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In 1996, we introduced the concept of targeted gene
repair, a process in which a synthetic molecule directs
the exchange of a single DNA base at a specific site in an
episome or chromosome (refs. 1, 2; see ref. 3 for review).
This approach is based on seminal work conducted by
several groups (4–6) in which gene targeting was used to
correct the human βs mutation and develop animal
models for testing of novel therapies. In addition, Sher-
man and colleagues (7–9) provided the first clear evi-
dence that DNA oligonucleotides could be used to alter
single bases in yeast. The latter work employed a simpler
type of targeting molecule compared with the more tra-
ditional vector used for gene targeting protocols. The
convergence of these ideas led us to begin testing
oligonucleotides in a variety of eukaryotic cells for
nucleotide-alteration activity. The general pathway is
envisioned as a nucleotide-exchange reaction directed
by a double-stranded molecule known as the chimeric
RNA/DNA oligonucleotide (chimera). The chimera
(Figure 1) is a single-stranded molecule, usually 70–80
bases in length, with sequence complementarity so that
it folds into a double-hairpin configuration. This con-
figuration avoids nuclease digestion and concatenation
of double-stranded molecules, two adverse molecular
events that are common when these types of DNA struc-
tures are transfected into mammalian (and other
eukaryotic) cells. The base composition includes both
RNA and DNA nucleotides with three or four thymi-
dine residues in the “cap turns.” The RNA bases stabi-
lize the intermediate joint molecule on one strand,
while the DNA portion of the molecule starts the sin-
gle-base exchange event. Finally, a unique phosphodi-
ester bond is left unligated so as to facilitate topologi-
cal intertwining with the target site in the helix.

The mechanism of this reaction is currently being
elucidated by biochemical (10–12) and genetic studies
in yeast (13, 14) (see “Clinical use of gene repair: are we
there yet?”). We now believe that the chimera directs
nucleotide exchange in two distinct phases: DNA pair-
ing and DNA repairing. The first phase consists of pro-
tein-promoted DNA hybridization between the vector
(chimera) and its complementary target sequence in
the target gene. Once aligned in homologous register,
stable base pairs form, except for one predesigned mis-
match located in the center of the joint complex. The
mismatched base pair illustrated in Figure 1 is G•G.
This structural perturbation, in the otherwise perfect-
ly hybridized twin duplex, is recognized by the cell’s
endogenous mismatch-repair system, which then cat-
alyzes nucleotide exchange in the second phase, the
process of DNA repairing. Once one mismatch is cor-
rected, the chimera dissociates, leaving behind a single
mismatched base pair in the original targeted helix.
This structure is similar to the one recognized when
mismatched base pairs are created during DNA repli-
cation. The normal repair pathway is then activated
and generates an intact DNA helix. Figure 2 presents a
model in which the same sequence of events takes
place, except that the process is directed by a single-
stranded oligonucleotide with specific terminal linkage
modifications. DNA pairing is catalyzed by the same
group of proteins, and DNA repair is again carried out
by the process of mismatch repair.

The first reports of successful application of chimera-
directed gene repair came from several laboratories,
including our own (2). Steer and colleagues pioneered
the technique in liver cells, initially in an HUH7 cell line
(15), followed by spectacular results in primary hepa-
tocytes (16). Kren et al. then corrected the single base
mutation responsible for Crigler-Najjar disease in the
prototype Gunn rat model (17). These initial findings
have been followed by a steady stream of independent
confirmation in mammalian cells and animal models
(Table 1). The versatility of the technique has been
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demonstrated by successful experiments in plant-cell
and whole-plant models (Table 1).

The reaction to this technique from the gene therapy
and gene targeting community was generally disbelief;
many scientists believed that the results were most like-
ly artifactual (18). Some went as far as to predict that
no one would be able to use the technique independ-
ently. But others published impressive data, and inde-
pendent confirmation followed shortly (19–23). Sever-
al misconceptions were then propagated, not the least
of which was that no one had shown a phenotypic
change. Kren et al. (16), Alexeev et al. (24, 25), Bartlett
et al. (20), and Lai et al. (26), to name only a few, had, in
fact, done so and had published their results in peer-
reviewed journals. The question of reproducibility has
plagued this technique, especially when the issue of the
high frequencies of gene repair was discussed. Recent
evidence published by Tagalakis et al. (27) showed even
higher frequencies of gene repair using the same lym-
phoblastoid cell type used by Cole-Strauss et al. (2) in

one of the original reports of this technique. Finally,
some claimed that no clonal isolates of permanently
altered cells had been produced. As early as 1998, Alex-
eev and colleagues (24, 25) had clearly demonstrated
clonal inheritance, as had the 1998 and 1999 reports of
gene repair in plants (28–30).

Clinical use of gene repair
We’ve come a long way in the clinical use of gene repair.
Some valid questions do, however, remain unanswered
and continue to perplex investigators. The most impor-
tant one centers on the variability among the data of
different research groups. Frequencies of correction
differ widely, often ranging from 0.5% to 20% even
within the same laboratory. Many current efforts aim
primarily to explain this variability.

Over the past three years, our laboratory took a
decidedly reductionist approach to uncover the
sources of variability. Presently, we believe that the effi-
ciency of transfection (or vector uptake into cells) is a

Figure 1
Proposed mechanism of targeted gene repair directed by chimeric
RNA/DNA oligonucleotides. The RNA/DNA chimera (inset) is a sin-
gle-stranded oligonucleotide consisting of RNA and DNA residues.
The molecule acts by annealing at the site in the target DNA, with the
RNA section (yellow) hybridizing with perfect complementarity to
one strand and the DNA stretch (blue) hybridizing to the other
strand. A T/G base pair mismatch is formed and is acted upon by the
cell’s DNA repair systems. In this case, the G residue is excised and
replaced by an A to base pair with the T base provided by the
chimera. The chimera dissociates, leaving behind a C/A mismatch,
which is presumably corrected by the mismatch-repair system to gen-
erate a T•A base pair. Here, the action of the chimera directs the
exchange of a C•G base pair with a T•A base pair. Reproduced with
permission from Science’s STKE (46).

Figure 2
Targeted gene repair with modified single-stranded oligonucleotides.
The mutant base is recognized by the single-stranded oligonu-
cleotide, which is designed to hybridize to a region immediately sur-
rounding the targeted base. At one specific site, a mismatch is cre-
ated (C/T here) with the displacement of the complementary strand,
which contains the G residue (G). DNA repair activity catalyzed by
the cellular machinery inserts an A on the hybridized strand to pair
with the T residue of the template. A second repair event completes
the cycle by removing the G residue and replacing it with a T. In this
case, a conversion of the G•C base pair to an A•T base pair results
from the gene repair reaction. Reproduced with permission from Cur-
rent Opinion in Molecular Therapeutics (47).
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key parameter (31, 32). The phase of the cell cycle in
which the vector enters the cell also affects gene repair
levels, and the cellular level of DNA recombi-
nation/repair proteins can also influence the success
of gene repair in a positive (enhancing) or negative
(suppressive) fashion. Finally, the capacity to produce
the full-length, double-stranded chimera at a level of
purity at which breakdown products and/or incom-
pletely synthesized products do not interfere with the
reaction is critical for obtaining positive results.

The last of these rules prompted us to develop a new
vector that could direct gene repair as precisely and effi-
ciently as the chimera, but that had a simplified syn-
thesis protocol. Studies by Gamper et al. (11, 12, 33)
indicated that single-stranded DNA with a specific
number of linkage modifications appeared to catalyze
gene repair efficiently and was easier to synthesize and
purify. Both the chimera and the new single-stranded
design have been tested in the genetically tractable
organism Saccharomyces cerevisiae (34, 35). While this
may seem to be regressive, repair proteins in yeast func-
tion similarly to their human counterparts. However,
the influence of individual protein components on the
gene repair process can be assessed using genetic-screen-
ing techniques in yeast, but not human cells. Thus,
using this simplified vector and the power of yeast
genetics, we have now established several tenets of gene
repair. (a) There is a clear dose response to gene repair
that corresponds to the amount of vector added to the
reaction, but there is also a maximum dose above which

the repair efficiency falls off precipitously. (b) An opti-
mal length of the vector exists between 70 and 80 bases
on the DNA strand; extension of this length to 100
nucleotides reduces repair frequency. (c) Gene repair ini-
tiated on the nontranscribed strand is five- to tenfold
better than similar events initiated on the transcribed
strand. This difference has been estimated to be 1,000-
fold (21, 22), but our data suggest a more conservative
advantage. (d) Members of the Rad52 epistasis group, a
group of genes involved in the repair of double-strand-
ed chromosomal breaks, regulate the gene repair
process and probably control the rate-limiting step.
Overexpression of some of these genes increases gene
repair activity ten- to 20-fold. (e) Finally, a number of
DNA repair proteins act as suppressors of the reaction,
disrupting the gene repair process and reducing the
genetic readout. Studies in yeast have helped define
clear roles for proteins such as Rad51, Rad52, Rad54,
and Mre11 (36, 37). Mechanistic analyses of the gene
repair reaction have demonstrated the importance of
DNA pairing in the overall success of the reaction. The
choice of which strand to target is an important one,
since both transcription and replication processes can
modulate the stability of the oligonucleotide bound at
the specific site (refs. 38 and 39; E.E. Brachman and E.B.
Kmiec, unpublished observations).

There is really only one way to “cure” a genetic dis-
ease, and that is to correct the gene at the site of the
mutation in the chromosome or at the level of mRNA.
Great progress is still being made using eukaryotic

Table 1
The wide scope of gene repair applications.

Gene and gene product Disease/phenotype Model system Reference

Mammalian cells and animal models
Tyr; tyrosinase Melanin synthesis and pigmentation (albinism) Mouse 24, 25
Dmd; dystrophin Muscular dystrophy Canine 48
Dmd; dystrophin Muscular dystrophy Mouse 49, 50
Hbb; hemoglobin βS allele Sickle cell disease Lymphoblastoid cells 2
glb; β-galactosidase β-galactosidase activity Escherichia coli 21
ALP; alkaline phosphatase Hepatic disorders Human hepatoma cells 1, 15
F9; factor IX Hemophilia Rat 16
UGT1A1; UDP-glucuronosyltransferase Crigler-Najjar syndrome type I Gunn rat 17
CaII; carbonic anhydrase II Renal tubular acidosis Mouse 23, 26, 51, 52
Hbb; hemoglobin β β-Thalassemia Mouse 53
ApoE2; apolipoprotein A2 Atherosclerosis Chinese hamster ovary cells, mice 27
Mutant eGFP reporter gene; enhanced GFP Mammalian cell microinjection Fibroblasts 54

Plant genes
SuRA; tobacco acetolactate synthase Herbicide-resistance Tobacco plant 28
Model system Kanamycin, ampicillin, or tetracycline resistance Maize, banana, tobacco 55
AHAS; acetohydroxyacid synthase Imidazolinone resistance Maize 28, 30

Biochemistry and mechanism
hMSH2 Antibiotic resistance Human cell-free extract 10, 12, 56
RecA Antibiotic resistance Human cell-free extract 11, 33
Rad52 epistasis
group: mismatch repair group Hygromycin resistance, eGFP expression Saccharomyces cerevisiae 14, 34, 35

This table presents a sampling of the most compelling achievements with chimeric RNA/DNA molecules in the gene repair field. These types of molecules have
been shown to be effective in repairing mutations in bacteria, yeast, plants, mammalian cells, and animal models.
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viruses as gene therapy vectors to reverse the phenotype
of certain disease states. There is little doubt that some
of these protocols will result in significant clinical ben-
efit. But the death of Jesse Gelsinger at the University
of Pennsylvania in 1999 (40) should serve as a wake-up
call to this field. Mr. Gelsinger was a participant in a
gene therapy clinical trial that used an adenoviral vec-
tor to deliver a corrective gene for a genetic disorder.
The operational idea was that the addition of copies of
the normal gene transported by a modified virus would
alleviate or reverse the disorder. But the amount of
virus led to a massive immunological and toxic
response, which led to Mr. Gelsinger’s death shortly
after it was administered. The serious risks of viral gene
therapy must be first openly addressed and then over-
come. We hope that novel approaches, such as DNA or
RNA gene repair, will be afforded an equal chance of
success and that the reasonable levels of financial sup-
port provided to viral approaches will be made avail-
able to gene repair applications.

In relation to bringing gene repair into the scientific
mainstream, however, a number of good things are hap-
pening. First, a consortium of scientists, primarily from
Europe, is meeting regularly in an open forum to dis-
cuss gene repair applications. Second, the subject of
gene repair is appearing in a few scientific programs and
meetings that primarily focus on the biological use of
oligonucleotides. Unfortunately, the key word here is
“few.” Third, reports of new approaches to or variations
of gene repair (21, 41–45) are beginning to be published
in major journals. Doubt still remains within the scien-
tific arena regarding the reality of gene repair emerging
as a true gene therapy, but the skepticism is reduced
incrementally as the number of successful reports of its
application increase. I am reminded of some advice a
famous cancer researcher once gave me regarding my
work in this area: “Keep pioneering this idea, just in case
it works.” I hope we all do, just in case.
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