with results from bulk RNA-seq of WAT from participants with FPLD2, which
also showed suppression of fatty acid metabolism and increased inflammation (Figure-2G-K).
Adipocyte subcluster composition was unchanged (Figure 41). ASPCs displayed decreased
oxidative phosphorylation and ribosomal genes but increased lipid metabolism (Figure 4J).
Proadipogenic ASPCs (Cluster 2) were expanded, while proinflammatory ASPCs (Cluster 3)
were reduced (Figure 4K). Macrophages overall were less inflammatory (Figure 4L), though

lipid-associated macrophages (Cluster 3) increased (Figure 4M). Endothelial, T cell, pericyte,
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and LEC populations showed altered metabolic, translational, and inflammatory gene
expression (Supplemental Figure 3C-J). Collectively, adipocytes exhibit impaired fatty acid
metabolism, ASPCs adopt a more adipogenic state, and macrophages show lipid-scavenging

features during FPLD2 progression.

Cell proportions change with FPLD2 progression in a depot-specific manner

We next assessed how these cell proportion changes differed by depot. In FPLD2,
proinflammatory adipocytes were enriched in the upper neck relative to the abdomen
(Supplemental Figure 4A). Proadipogenic ASPCs increased in developing FPLD2
(Supplemental Figure 4B), possibly explaining dorsocervical WAT expansion. Lipid-associated
macrophages were reduced in the upper neck (Supplemental Figure 4C), proinflammatory
endothelial cells were increased in the upper neck (Supplemental Figure 4D), and
proinflammatory T cells rose in developing FPLD2 (Supplemental Figure 4E). Pericytes were
unchanged (Supplemental Figure 4F), and proadipogenic LECs were increased in early disease
(Supplemental Figure 4G). Thus, depot-specific cellular shifts, particularly increased
proinflammatory adipocytes and endothelial cells in the upper neck, may underlie the

contrasting fat redistribution and metabolic features of FPLD2.

Inducible lamin A/C knockout in adipocytes causes lipodystrophy but not metabolic
dysfunction

Bulk and snRNA-seq data from participants with FPLD2 revealed downregulation of
metabolic pathways and upregulation of inflammatory signaling (Figures 2 and 4). To further
investigate roles of lamin A/C in adipocyte maintenance, we generated tamoxifen-inducible
adipocyte-specific Lmna knockout mice (Lmna*”PX°), extending our prior constitutive Adipog-Cre
model (28). Tamoxifen was administered intraperitoneally for five days to Lmna™and LmnaAPx°

mice (Figure 5A). Two weeks post-tamoxifen, LmnaP® mice exhibited reduced fat mass
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(Figure 5B) without changes in body weight or lean mass (Supplemental Figure 5A and B).
Posterior subcutaneous (psWAT) and epididymal WAT (eWAT) weights decreased at two to
four weeks post-tamoxifen, partially recovering by 16 weeks (Figure 5C and D). Retroperitoneal
WAT decreased at two weeks post-tamoxifen; BAT, perirenal WAT, and liver were unchanged
(Supplemental Figure 5C). No sex differences were observed (Supplemental Figure 5D), and
both sexes were used throughout these mouse studies. Histology revealed no overt WAT or
liver changes (Figure 5E, Supplemental Figure 5F), though slight BAT whitening and partial
bone marrow adipose loss appeared by eight weeks post-tamoxifen. UCP1 expression was
unchanged in Lmna”PX°® mouse BAT two weeks post-tamoxifen and undetectable in psWAT
(Supplemental Figure 5F and G). Circulating adiponectin decreased at four weeks post-
tamoxifen (Figure 5F, Supplemental Figure 5H), but insulin sensitivity and glucose tolerance
remained normal at six- and 12-weeks post-tamoxifen (Figure 5G and H, Supplemental Figure
51 and J). Lmna'”P® mice thus model early adipocyte loss without confounding metabolic

dysfunction, ideal for mechanistic studies.

Lamin A/C-deficient adipocytes shrink, become misshapen, and disappear from WAT

Using the mTmG reporter system (34), we tracked Lmna knockout adipocytes via GFP
expression (Figure 51). Two weeks post-tamoxifen, GFP+ adipocytes in psWAT were
widespread and morphologically normal despite reduced fat mass, suggesting fewer adipocytes
(Figure 5J-L). By six weeks post-tamoxifen, Lmna KO GFP+ adipocytes showed shrinkage,
irregular shape, and membrane budding, while tdTomato+ cells increased, suggesting
compensatory adipogenesis (Figure 5J and L). By 16 weeks post-tamoxifen, GFP+ adipocytes
were nearly absent in psWAT from Lmna'”P“° mice. This same pattern was observed in e WAT
(Figure 5M-0). Small GFP+ cells in WAT at six weeks post-tamoxifen disappeared by 16 weeks,

suggesting that KO adipocytes do not persist in LmnaAPk® WAT (Supplemental Figure 6A and
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B). Flow cytometry confirmed GFP+ SVCs were not elevated at six weeks post-tamoxifen in
LmnaAPk® WAT, indicating no evidence of dedifferentiation of KO adipocytes (Supplemental
Figure 6D and E). These data indicate Lmna knockout adipocytes progressively atrophy and are

cleared from tissue, supporting lamin A/C’s essential role in adipocyte maintenance.

LmnaA°%© WAT mirrors FPLD2 WAT: increased inflammation, decreased fatty acid
metabolism

We performed bulk RNA-seq and proteomics on pmWAT two weeks post-tamoxifen,
prior to morphological changes, and integrated GSEA analyses between both datasets (Figure
6A). GSEA revealed upregulated immune processes (myeloid activation, antigen binding) and
downregulated oxidative phosphorylation and fatty acid biosynthesis (Figure 6B). Proteomics
specifically showed elevated cell death and suppressed muscle-associated pathways (Figure
6C). Lipogenic genes and mitochondrial genes were repressed (Figure 6D and E), while
proinflammatory and cell death genes increased (Figure 6F and G). Comparison with
constitutive Lmna"k® WAT showed concordant suppression of metabolism and increased
inflammation (Supplemental Figure 7A-D). Integration with human FPLD2 RNA-seq confirmed
overlapping gene expression patterns: increased inflammation and decreased
mitochondrial/lipid metabolism pathways (Figure 6H-J), highlighting lamin A/C’s role in

adipocyte homeostasis.

Lipogenic and mitochondrial protein expression is lower in Lmna'A°k® WAT,
accompanied by decreased respiration and altered mitochondrial structure

In Lmna”PX® psWAT, which showed no change in mass two weeks post-tamoxifen
(Figure 5C), PPARy and C/EBPa were unchanged in protein expression, whereas ChREBP and
key lipogenic enzymes (ACC, FASN, SCD1) were reduced (Figure 7A, Supplemental Figure

8A). eWAT showed similar reductions, with slightly increased PPARYy, possibly compensatory
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(Figure 7B, Supplemental Figure 8B). Given the well-established link between lipid metabolism
and mitochondrial function (35, 36), we examined mitochondrial protein expression and saw that
OXPHOS proteins were reduced in Lmna“°°® eWAT (Figure 7C, Supplemental Figure 8C), with
decreased baseline, maximal, ATP-linked respiration, spare respiratory capacity, and proton
leak in pmWAT adipocytes (Figure 7D and E, Supplemental Figure 8D—F). In contrast, Lmna
KO adipocytes isolated from psWAT at the same time point did not exhibit changes in
mitochondrial respiration (Supplemental Figure 8G-K), suggesting that reductions in lipid
metabolism proteins (Figure 7A) may precede overt mitochondrial dysfunction following Lmna
deletion in adipocytes. Mitochondrial DNA content remained unchanged in psWAT and pmWAT
(Supplemental Figure 8L and M). Mitochondrial biogenesis and fission-fusion regulators
(PGC1a, MFN2, OPA1, VDAC1) were decreased in expression in Lmna”°® adipocytes;
TOMM20 was unchanged (Figure 7F, Supplemental Figure 8N and O). Imaging revealed
irregular mitochondrial clustering and polarization in Lmna KO adipocytes compared to controls
(37), a potential sign of cell damage, as previously observed in MFN2 KO cells (38) (Figure 7G).
TEM of Lmna”P*® WAT two weeks post-tamoxifen showed small lipid droplets with surrounding
mitochondria, suggesting either active lipid synthesis, droplet fission, or budding (Figure 7H).
Cristae were disorganized and adipocyte had potentially altered heterochromatin distribution,
though overall mitochondrial area and droplet contacts were unchanged (Figure 7H-N).
Deletion of Lmna in adipocytes thus impairs mitochondrial function and structure, contributing to

adipocyte loss.

Adipocyte loss is not driven by increased lipolysis

Following our TEM observations of increased small lipid droplets in Lmna*PX®
adipocytes, we investigated whether enhanced lipolysis might cause adipocyte loss in vivo.
Circulating glycerol decreased at four weeks post-tamoxifen and later, under fed and fasted

conditions in Lmna“P*° mice (Supplemental Figure 9A). Isoproterenol-stimulated lipolysis was
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unchanged when normalized to fat mass at four weeks post-tamoxifen in Lmna“"%° mice
(Supplemental Figure 9B and C). Bulk RNA-seq showed downregulation of lipolytic genes at
two weeks post-tamoxifen (Supplemental Figure 9D), but lipolytic proteins were not suppressed
(Supplemental Figure 9E and F), indicating adipocyte loss occurs via lipolysis-independent

mechanisms.

Lmna-deficient adipocytes show cell-autonomous proinflammatory gene expression
snRNA-seq in human FPLD2 suggested immune signatures arise partly from
macrophages and T cells. Spectral flow cytometry of Lmna”°k® psWAT and pmWAT two weeks
post-tamoxifen showed no differences in total SVCs, CD45+ cells, adipose tissue macrophages
(ATMs, CD64+), and no change in identity of macrophages (CD11c+, TIM4+, CD163+) or T
cells (CD4+, CD8+) (Supplemental Figure 10A-N). Whole WAT from Lmna“"%° mice had few
inflammatory transcript changes (Supplemental Figure 100 and P), but isolated Lmna KO
adipocytes two weeks post-tamoxifen showed elevated /16, 1/10, Nirp3, Il1b, and Tnfa, whereas
SVF had minor changes (Supplemental Figure 10Q-T), suggesting cell-autonomous
inflammatory signaling upon loss of lamin A/C. Cleaved caspase-3 was undetectable at two,
four, and six weeks post-tamoxifen in Lmna”P*® WAT, and cGAS-STING markers were
unchanged (Supplemental Figure 10U-W), indicating a non-classical, asynchronous cell death

mechanism.

Fundamental role of lamin A/C in regulating lipid metabolism and inflammatory gene
expression across cell types

We observed consistent gene expression changes in Lmna-deficient mouse adipocytes
and human FPLD2 WAT: suppressed lipid metabolism and increased inflammation. To assess

whether these changes are conserved across cell types, we analyzed publicly available
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microarray and ATAC-seq data from Lmna KO mouse embryonic fibroblasts (MEFs), which also
show impaired mitochondrial respiration and irregular mitochondrial localization (Figure 8A) (39,
40). Integration of Lmna”°Pk® WAT RNA-seq with Lmna KO MEF datasets revealed coordinated
dysregulation of lipid metabolism and inflammation at transcript and chromatin levels (Figure
8A-E). Overlapping genes included Acsl4, Acsl6, Rbp1, and Scl27a3 (lipid homeostasis) and
I11rl1, 1133, Cd44 (infammation), suggesting lamin A/C directly regulates these programs across
cell types.

ATAC-seq peak distribution across chromatin features was unchanged between control
and KO MEFs (Figure 8F), consistent with lamin A/C binding ~30-40% of the genome (41, 42).
Motif enrichment analysis near differentially expressed genes revealed KLF family motifs
enriched in downregulated genes, and HNF1A/B, HOX, FOS/JUN motifs near upregulated
genes (Figure 8G). KIf4 and KIf13 loci showed altered enhancer accessibility and reduced
expression (Figure 8H and ). KLF4 regulates adipocyte differentiation (44), and KLF13 has
been implicated in suppressing inflammation (45), suggesting loss of lamin A/C impairs
adipocyte function and enhances inflammatory signaling. Together, these data indicate that
lamin A/C loss disrupts enhancer accessibility and transcriptional regulation of lipid- and
inflammation-related genes across diverse cell types, highlighting a conserved role in

maintaining metabolic and immune gene programs, beyond adipocytes or FPLD2.
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Discussion

In this study, we investigated mechanisms underlying lipodystrophy using human,
mouse, and cell culture models to better understand FPLD2 progression and pathogenesis. We
first analyzed participants with developing and developed FPLD2 and found, as expected,
reduced body fat compared to healthy controls (7). Even before overt adipose loss and
metabolic dysfunction, participants with developing FPLD2 displayed reduced total body fat.
Only patients with developed FPLD2 had elevated HbA1c, hyperlipidemia, and FGF21,
indicating that systemic metabolic dysfunction emerges later with severe adipose loss. The
severity of metabolic syndrome in our FPLD2 groups may be underestimated, as many
participants used metformin or lipid-lowering agents; however, some controls also showed
metabolic abnormalities, making them appropriate comparators for depot-specific analyses.

Histological analyses of WAT from participants with FPLD2 revealed no significant
change in adipocyte size between depots or groups, though fibrotic deposition appeared
increased but heterogeneous. To address this variability and enable earlier detection, plasma
biomarkers such as endotrophin, PIINP, or TIMP-1/2 should be explored (46-48). Although
plasma inflammatory markers were unchanged (Table 1), identifying circulating disease markers
could aid early diagnosis.

Mouse studies supported our human data: at two weeks post-tamoxifen, analogous to
developing FPLD2, adipocyte size was unchanged in Lmna”Pk® WAT (Figure 5K and N). Weeks
later, adipocytes became shrunken and misshapen, followed by compensatory adipogenesis
(Figure 5L and O). While Lmna”Pk® WAT showed partial adipose mass recovery (Figure 5C and
D), regeneration was incomplete, suggesting limited precursor capacity. Mice may regenerate
adipocytes more effectively than humans, potentially explaining why mouse models
incompletely recapitulate FPLD2. We propose that LMNA-variant precursors form adipocytes
early in life, but as mature adipocytes turn over (~10-year lifespan), new adipocytes fail to

efficiently replace them (49), consistent with FPLD2 onset around puberty.
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Cross-species transcriptomic comparisons of human WAT and Lmna”%® pmWAT
revealed consistent suppression of lipid metabolism and adipogenesis genes, particularly those
in lipogenesis, TAG synthesis, and glyceroneogenesis. SCD1 was nearly absent in Lmna”PX®
WAT (Figure 7A, B), and snRNA-seq showed reduced SCD1 in developing and FPLD2
adipocytes (log2FC = -0.855 and -0.497, respectively). Lipid metabolic gene suppression
extended to macrophages, pericytes, and endothelial cells in human FPLD2. Key lipogenic
regulator ChREBP was decreased in Lmna”P*® WAT two weeks post-tamoxifen (Figure 7A and
B). Prior work showed that adipocyte-specific ChREBP KO leads to reduced pmWAT but not
sWAT in 16-week-old mice (50), potentially explaining the susceptibility of gWAT to be lost
before psWAT in Lmna“Pk® mice (Figure 5C and D; Supplemental Figure 5D). Although
SREBP1 protein levels were unchanged in total LmnaAP%® WAT, it was reduced in isolated
adipocytes (Figure 7F), with downstream target repression (Figure 6D, 7A and B), suggesting
impaired transcriptional activity. SREBP1 has an increasingly appreciated contribution to
lipogenesis in WAT (51) and has been shown to interact with lamin A, with FPLD2-causing
LMNA variants disrupting the interaction between lamin A and SREBP1 (52). Mice with
constitutively active SREBP1 in adipose tissue exhibited lipodystrophy and metabolic
dysfunction, driven by reduced adipogenic gene programs, further implicating SREBP1 with
impaired WAT function (53). Moreover, Scd1 KO induces autophagic adipocyte death,
underscoring the importance of intact lipogenesis (54). The mechanism by which lamin A/C
regulates lipid metabolism and adipocyte survival remains to be defined.

Across datasets, mitochondrial gene expression and function were impaired. LMNA
variant WAT showed reduced oxidative phosphorylation across cell types, consistent with prior
findings in Lmna KO MEFs, hearts from Lmna KO mice, and LMNA R482W iPSCs (39, 55, 56).
While the sequence of lipid and mitochondrial defects is uncertain, lipogenic enzyme
downregulation preceded OXPHOS disruption in Lmna“Pk® adipocytes (Figure 7A,

Supplemental Figure 8G—K). Inflammatory pathways were also consistently upregulated across
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datasets. Yet, flow cytometry on Lmna”P*® WAT and snRNA-seq of human WAT revealed no
increase in activated macrophages or proinflammatory T cells. Instead, RT-qPCR showed
upregulation of immune genes within Lmna KO adipocytes, suggesting adipocyte-intrinsic
inflammation, corroborated by IL6/JAK/STAT3 and IL2/STATS5 activation in patient adipocytes
(Figure 4H, Supplemental Figure 10Q and S). Inflammation may arise directly from lamin A/C
loss or secondarily from lipogenic or mitochondrial defects. Indeed, ChREBP KO adipocytes
recruit ATMs (50), increased inflammation in human WAT biopsies is associated with decreased
lipogenic markers (57), and mitochondrial Crif1 haploinsufficiency induces cytokine release and
macrophage infiltration (58).

snRNA-seq provided insight into cellular contributions to disease progression. LECs
increased in developing but declined in established FPLD2 (Figure 4B-E), suggesting lymphatic
remodeling in response to adipocyte loss. Lymphatics regulate lipid and immune transport in
WAT (59-61), and neurotensin-mediated LEC—adipocyte signaling represses BAT
thermogenesis (62). Elevated VEGF-D, which expands lymphatics, improves metabolic health
(63). Thus, changing LEC abundance may represent a compensatory but ultimately insufficient
response. ASPCs increased in both developing and developed FPLD2, suggesting attempted
regeneration hindered by LMNA variant-driven adipogenic defects (22, 26, 64, 65). Lipid-
associated macrophages also increased (Figure 4M), possibly to clear lipids from dying
adipocytes, consistent with prior lipodystrophy models (66).

Our study offers a direct comparison of atrophic (abdominal) and hypertrophic (upper
neck) depots in FPLD2. Adipocytes were transcriptionally similar, but stromal cells differed:
upper neck ASPCs were more proadipogenic, abdominal macrophages more proinflammatory,
pericytes more adipogenic in the abdomen, and endothelial cells more inflammatory in the
upper neck. These shifts may underlie depot-selective remodeling. Although prior studies

reported increased fibrosis and smaller adipocytes in neck WAT (67), we saw neither. However,
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snRNA-seq revealed distinct proinflammatory and adipogenic cell-type shifts with disease
progression (Supplemental Figure 4A-D), elucidating depot-specific WAT remodeling.

Finally, we investigated the chromatin basis of transcriptional dysregulation. Lamin A/C
loss alters chromatin accessibility both within and outside LADs (39, 68). We found shared gene
expression changes between Lmna”PX® WAT and Lmna KO MEFs (Figure 8), notably
suppression of lipid metabolism and activation of inflammatory pathways, potentially driven by
altered enhancer accessibility. Limited overlap likely reflects cell-type differences and lamin
A/C’s context-dependent genomic interactions (69). Some changes may stem from stress-
induced chromatin remodeling (70). Though our focus was WAT and MEFs, effects in other
metabolic tissues warrant study. Collectively, our findings support a model in which lamin A/C
disruption broadly impairs chromatin organization, driving lipid, mitochondrial, and inflammatory
dysregulation across cell types, thereby maintaining metabolic homeostasis under normal
conditions.

Despite these insights, our study has several limitations. Our human cohort spans a
wide age range and includes both sexes, which may introduce variability and confound
interpretation. We did not obtain biopsies from leg depots, which also undergo early atrophy in
LMNA-related lipodystrophy. Because of adipocyte fragility, we used snRNA-seq instead of
scRNA-seq, limiting detection of cytoplasmic transcripts. In mice, our adipocyte-specific Lmna
KO model does not genetically mirror human FPLD2; future studies should employ knock-in
models to assess pathogenic LMNA variants in WAT. Although both sexes were used, the
mechanistic role of sex in lipodystrophy remains undefined. Another caveat is that tamoxifen at
100 mg/kg for five days can itself induce lipoatrophy (71). To minimize off-target effects, we
used 50 mg/kg for five days, with control Lmna™" mice receiving identical treatment. In summary,
lamin A/C is essential for adipocyte homeostasis, survival, lipid metabolism, and mitochondrial

function; its disruption drives inflammation, adipocyte shrinkage, and eventual cell loss. These



findings reveal key pathways linking lamin A/C dysfunction to lipodystrophy and provide a

framework for future therapies.
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Materials & Methods

Additional Methods and Materials are available in the Supplementary Materials.

Sex as a biological variable

For human studies, we were limited by the rarity of FPLD2, and were unable to control for sex
during patient recruitment — future studies should include larger numbers of patients to allow for
these comparisons. Females tend to have a more severe FPLD2 phenotype, so most of the
participants in our studies were women. For mouse studies, we analyzed both sexes during
initial phenotyping and found that both male and female Lmna“"%° mice had a similar pattern of
fat mass loss at two weeks post-tamoxifen, with comparable necropsy data at this timepoint.
Therefore, we used both sexes of mice throughout this study, designated in the figure legend or

by the use of eWAT for males, and pmWAT for female mice.

Human participants

Participants carrying pathogenic LMNA variants (R482Q, n = 6; R482W, n = 4; R582L, n
= 2; R584H, n = 2; R582C, n = 1) and their unaffected relatives were enrolled in this
prospective, longitudinal observational study. Participants were classified into three
groups: Group A, young individuals (ages 15—-23) with LMNA variants who were developing
signs of lipodystrophy but retained residual adipose depots; Group B, affected adult relatives
(ages 39-63) with overt partial lipodystrophy characterized by fat loss from extremities, gluteal
regions, and abdominal wall; and Group C, unaffected relatives (ages 23-58) serving as
negative controls.

Physical examinations included anthropometric measurements (height, weight, waist
and hip circumference), blood pressure, pulse rate, and full physical exam. Fasting blood

samples (=10 h) were collected to measure plasma glucose, insulin, HbA1c, C-peptide, leptin,
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adiponectin, triglycerides, HDL/LDL cholesterol, liver enzymes (ALT, AST, GGT), kidney
function (BUN, creatinine), CRP, FGF-21, and GDF-15.

A five-hour oral glucose tolerance test (OGTT) with 75 g glucose was performed with
blood sampling every 30 min to assess glucose, insulin, NEFA, and C-peptide. Indices of insulin
resistance, including HOMA-IR and ADIPO-IR, were calculated from fasting values. Body
composition was assessed using two complementary methods: MRI-based fat quantification (3
Tesla, Philips Healthcare) analyzed with a custom MATLAB program, and whole-body dual-
energy X-ray absorptiometry (DEXA; GE Lunar Prodigy, model PA +41744). Hepatic fat was
quantified on a 3T clinical MRI system using a torso phased-array surface coil and breath-hold,
single-shot, turbo-spin-echo localization sequences. Fat content was determined by two
imaging- and one spectroscopy-based technique as previously published (72).

Incisional adipose tissue biopsies were obtained from affected (atrophic) and unaffected
(preserved or hypertrophic) subcutaneous regions by a plastic surgeon. After sterile preparation
and local anesthesia with 1% Xylocaine, a skin incision was made, and adipose tissue excised
for subsequent analyses. Incisions were sutured, and participants observed in clinic for one
hour.

Bulk RNA-sequencing from human and mouse WAT

For human tissue, RNA was isolated from 150—200 mg adipose using the RNeasy Lipid
Tissue Mini Kit (Qiagen, 74804). For mouse tissue, total RNA was extracted from WAT using
RNA STAT-60 (amsbio, CS-110). Following DNase treatment, RNA underwent quality control,
library preparation, and strand-specific mMRNA sequencing (Beijing Genomics Institute, China).
Over 20 million paired-end 100 bp reads were generated on the DNBSEQ platform.

Read quality was assessed with FastQC (v0.12.1), and alignment performed
using STAR (v2.7.11a) with the UCSC mm39 reference genome. Post-alignment quality control

via FastQC ensured only high-quality data were used for differential expression
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analysis via DESeqg2. Data visualization employed native DESeqg2 functions, ggplot2, plotly, and
related R packages.

Pathway analysis was conducted on ranked log2 fold-change lists using Gene Set
Enrichment Analysis (GSEA v4.3.3) and the Broad Institute MSigDB (v2024.1.Mm, M5 ontology
sets). Enriched pathways were defined by FDR < 0.05, with the normalized enrichment score
(NES) used to evaluate differential pathway magnitude (73). Plots were generated using

ggplot2. All sequencing data are available through NCBI GEO (accession number XXXXXXXX).

Single nuclei RNA-sequencing from human adipose tissue

Nuclei were isolated from 150—250 mg of tissue, minced in 1 mL nuclear extraction
buffer (130-128-024, Miltenyi), and transferred into GentleMACS tubes. The h_tumor_01
protocol was run three times on the GentleMACS, followed by 10 min on ice. The homogenate
was passed through a 70 um filter and washed with 3 mL nuclei extraction buffer. Samples were
centrifuged at 500 x g for 10 min at 4°C, supernatant removed, and the nuclear pellet
resuspended in 2 mL 1% BSA in PBS. Samples were filtered through a 30 ym filter, rinsed with
2 mL 1% BSA in PBS, and centrifuged again (500 x g, 10 min, 4°C). Pellets were resuspended
in 500 pL 1% BSA in PBS and filtered through a pre-wet 20 um filter, which was rinsed with 500
ML 1% BSA in PBS. After a final centrifugation (500 x g, 10 min, 4°C), nuclei were resuspended
in 50 uL 1% BSA in PBS. Nuclei were counted at the University of Michigan Advanced
Genomics Core using a Logos cell counter.

Probes were hybridized, and samples were pooled and processed per manufacturer
instructions for the 10X Genomics Chromium Fixed RNA Profiling Reagent Kits for Multiplexed
Samples (PN 1000568). Library quality was assessed using the LabChip GXII HT
(PerkinElmer) and quantified by Qubit (ThermoFisher). Pooled libraries underwent paired-end

sequencing on an lllumina NovaSeq XPlus. BCL Convert Software (lllumina) generated
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demultiplexed Fastq files, and the CellRanger Pipeline (10X Genomics) was used for alignment
and count matrix generation.

Seurat v5.1.0 was used for filtering, normalization, dimensional reduction, clustering,
gene expression visualization, and differential expression analysis. Cells were excluded if they
had <1000 UMIls, <500 detected genes, >5% mitochondrial transcripts, or log10 Genes Per UMI
< 0.80; genes were excluded if detected in <10 cells. SCTransform was used for normalization
and variance stabilization, treating mitochondrial mapping percentage as a covariate. To
integrate and correct for batch effects, Harmony was applied to the SCTransformed data
via RunHarmony. Resulting embeddings were used for downstream dimensional reduction and
clustering.

Thirty principal components were used for clustering and UMAP analysis, performed by
a shared nearest neighbor (SNN) modularity optimization-based algorithm. Clusters were
visualized using UMAPs and annotated to cell types using known marker genes and top
differentially expressed genes per cluster. Pathway analysis was conducted as described for

bulk RNA-seq.

Animals

Lmna™"mice had loxP sites flanking exons 10 and 11 of the Lmna allele (74). Adipog-CreERT2
mice (025124) and mTmG mice (007576) were from the Jackson Laboratory. Control animals
were Lmna™and Lmna”PX° mice were Lmna™" Adipog-CretR™2*-  Animals described as
Lmna®™ mTmG were Adipog-CrefR™2* mTmG*", and Lmna”*° mTmG mice were Lmna™"
Adipog-CrefR™2*-mTmG*". Unless otherwise noted, 12—14-week-old mice received
intraperitoneal tamoxifen (50 mg/kg; 13258, Cayman Chemical) in sterile corn oil for five
consecutive days to induce recombination, followed by a 10-day washout. Mice were
euthanized by inhaled isoflurane overdose, and death confirmed by cervical dislocation or

bilateral pneumothorax. Fat and lean mass were measured in live animals using an EchoMRI-
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100H (EchoMRI LLC). Animals were group-housed under standard conditions (22°C, 30-60%
humidity) with a 12-h light:dark cycle and free access to water and chow. Daily care was

overseen by the Unit for Laboratory Animal Medicine at the University of Michigan.

Public data analysis from Lmna KO MEFs

Raw ATAC-seq data were mined from GEO accession GSE120389 and processed using the
best practice nf-core atac-seq pipeline (v2.1.1) (81) with default configurations. Microarray data
were downloaded from GEO accession GSE124467 and preprocessed as described in its

original publication (39).

ATAC-seq analysis and integration with expression data

Differential accessibility analysis was performed using DiffBind (v3.12.0) (75). Briefly, a
consensus peakset was generated, and read counting was done using dba.count() with
bUseSummarizeOverlaps=TRUE. TMM and background-aware normalization was carried out
with dba.normalize(). Enhancer-to-gene assignments were predicted using rGREAT (v2.6.0)
(76). Chromatin state annotations for WT and KO peaksets were quantified by intersecting with
the full-stack 100-segment ChromHMM model from Vu and Ernst 2023 (41) and visualized as
grouped percentage bar plots. Genes and enhancers with concurrent chromatin and gene
expression changes were stratified into eight directionality-based clusters (e.g., increased
accessibility with increased expression). Gene Ontology enrichment was performed and
visualized using clusterProfiler (v4.12.6) (77). For transcription factor motif analysis, peaks were
ranked and binned by log, fold change, and motif enrichment was assessed with monaLisa
(v1.15.0) (78) using PWMs from JASPAR2020. Motifs with |log, enrichment| > 2 and -log,,
adjusted p-value > 4 were deemed significant. ATAC-seq tracks and enhancer—gene

connections were visualized using pyGenomeTracks (v3.9.0) (79).


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120389
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124467
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Statistics

Data are shown as mean + SD. Two-way ANOVA with Bonferroni’s post hoc test was used for
human matched case-control comparisons and mouse data with two variables; one-way ANOVA
with Bonferroni’'s post hoc test for human comparisons across disease states; and Student’s
two-tailed t-test for two-genotype mouse comparisons. AUC for lipid and glycemic parameters
was calculated by the linear trapezoidal method. All analyses used GraphPad Prism v10,

with p < 0.05 considered significant.

Study approval

The study was approved by the University of Michigan IRB (HUM #00174659); all participants
provided written informed consent. Identifying tattoos in patient photos were removed with
Photoshop’s Generative Fill. Animal studies complied with University of Michigan IACUC

policies (protocol PRO00011544).

Data availability
snRNA-seq and bulk RNA-seq data is available through NCBI GEO. Raw data values are

provided in the Supporting Data Values file.
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Figure 1. Clinical, metabolic, and molecular characterization of individuals with familial

partial lipodystrophy type 2 (FPLD2). (A) Study design and patient groups. Groups include

unaffected family members (Control, Group C, n = 6), genetically affected but clinically

unaffected individuals (Developing, Group A, n = 9), and patients with FPLD2 (FPLD2, Group B,

n = 7). (B) Pedigrees from multiple families with FPLD2. Filled symbols represent affected

individuals, open symbols indicate unaffected individuals, question marks denote unknown

phenotypic status. (C) Images of patients with developing FPLD2 with early signs of fat
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redistribution. (D) Images of patients with FPLD2 phenotypes with peripheral lipoatrophy and
upper trunk fat accumulation. (E) Whole body fat shadows. Quantification of fat mass
percentage in (F) total body, (G) leg, and (H) trunk. (I) Magnetic resonance imaging (MRI)-
based hepatic fat fraction maps with (J) quantification. (K) Hemoglobin A1c percentages. (L)
Triglyceride concentrations in plasma. (M) Non-esterified fatty acid (NEFA) concentrations. (N)
Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) scores. (O) Leptin
concentrations. (P) Adiponectin concentrations. (Q) Fibroblast growth factor 21 (FGF21)
concentrations. Data are represented as mean + SD. *P < 0.05. Statistical analyses were

performed using one-way ANOVA, followed by Bonferroni’s post-hoc test.
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Figure 2. Biopsies from patients with FPLD2 have no change in adipocyte size, but bulk
RNA-sequencing suggests decreased metabolism and increased inflammation in patient
adipose tissue. (A) Representative adipose tissue histological images and Picrosirius Red-
stained tissue for collagens from biopsies across patient groups in abdominal biopsies. Scale
bar = 200 um. (B) Frequency distribution of adipocyte size and (C) frequency of adipocytes less
or greater than 2500 um? from abdominal biopsies. (D) Histological images and Picrosirius Red
analyses on upper neck biopsies. (E) Frequency distribution of adipocyte size and (F) frequency
of adipocytes less or greater than 2500 ym? from upper neck biopsies. Bulk RNA-sequencing on
patient biopsies. Biopsies from Group A and B were combined to compare to Group C. n = 4-5
samples (upper neck and abdomen combined) per group. Gene set enrichment analysis
(GSEA) identified (G) upregulated pathways with normalized enrichment scores (NES) and (H)
leading edge genes for the monocyte chemotaxis pathway. (1) Downregulated GSEA pathways

and leading edge genes for (J) mito protein complex and (K) fatty acid metabolism pathways.
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Data are represented as mean + SD. *P < 0.05. Statistical analyses were performed using two-

way ANOVA, followed by Bonferroni’s post-hoc test.
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Figure 3. Single nuclei RNA-sequencing identifies changes in cell proportions and

subclustering analyses between subcutaneous abdomen and upper neck adipose tissue

in unaffected patients. (A) Uniform Manifold Approximation and Projection (UMAP) of

abdomen and upper neck biopsies across all patient groups (A, B and C); ASPC = adipose stem

and progenitor cells, LEC =

lymphatic endothelial cells. (B) Marker genes for each cell
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population. (C) Permutation tests to identify changes in cell proportions in the upper neck
relative to the abdominal biopsies from control patients (Group C); changes were statistically
significant if the log2fold change was less or greater than 0.32, and the false discovery rate
(FDR) was less than 0.05. (D) Adipocyte subclusters and corresponding GSEA pathways. (E)
Adipocyte subclusters changes between the upper neck and abdomen in control patients. (F)
ASPC subclusters with GSEA pathways. (G) ASPC subcluster changes in the upper neck
relative to abdomen. (H) Macrophage subclusters with GSEA pathways. (I) Subcluster changes
in macrophages in upper neck relative to abdomen. (J) T cell subclusters with GSEA pathways.

(K) Subcluster changes in T cells in upper neck relative to abdomen.
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Figure 4. Single nuclei RNA-sequencing identifies changes in cell proportions and

identity with progression of FPLD2. (A) UMAP of combined upper neck and abdomen

biopsies across disease states; cell type markers are the same as in Figure 3. Permutation tests

identified changes in cell proportion from abdominal biopsies from patients with (B) developing

FPLD2 and (C) FPLDZ2 relative to control, and from upper neck biopsies in (D) developing

FPLD2 and (E) FPLD2 relative to control. Cell proportion changes in the upper neck relative to
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abdomen were identified in (F) developing and (G) FPLD2 disease states. (H) All adipocytes
from developing or FPLD2 biopsies were analyzed via GSEA and compared to controls to
identify population-level changes in cell identity. Sig = signaling; Org = organization. (I)
Adipocyte subcluster analyses with corresponding GSEA pathways (same as in Figure 3) and
subcluster changes with disease. (J) ASPC GSEA in developing or FPLD2 biopsies relative to
controls. (K) ASPC subcluster changes with disease. (L) Macrophage GSEA in developing or

FPLD2 biopsies relative to controls. (M) Macrophage subcluster changes with disease.
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Figure 5. Tamoxifen-inducible adipocyte-specific Lmna knockout causes transient
adipose tissue loss, and Lmna-deficient adipocytes shrink and disappear. All data from
male mice besides histology from female mice. (A) Gene schematic of Lmna™" control mice and
Lmna"Pk% inducible Lmna adipocyte-specific knockout mice. Adult mice were administered
tamoxifen intraperitoneally (i.p.) for five consecutive days to induce recombination. (B) Fat mass
after tamoxifen administration (n = 6). (C) Posterior subcutaneous white adipose tissue (psWAT)
weights and (D) epididymal white adipose tissue (eWAT) weights at two-, four-, and 16-weeks

post-tamoxifen (n = 3-6). (E) Representative histology of psWAT and parametrial WAT (pmWAT)
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two weeks post-tamoxifen. Scale bar = 40 um. (F) Insulin tolerance test (ITT) six weeks post-
tamoxifen (n = 6). (G) Glucose tolerance test (GTT) seven weeks post-tamoxifen (n = 6). (H)
Serum adiponectin immunoblot at zero- and four-weeks post-tamoxifen (n = 4-5). (I) Schematic
of mTmG reporter system induced by tamoxifen-mediated Cre activity. (J) Representative fresh
confocal micrographs of psWAT (Scale bar = 100 ym) and (K) quantification of psWAT
adipocyte size at two-weeks post-tamoxifen (n = 3-4). (L) Quantification of psWAT GFP+ or
tdTomato+ adipocytes. (M) Confocal micrographs of eWAT and (N) quantification of eWAT
adipocyte size at two weeks post-tamoxifen. (O) Quantification of eWAT GFP+ or tdTomato+
adipocytes. Data are represented as mean + SD. *P < 0.05. Statistical analyses were performed

using two-way ANOVA, followed by Bonferroni’s post-hoc test.
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Figure 6. Bulk RNA-sequencing and proteomics of Lmna"°® WAT reveals increased

inflammation and reduced fatty acid metabolism and mitochondrial pathways, similar to

human FPLD2 biopsies. All data from female mice. Lmna”°k°® and Lmna™" parametrial white

adipose tissue (pmWAT) two-weeks post-tamoxifen was used for RNA-sequencing (n = 6-7) and

proteomics (n = 5). (A) Integrative GSEA on bulk RNA-sequencing (RNA-seq) and proteomics.

Pink dots symbolize that NES were significantly changed in both RNA-seq and proteomics
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datasets, orange dots = NES only changed in proteomics, blue = NES only changed in RNA-
seq. (B) Highlighted GSEA pathways changed in both proteomics and RNA-seq. Numbers on
bars represent number of overlapping genes driving pathways. (C) Highlighted GSEA pathways
changed in proteomics only. Heatmaps showing selected changes in genes driving (D) lipid
biosynthesis, (E) mitochondrial function, (F) inflammation, and (G) cell death. (H) Integrative
GSEA of Lmna”P*® pmWAT bulk RNA-seq compared to FPLD2 bulk RNA-seq (Figure 2). (l)
Highlighted GSEA pathways changed in both mouse and human RNA-seq datasets. (J)
Leading-edge genes for GSEA pathways related to inflammation, fatty acid metabolism, and

mitochondrial function for either iIADKO or FPLD2 samples.
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Figure 7. Lmna'APX° adipocytes have reduced oxygen consumption and dysfunctional
mitochondrial dynamics and structure. Data in (A) to (C), and in (H) are from male mice, and
all other data is from female mice. Immunoblot analyses two-weeks post-tamoxifen of lipid
metabolism and lipogenesis proteins in (A) psWAT and (B) eWAT (n = 4-5). Loading control =
laminin. (C) Immunoblot of mitochondrial proteins in eWAT two-weeks post-tamoxifen (n = 4-5).

Loading control = laminin. Oroboros Oxygraph-2k analyses of (D) baseline and (E) maximum
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respiration in floated adipocytes from pmWAT two-weeks post-tamoxifen (n = 6). (F) Immunoblot
of mitochondrial function and dynamics proteins in floated adipocytes and stromal vascular
fraction (SVF) from pmWAT two-weeks post-tamoxifen (n = 3-5). * indicates non-specific band.
Loading control = laminin and b-actin. (G) Confocal micrographs of floated adipocytes from
pmWAT stained for nuclei (Hoechst), lipid (BODIPY), and mitochondria (MitoTracker Red), scale
bar = 50 um. (H) Transmission electron micrographs of eWAT two-weeks post-tamoxifen. Scale
bar = 1 ym for 3000x; 200 nm for 10000x magnification images. Quantification of transmission
electron micrographs: (1) Distance of mitochondria to closest lipid droplet, (J) Mitochondrial area,
(K) Cristae volume per mitochondria, (L) Mitochondrial circularity, (M) Cristae anisotropy with
(N) Example of anisotropy analysis. An average of nine adipocyte mitochondria were quantified
per mouse, n = 5-6. Data are represented as mean + SD. *P < 0.05. Statistical analyses were

performed using Student’s t-test.



GO Enrichment: Inflammation terms

51

A RNA-seq )
Lmna*™*® pmWAT - Inflammatory cell
B s apoptotic process T °
% e amdl — N | ™ -Integration of expression Reg. of p.adj
——— data with ATAC-seq ; . 0.01
Microarray -Pathway analysis infammgtory g s g ® ® ® ® 0.02
LmnaKO MEFs : response 0.03
-Chromatin analysis Inflammator 0.04
— |~ -Transcription factor analysis response t;y .
antigenic stimulus Gene ratio
Maynard et al ATAC-seq Leukocyte 00.02
Nuc Acid Res 2019, 2022 l l activation involved - ° ® C .03
¥ G in inflm. response }\/\085
) . ADKO = iADKO RNA-seq Negative regulation e
B ; _GO EanCh_mem' MEF = Lmna KO MEF microarray ofinflammatory | e e )
Lipid metabolism terms ATAC = Lmna KO MEF ATAC-seq response
- ATACpeak: UP DOWN UP DOWN UP DOWN DOWN
Lipid transport
! P ® ® ® ® RNA expression: 4iADKO¥IADKO 4 iADKO4iADKO 4#MEF $MEF 4 MEF
Reg. of lipid @
me:;bolic ;Frqsess 1 @ [} ® L] ® ® p.adj E Overlapping leading G Change in o &':0&;\\23 \)\ﬁ\eb
lycerolipi 0.01 edge genes gene expression: 3O 107
metabolic process | @ ® ® 0.02 g9 i \g ° \)Q( \‘\,\)Q‘Io 2
Membrane lipid 0.03 /~  Regulationof "\ sl enﬂzchmem
catabolic process | ° @ inflammatory response (1J
" fot Gene ratio
Regulation of lipid | o [ ATAC UPV, \ 2 -1
biosynthetic process B > ® °® o 08‘% #ADKO&MEF i e}
: 0 Adora2b s
Fatty acid | ® ® ® ©0.06 Cdad
metabolic process ‘ﬁsf 9
Lipid catabolic II1?I1 ©
@ [} @ 1133 <
process { \_ Lmk2 / S
ATAC peak UP DOWN UP DOWN UP DOWN UP =
RNA expression: #HADKO¥IADKO ¥iADKO#IADKO #MEF MEF MEF T K
5 % 12
Overlapping leading edge genes *'A%Sg““‘“ S
Regulation of Regulation of lipid Glycerolipid App E
lipid transport metabolic process metabolic process g;’;ggb 8
Lb, <
Niedl1 S
ngZZ c
\ Rb1 / [0)
Rora a
0CS! { ATAC DOWN \ .9
) /" Lipid catabolic Thl1xr1 4iADKO & MEF
Regulation of lipid Ada
biosynthetic process Bcl6
nr1
\ \ Snca J ) Sni
uni
: Fag
F s  Chromatin state changes H s Fosli-Jund
s chrd <
in Lmna KO MEFs CTRL 55,450 55,500 58,550 55,600 Gainfloss
40 KO of accessibility
. Gmi . 07 . -Gm12511 Ganas
o GmM22150 Kif4 Gm12506 (GENCODE vM25)
- 1,000
o}
§ 8 R Mo A |, LmnaKO
E 20 1,001
0 A . | . Lmna CTRL
10 KiIf13 chr7
| 63,80 63,900 ; 0 kb Gainfloss
5050 of accessibility
0 g .Gm7482 KIF13NS < »GmM32633 Gi
Gm4471 , = . enes
G S S o fuari§ I omapaef TORHET " Bai SR oE s
F TP 7 & (P (%S (S 1,000 '
NS oé\‘ & ®°\°0&° & & q,(\b(\e@ & (b(é’
@ S o TP S ¢ Ol legineape—uy Lmna KO
S ¢ < A o 1,000
Lt RS QO\* & & & W !
<@ «@(‘,\@ o | A Lmna CTRL

Figure 8. Lmna KO mouse embryonic fibroblasts (MEFs) and adipocytes have shared

patterns of altered gene expression, correlated with changes in chromatin accessibility.

(A) Schematic of dataset integration between Lmna”°k® pmWAT RNA-seq and Lmna KO MEFs

microarray and Assay for Transposase-Accessible Chromatin (ATAC)-seq. Overlapping changed

genes in RNA-seq of Lmna"Pk® WAT (iADKO), Lmna KO MEF microarray (MEF) and Lmna KO

MEF ATAC-seq (ATAC) were identified, and GSEA was ran to identify changes in (B) lipid
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metabolism Gene Ontology (GO) terms with their corresponding (C) overlapping leading edge
genes, along with (D) inflammatory GO terms with (E) corresponding overlapping leading edge
genes. (F) Distribution of chromatin features represented by percentage of overall chromatin
composition compared between Lmna control (CTRL) and KO MEF ATAC-seq. (G) Enriched
motifs in Lmna KO MEFs, stratified into four bins based on microarray gene expression
changes, from most downregulated to most upregulated. (H) ATAC-seq signal tracks and
visualization of significantly enriched regions and their predicted target genes. Red lines

represent enhancers with a positive fold change upon Lmna KO, and blue lines are negative.



Table 1. Clinical, biochemical, and body composition parameters from patients with FPLD

(FPLD), genetically affected but clinically unaffected individuals (Developing FPLD), and

nonaffected individuals (Control). Data are expressed as mean + SD.

Parameter Control Del\:/;:?géng FPLD2 p-value
Weight 90+55 78 +6.4 81+6.4 0.4
BMI 31+£20 27 £1.7 29+2.0 0.5
Waist Circumference 99+6.2 87 +4.1 94123 0.2
Hip Circumference 107 £ 6.0 93+4.6 98+3 0.2
W/H ratio 0.9+0.02 0.9+£0.01 0.9+0.01 0.3
Fasting glucose (mg/dL) 129 + 40 11112 221 £ 59 0.5
Fasting insulin (uU/mL) 16+£1.3 38+13 31+4.3 0.3
HbA1c (%) 7+1.0 6+£052 9+1.1* 0.01
Triglycerides (mg/dL) 116 + 26 1569+ 33° 301 £33 ** 0.007
Total Cholesterol 184 + 13 166 + 16 188 + 12 0.4
(mg/dL)
HDL-cholesterol (mg/dL) 45+4.0 38+3 34+3 0.1
LDL-cholesterol (mg/dL) 127 +9 111 +£17 107 £ 10 0.4
AST (IU/L) 22+1.3 25+24 27+23 0.5
ALT (IU/L) 22+34 27+34 3657 0.1
GGT (IU/L) 18+ 3.5 19+2.6 28+4.3 0.08
C-reactive Protein 10+ 4.6 21+0.9 36+16 0.3
(mg/L)
Fasting FFA (mmol/L) 06+0.1 05+0.12 0.8+0.1 0.09
Fasting C-Peptide 23+03 | 3408 3+05 0.6
(ng/mL)
HOMA-IR 6+22 11+3.7 15+34 0.3
ADIPO-IR 12+4.3 16+4.4 23+3.2 0.2
+ + +
. + + +
romave | ene | e | mmes |
Triglyceride AUC 3?38&* 4953428:-' 914387181’ 0.03
C-Peptide AUC 1807 £430 | 2990 £542 | 2435+ 476 0.5
FFA AUC 96 + 18 85+18 149 + 36 0.2
Leptin (pg/mL) 5562 + 1491 | 3807 + 1130 | 1905 + 383 & 0.03
Adiponectin (pg/uL) 3562250i 2?%%21 122753 *i 0.09
FGF-21 (pg/mL) 152 + 67 57+14°¢ 190 + 56 0.03
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GDF-15 (pg/mL) 498 + 55 371+41° | 1174+249* | 0.001
MCP-1 (pg/mL) 492 + 94 572 + 76 657 + 45 0.7
IL-6 (pg/mL) 3.3+05 0.9+0.3° 5.0+ 3.1 0.03
TNFa (pg/mL) 167 + 102 16 + 3 72 + 44 0.1

Control vs FPLD2: *p-value=0.04; **p-value=0.01; & p-value=0.03
Developing FPLD2 vs FPLD2: 2p-value= 0.01; ® p-value=0.004; ¢ p-value=0.04
Control vs Developing FPLD: ® p-value=0.04

Abbreviations: BMI, body mass index; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein;
LDL, low-density lipoprotein, ALT: alanine aminotransferase, AST: aspartate aminotransferase,
GGT: gamma-glutamyl transferase, NEFA: Non-esterified fatty acids, HOMA-IR: Homeostatic
Model Assessment for Insulin Resistance; ADIPO-IR: Adipose Tissue Insulin Resistance Index,
AUC: area under the curve, FGF: fibroblast growth factor, GDF: growth differentiation factor,

MCP: monocyte chemoattractant protein, IL: interleukin, TNF: tumor necrosis factor.
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