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adverse health effects in the respiratory system.

Air pollution is composed of a complex mixture of particulate and
gaseous components. Toxicological and epidemiological study of
air pollutants began in earnest in the mid-20th century after indus-
trial smog events, including the Great Smog of London of 1952,
caused acute rises in hospitalizations and deaths. These studies
have consistently shown that ambient air pollution is the largest
environmental health risk factor, contributing to as many as 4.7
million premature deaths per year (1). Among modifiable risk fac-
tors, air pollution exposure contributes to 8% of disability adjust-
ed life years, ranking above factors such as high blood pressure,
smoking, and high fasting plasma glucose (2). Most of the excess
deaths linked to air pollution are due to acute ischemic/thrombotic
cardiovascular events (3); however, chronic air pollution exposure
is also a significant cause of respiratory morbidity and mortality. In
this Review, we discuss the studies that link air pollution exposure
with respiratory diseases in humans.

Components of air pollution

The components of air pollution vary greatly depending on the source
of production, emission rate, and weather conditions. Gaseous com-
ponents of air pollution include sulfur dioxide (SO,), nitrogen diox-
ide (NO,), nitric oxide (NO), ozone (O,), and carbon monoxide (CO)
(4, 5). The particulate component of air pollution consists of car-
bon-based particles onto which various metals and organic chemicals
are adsorbed. Common components of particulate matter (PM) are
elemental carbon and organic carbon molecules, such as polyaromat-
ic hydrocarbons (PAHs), nitrates, sulfates, sodium ion, and silicon as
well as metals, including transition metals (e.g., Cd, Co, Cr, Fe, Nj,
vanadium [V]) (6, 7) (Figure 1). PM is categorized based on parti-
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Air pollution comprises a complex mixture of gaseous and particulate components. Particulate matter (PM) air pollution is
associated with 4.7 million premature deaths per year. Among modifiable risk factors, air pollution exposure contributes

to 8% of disability adjusted life years and ranks above factors such as high blood pressure, smoking, and high fasting
plasma glucose. As the site of entry, exposure to PM air pollution causes respiratory symptoms and is a significant cause of
respiratory morbidity and mortality. In this Review, we discuss the studies that link air pollution exposure with respiratory
diseases. We review the epidemiological evidence linking PM exposure and lung diseases including asthma, chronic
obstructive pulmonary disease, pulmonary fibrosis, pneumonia, acute respiratory distress syndrome, and lung cancer. We
also provide an overview of current knowledge about the mechanisms by which PM exerts its biological effects leading to

cle size. Coarse particles with a diameter of less than 10 pm (PM, )
are derived from both natural and industrial sources. These particles
do not generally penetrate beyond the upper airway. Fine particles
have a diameter of less than 2.5 pm (PM, ), and ultrafine particles
(nanoparticles) are those that are less than 0.1 um diameter (PM, ).
They are produced by combustion of fossil fuels and penetrate into
the small airways and alveoli (8, 9). This makes PM,, and PM, |
greater threats to respiratory health than PM, .

PM and NO, (along with O,, which is a secondary pollutant)
are the main industrial and traffic-related air pollutants measured in
the industrialized world. SO, is produced from combustion of high
sulfur-containing fuels such as coal, and its levels have decreased
in most of the world (6, 10). Indoor production of air pollutants
through cooking and heating are also major sources of exposure-re-
lated health effects, particularly in the developing world, where
burning of biomass is a major source of energy (11). Due to the
coproduction of air pollutants, it is often difficult to determine the
independent contribution of each pollutant with health effects;
however, levels of PM, , have consistently been correlated negative-
ly with cardiovascular and respiratory outcomes. Under the Clean
Air Act, the US Environmental Protection Agency regulates PM,
and PM, levels to establish National Ambient Air Quality Stan-
dards to protect public health and the environment (12) (Table 1).

Epidemiology

Time-series studies. The Great Smog of London directly contributed
to an estimated 12,000 deaths, with tens of thousands more suffer-
ing adverse health effects afterward (13, 14). Similar observations
linked with industrial smog events in Europe and the United States
also provided evidence for the adverse effects of air pollution expo-
sure on health; however, it was not until the late 20th century that
a greater understanding of confounding factors such as weather,
temperature, and lag effects as well as advances in statistical analy-
sis allowed for epidemiological associations between air pollution
and health outcomes to become apparent.
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Figure 1. Particulate matter size and components. (A) Images of urban particulate matter (PM) generated by scanning electron microscopy. Original
magnification, x2,000 (left), 10,000 (center), and x50,000 (right). (B) Relative sizes of PM,  (coarse), PM,  (fine), and PM__ (ultrafine or nanoparticles)
in comparison to alveolar macrophage and influenza A virus (IAV). (C) Common components of PM. Other category includes metals (Al, K, Ca), transition
metals (Fe, Zn, Cd, Ti, Ag, Cu, Mn, Au, Mg, Hg, Cr, Zr, Ni, V, and Co), nonmetals, halogens, and lanthanides (7, 272).

Large, multicity epidemiological studies, including the Nation-
al Morbidity, Mortality, and Air Pollution Study (NMMAPS) and
Air Pollution and Health: A European Approach (APHEA) studies,
showed that increases in PM and other pollutants were associated
with significant increases in all-cause mortality (15-19). Increased
hospitalizations from cardiovascular and respiratory events were
also associated with increases in PM levels (20, 21).

The recent Multi-City Multi-Country (MCC) study collect-
ed data from over 600 cities, mainly in North America, Europe,
and Eastern Asia, and reported similar findings to those of the
NMMAPS and APHEA studies, associating PM, , concentrations
with total, cardiovascular, and respiratory mortality (22, 23). This
study showed that associations between mortality and PM con-
centrations were strongest in locations with lower average annual
PM concentrations. This finding is consistent with previous stud-
ies that showed a biphasic relationship between PM and mortality
in which a steep concentration-response relationship is observed
at lower PM concentrations, while the curve flattened at higher
concentrations (24-26). This flattening of the curve is interpreted
to be due to the higher basal PM levels seen in more polluted cit-
ies; however, other factors such as younger populations in devel-
oping countries may also play a role. The MCC study also con-
firmed the findings of the NMMAPS and APHEA studies that

there is no threshold value of PM pollution below which positive
associations are not detectable between exposure and deaths.
Cohort studies. The repeated finding that there exists no threshold
below which air pollution levels are considered “safe” has led to three
recent long-term studies in areas of low ambient pollution in the Unit-
ed States (US Medicare Study) (27), Canada (Mortality-Air Pollution
Associations in Low-Exposure Environments [MAPLE] Study) (28),
and Europe (Effects of Low-Level Air Pollution: A Study in Europe
[ELAPSE Study]) (29), which use large administrative cohorts and
advanced exposure assessment techniques to determine the effects
of air pollution on health below current air quality standards. All
three studies found associations between PM,  levels and mortality
down to the lowest observed PM,  level of 4 pug/m?’ (30). Significant
correlations between NO, and PM, , levels were observed with respi-
ratory-related mortality at levels below the current WHO guideline
values for both pollutants (29, 31). The findings from these new large
studies mostly corroborate the results from older studies using small-
er cohorts, including the Harvard Six Cities Study, the American
Cancer Association Cancer Prevention Study, and European Study
of Cohorts for Air Pollution Effects (ESCAPE) (32-34).
Interventional and other studies. The implementation of the
Clean Air Act in 1970 resulted in a progressive decline in air pol-
lution levels in the United States. While the decline has occurred
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Table 1. National ambient air quality standards

Pollutant Averaging time Standard
PM, 24 hours 35 pg/m?
1year 9 ug/m?
PM,, 24 hours 150 pg/m?
Sulfur dioxide 1 hour 75 ppb
1year 10 ppb
Nitrogen dioxide 1hour 100 ppb
1year 53 ppb
Ozone 8 hours 0.070 ppm
Carbon monoxide 8 hours 9 ppm
1hour 35 ppm
Lead Rolling 3 month average 0.15 pg/m?

Criteria

98th percentile, averaged over 3 years
Annual mean, averaged over 3 years

Not to be exceeded more than once per year on average over 3 years

99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
Annual mean, averaged over 3 years

98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
Annual mean

Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years
Not to be exceeded more than once per year

Maximum arithmetic mean of 3 consecutive monthly means in a 3-year period

Adapted from ref. 12. Information on primary standards is shown. Primary standards provide public health, protection including protecting the health of
sensitive populations such as people with asthma, children, and the elderly. ppb, parts per billion by volume; ppm, parts per million by volume.

gradually over an extended period of time, extended analysis
of the NMMAPS and Harvard Six Cities Study revealed that
reductions in PM, ; levels contributed to significant increases in
life expectancy (35-37). More drastic changes in air pollution
occurred in China after the implementation of the Air Pollution
Prevention and Control Action Plan (APPCAP) in 2013. Between
2013 and 2017, annual average PM, ; concentrations decreased by
one-third, leading to an estimated 47,000 fewer deaths in the 47
cities studied (38).

Recent years have offered several other natural experiments
with which the association of abrupt changes in air pollution with
health effects can be measured. Before and during the 2008 Olym-
pic Games, Chinese government implemented emission control
policies in Beijing and the surrounding area that reduced particu-
late and gaseous pollutants, including an average 31% decrease in
PM, , (39). This was associated with reductions in pulmonary and
systemic markers of inflammation in study participants (40-42)
as well as reductions in emergency room visits for cardiovascular
and asthma-related events and a decrease in cardiovascular mor-
tality (42—47).

The COVID-19 pandemic led to wide-spread societal shut-
downs to limit transmission of the SARS-CoV-2 virus. These shut-
downs led to a 31% reduction in PM,  levels measured across 34
countries during the shutdown periods (48). Early studies have
shown that during the time of these policies, significant reductions
in non—COVID-19-associated mortality were detected, to which
reductions in traffic accidents and exposure to air pollution are
proposed as causal (49, 50). Air pollution monitoring and epidemi-
ological modeling allowed for the calculation of the avoided mor-
tality due to improvements in air quality. Reductions in premature
mortality were particularly strong in China, which had the most
stringent COVID-19 containment policies (51-53).

Exposure to wildfire smoke is a growing public health con-
cern, with pollution due to wildfires increasingly influencing aver-
age annual PM, , concentrations in the United States (54). Health
effects of wildfire smoke on cardiovascular and respiratory-related
deaths are similar to those seen with industry- and traffic-related
pollution (55, 56). Increases in hospital visits and admissions for
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cardiovascular and respiratory diseases have been seen in South-
ern California during increased wildfire activity (57-59). Wildfire
smoke exposure in California is estimated to have caused over
50,000 premature deaths between 2008 and 2018 (60). Increased
asthma- and cardiopulmonary-related hospital visits were also
found after wildfire smoke from Quebec spread throughout the
northeastern United States in June 2023 (61-63).

The destruction of the New York World Trade Center on Sep-
tember 11, 2001, resulted in an atmospheric dust plume containing
thousands of tons of PM from pulverized building materials and
combustion products of the fires (64). Many first responders experi-
enced persistent cough accompanied by respiratory symptoms that
required medical leave for at least four weeks (65, 66). Extended
analysis of lung function from first responders showed an acute
decline in lung function (measured by forced expiratory volume in
1 second [FEV ]) that did not recover even after years of follow-up
(67, 68). Asthma, persistent airway hyperreactivity, obstructive air-
way disease, and interstitial lung disease have been associated with
exposure to the World Trade Center dust (69-72).

Exposure to air pollution and respiratory disease

Strong associations exist between air pollution exposure and total
mortality as well as cardiovascular and respiratory mortality. The
MCC study showed that each 10 pg/m?® increase in PM concen-
tration was associated with a 0.47% (95% CI, 0.35%—0.58%) rise
in respiratory mortality (22). Using International Classification of
Diseases (ICD) codes, the ELAPSE project studied four outcomes:
nonaccidental, cardiovascular, nonmalignant respiratory, and lung
cancer mortality. Significant associations were found between
levels of PM, , and all four mortality outcomes, with lung cancer
mortality showing the strongest relationship (29). Follow-up stud-
ies showed that PM, , levels significantly correlated with incidence
of asthma, COPD, and lung cancer (73-75). The US Medicare
Study, which did not stratify mortality based on cause, found that
all-cause and respiratory hospital admissions were significantly
correlated with exposure to PM, , (76). Below we discuss the epi-
demiologic and experimental evidence for the associations of air
pollution exposure with lung diseases.
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Asthma. Early experiments exposing humans to SO, showed that
patients with asthma have greater sensitivity to pollutant exposure
than individuals acting as controls (77-79). Subsequent studies have
consistently shown that the average local levels of air pollutants,
including PM, ,
and medication usage (80-83), emergency department visits (84-87),

strongly correlate with severity of asthma symptoms

and hospitalizations (88-90). A classic example of these observations
centers around a labor dispute that led to the closing of a steel mill in
Utah Valley for one year over 1986 and 1987. This led to an over 50%
reduction in the mean daily high PM,  levels. Inpatient admissions to
local hospitals for children with bronchitis or asthma similarly halved
during the period that the mill was closed (91, 92).

It is also increasingly accepted that air pollution exposure caus-
es new-onset asthma, with evidence being particularly strong for
childhood exposure. Birth cohort studies that track residential air
pollution exposure have consistently shown that local air pollution,
particularly PM, ; and NO, levels, correlate with development of
childhood asthma (93-96). The Southern California Children’s
Health Study found that children who live in high pollution areas,
particularly near major roadways, show reduced lung function (as
measured by FEV, forced vital capacity [FVC], and maximum
mid-expiratory flow rate [MMEF]) and higher incidence of asth-
ma compared with children from less-polluted areas (97-101).
Individuals who moved during the course of the study to areas of
lower pollution showed increased rate of MMEF growth compared
with participants who did not move (102). As air quality increased
during the course of the study, improvements in lung function mea-
surements and reduced incidence of asthma were noted (103, 104).

COPD. As with asthma, patients with COPD suffer increases
in disease-related health events after increases in local air pollu-
tion. Daily gaseous and particulate pollutant levels correlate with
reduced respiratory function (FEV, and FVC) and recorded respi-
ratory symptoms and medication usage by patients with COPD
(105-108). Emergency room visits, hospital admissions, and mor-
tality due to COPD are positively correlated with elevations in daily
particulate and gaseous pollutants (109-114). Patients with COPD
are also more susceptible to mortality after local increases in PM,
than the general population (115).

While tobacco smoking is the greatest risk factor for COPD,
increasing evidence suggests that air pollution exposure is also a
risk factor. Two recent large cross-sectional studies have shown
that local PM, ; levels correlate significantly with the incidence of
COPD (116, 117). A large longitudinal study showed that each 5
pg/m? increase in 2-year average PM, , level was associated with a
decrease of 1.18% in FVC and 1.46% decrease in FEV . Compared
with the participants exposed to the lowest PM,  levels, patients
with the highest exposure had a hazard ratio of 1.39 (95% CI, 1.16—
1.46) for COPD development (118).

Pneumonia. Correlations of air pollution exposure with respi-
ratory infections have been observed for nearly 100 years (119).
Recent estimates suggest that every 10 ug/m?’ increase in PM, ; is
associated with a 5.4% increase in respiratory tract infections in the
Medicare population (120). Children also show heightened sensi-
tivity to PM air pollution, which significantly correlates with pneu-
monia incidence (121).

Influenza infection is the best studied cause of pollution-associ-
ated pneumonia. Multiple studies have shown correlations between
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PM, ; levels as well as wildfire smoke and incidence of influenza
infection (122-125). Correlations of PM, , with respiratory syncy-
tial virus and SARS-CoV?2 infections have also been reported (125—
128). While bacterial pneumonias are not as commonly diagnosed
as viral pneumonias, mycoplasma pneumonia as well as tubercu-
losis have also been positively correlated with exposure to PM,
(129, 130), suggesting that the effects of air pollution exposure on
pneumonia are not limited to viral infections.

Acute respiratory distress syndrome. Although acute respiratory
distress syndrome (ARDS) has heterogeneous causes, including
pneumonia, sepsis, trauma, or aspiration, downstream common
pathways include inflammatory responses, immune infiltration
into the lung, increased endothelial and epithelial permeability, and
dysregulated coagulation (131, 132). Increasing findings suggest
that air pollution exposure increases the likelihood of developing
ARDS. A cohort study of critically ill patients stratified by air pol-
lution exposures at their residences showed that the 3-year average
exposure to PM, , is significantly associated with development of
ARDS (133). Exposure to PM, ; was also linked with an increased
90-day mortality rate from ARDS (134).

SARS-CoV-2 infection during the COVID-19 pandemic was a
significant cause of ARDS. Several studies have shown correlations
between residential exposure to air pollution and severity of SARS-
CoV-2 infection and mortality (135-138). Annual PM, , exposure
most closely correlated with COVID-19 hospitalization and death.
Similar findings were found when exposure to wildfire smoke was
correlated with COVID-19 cases and deaths (139).

Pulmonary fibrosis. Compared with other lung diseases, the
link between pulmonary fibrosis (PF) and air pollution exposure
has only recently been uncovered. The first linkages between PF
and air pollution were associations between acute exacerbations
and increases in NO, and O, levels (140). Patients with PF have
since been shown to exhibit lower lung function (FVC) (141),
increased rate of FVC decline (142), and increased rates of mor-
tality associated with exposure level to PM, ; (143). Although
these were relatively small studies, a recent larger prospective
cohort study showed an inverse correlation between PM, , expo-
sure and transplant-free survival. Patients with higher PM,
exposure also had a lower baseline FVC and more rapid FVC
decline (144). Another large retrospective study showed that dai-
ly hospital admissions based on ICD codes for PF correlated with
PM, ; levels, both on the day of admission and average levels in
the preceding 4 days (145). There was no correlation when anal-
ysis was performed on average pollutant levels for the preceding
30 days, providing evidence of the acute impairment caused by
pollution in patients with PF.

More recently, evidence has emerged that incidence of PF also
correlates with chronic exposure to air pollution. Each interquar-
tile range increase in PM, ; at residential addresses of UK Biobank
participants was found to correlate with a hazard ratio of 1.09
(95% CI, 1.02-1.17) for incidence of PF (146). High attenuation
area (HAA) and interstitial lung abnormalities (ILA) are chest
tomography-based measures used to identify subclinical forms of
interstitial lung diseases and PF. Exposure to PM correlated with
the progression of HAA in a prospective cohort enrolled in the
Multi-Ethnic Study of Atherosclerosis (MESA) (147). Elemen-
tal carbon (a component of PM) exposure correlated with both
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NF-xB and NRF2 activation. Oxidative stress promotes production of proinflammatory cytokines and oxidative damage. These PM-induced changes cause
lung and systemic inflammation (due to spillover of cytokines into the circulation), altered immune response, and epigenetic changes. Clinically, PM-induced
effects are exhibited through the development of respiratory symptoms such as cough and dyspnea in healthy individuals. PM exposure is associated with the
development, progression, and exacerbation of lung diseases, including asthma, COPD, pulmonary fibrosis, pneumonia, ARDS, and lung cancer.

ILA incidence and progression in participants of the Framingham
Heart Study (148). These findings suggest that air pollution expo-
sure may promote the earliest stages of subclinical interstitial and
fibrotic lung diseases.

Lung cancer. Lung cancer is leading cause of cancer-associated
death, and while smoking is the primary risk factor for lung cancer,
one-third of lung cancer occurs in nonsmokers, making lung cancer
in nonsmokers the fifth leading cause of cancer-associated death
(149). The connection between air pollution exposure and lung can-
cer has been acknowledged since the 1950s (150), and large epide-
miological studies have correlated exposure to multiple pollutants,
particularly PM, ,, with both lung cancer incidence (75, 151, 152)
and mortality (29, 153, 154).

Air pollution exposure has also been shown to decrease sur-
vival after lung cancer diagnosis. After adjustment for demo-
graphic factors, tumor characteristics at diagnosis, and treatment,
patients with early-stage tumors living with low PM, , exposure
(<10 pg/m?) had a median survival of 5.7 years compared with
2.4 years for patients with high PM, , exposure (>16 pg/m?) (155).
Survival after lobectomy was also shown to be reduced by high
exposure to PM, ; (156).

Lung transplant. As would be expected from the negative effects
on pollution on PF and COPD outcomes, annual average PM,
levels at the residential addresses of lung transplant candidates are
associated with increased rates of removal from transplant waiting
lists either due to mortality or from clinical deterioration of the
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patient (157). Air pollution exposure is also correlated with neg-
ative outcomes after lung transplantation. Posttransplant develop-
ment of bronchiolitis obliterans or chronic lung allograft dysfunc-
tions are associated with residential traffic density and proximity
to a major roadway (158-160). Transplant recipients with higher
PM, , exposure exhibited reduced FVC and FEV1 and increased
rates of graft failure or death (161-163).

Biologic mechanisms

While the epidemiological evidence for the effect of PM exposure
on lung health is increasingly clear, insight into the mechanisms by
which PM exerts its harmful effects is also increasingly understood
(Figure 2). Experimental systems have been designed to allow
study of both in vivo and in vitro effects of exposure to air pollu-
tion particulates. Ambient fine particle concentrators enrich ambi-
ent PM, ; from the local air, allowing for inhalation of concen-
trated ambient particles (CAPs) by humans or animal test subjects
(164). Particles can also be collected on filters and used to treat cul-
tured cells in vitro or can be suspended and instilled into the lungs
of test animals when inhalation systems are unavailable. Standard
reference materials (SRMs), such as SRM1649 Urban Dust and
SRM2786, which are commercially available, and certified by the
National Institute of Standards and Technology, allow for in vitro
exposures of particles that are uniform across laboratories (165).
Below, we discuss the current understanding of the mechanisms by

which PM exposure leads to lung disease.
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Oxidative stress and inflammation. It is widely understood that air
pollution exerts many of its biologic effects by causing oxidative
stress, which promotes subsequent inflammatory responses. Metals
contained in PM are capable of redox cycling, and other chemicals
adsorbed onto particles, including PAHs, can generate redox-active
quinones. NO, and O, are reactive and lead to free radical accumula-
tion (166, 167). Increases in ambient PM, , or controlled exposure to
CAPs are associated with increased levels of DNA and lipid oxida-
tion products in blood, urine, and breath condensate (40, 168, 169).
These markers correlate with inflammatory markers such as IL-1f,
IL-6, GM-CSF, TNF-o, fibrinogen, and C-reactive protein (170-173).

At the cellular level, in vitro exposure of lung cells, including
nasal, airway, and lung epithelial cells, macrophages, and endothelial
cells to particles isolated either from ambient air or from diesel exhaust
leads to elevations in cellular reactive oxygen species (ROS) levels
(174-182). This stress environment activates transcriptional programs,
including those regulated by the oxidative stress—responsive transcrip-
tion factor NRF2 and the proinflammatory transcription factor NF-kB
(178, 183, 184). Oxidative stress is required for the biologic effects of
PM exposure, as genetic inhibition of oxidant production or treatment
of cells with antioxidants is sufficient to inhibit inflammatory cytokine
production and proapoptotic signaling (174, 175, 185-188). NRF2-de-
ficient mice exhibited greater lung inflammation after a 24-week inha-
lation exposure to CAPs, demonstrating the key role that oxidative
stress plays in air pollution—-induced inflammation (189).

The oxidative and inflammatory environment caused by expo-
sure to air pollution likely plays an important role in the develop-
ment of inflammatory airway diseases. Markers of oxidative stress
are increased in the blood, urine, and breath condensate of patients
with asthma and COPD (190, 191). Air pollution-linked cyto-
kines such as IL-1PB, IL-6, and TNF-a are highly elevated in the
lungs of patients with COPD and play roles in modifying asthma
phenotypes (192, 193). Furthermore, both diseases are associated
with gene polymorphisms related to oxidative stress phenotypes,
suggesting that an individual’s sensitivity to oxidative stress may
regulate susceptibility to airway disease (194, 195).

Increased lung inflammation may also be an important can-
cer-promoting mechanism of air pollution. In a recent study, tumor
formation in EGFR- or KRAS-mutant mice was accelerated by intra-
tracheal instillation of exposure to PM (SRM2786) for 3 weeks (196).
Despite this difference in tumor burden, there was no significant
increase in mutational burden in the PM-exposed mice. The investi-
gators demonstrated that production of IL-1B by lung macrophages
promotes expansion of mutant cells and that inhibition of IL-1p
using neutralizing antibodies prevented PM-promoted tumor forma-
tion. In nonmalignant human lung tissue from two separate clinical
cohorts, EGFR and KRAS mutations were present in 18% and 53%
of samples, respectively (196). Thus, these findings suggest that the
primary mechanism by which air pollution exposure promotes can-
cer is through inflammatory effects on cells with preexisting muta-
tions. Indeed, a study of UK Biobank participants in which single
nucleotide polymorphism data were analyzed alongside air pollution
exposure data showed an additive interaction between genetic risk
factors and air pollution exposure (197). High air pollution exposure,
particularly to PM, ,, increased the risk of developing lung cancer in
all participants, with patients with high genetic risk scores and high
pollution exposure at the greatest risk for lung cancer.
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Mitochondrial dysfunction. While air pollution gases and PM-ad-
sorbed chemicals and metals can generate free radicals, increasing
evidence points to changes in mitochondrial function and mito-
chondrial production of ROS playing key roles in the response to
air pollution. Air pollution particles have been shown to accumulate
in the mitochondria of cultured airway epithelial and macrophages,
leading to changes in mitochondrial morphology and increased
oxidative stress (179, 198-203). Lung cells, including alveolar
macrophages (AMs) and epithelial cells, that have been genetical-
ly engineered to be deficient in mitochondrial ROS production, or
treated with mitochondria-targeted antioxidants or electron trans-
port chain inhibitors, exhibit attenuated inflammatory responses to
particles in culture (175, 186, 203, 204).

Similar to air pollution particulates, exposure of cells to cig-
arette smoke (CS) extract display altered mitochondrial function
and increased ROS production (205-207). These mitochondrial
changes are also observed in airway epithelial cells from CS-ex-
posed mice and from patients with COPD (207-209). Alterations
in mitochondrial turnover may play a role in linking mitochondri-
al dysfunction with lung phenotypes, as the mitophagy regulator
PINK1 was found to be highly expressed in lung tissue of patients
with COPD. Furthermore, PINK1-deficient mice were protected
against mitochondrial dysfunction, defects in mucociliary clear-
ance, and airspace enlargement after CS exposure (207). Other
evidence points to increased mitochondrial iron uptake promot-
ing CS-induced mitochondrial dysfunction, as mice deficient for
iron-responsive element-binding protein 2 (IRP2) were also protect-
ed from mitochondrial and airway dysfunction after CS inhalation
exposure. Supporting the translatability of this finding, IREB2, the
gene encoding IRP2, has been identified as a COPD susceptibility
gene in humans (206, 210). How these mitochondrial regulators
affect the response to air pollutants remains to be determined.

Epithelial dysfunction and senescence. The lung epithelium is
the primary contact for inhaled pathogens and toxins and, thus,
plays an important role in barrier function, pathogen clearance,
and innate immunity (211). Specialized epithelial populations line
the respiratory tract that contribute not only to gas exchange, but
also to mucus production and removal of pathogens by mucocili-
ary clearance. Homeostasis of the lung epithelium is regulated by
region-specific regenerative programs that restore homeostasis after
injury (212). Dysregulation of the immune and regenerative func-
tions of the lung epithelium can contribute to disease (213).

Impaired barrier function has been proposed as a mechanism
by which environmental exposures promote allergic diseases,
including asthma (214). Exposure to ambient particles disrupts bar-
rier integrity in cultured airway epithelial cells through downreg-
ulation of tight junction protein expression (215-218). Increasing
cellular antioxidant capacity reduces inflammatory gene expression
and prevents barrier loss, suggesting a link between oxidative stress,
inflammation, and barrier integrity (215-217). Similar reductions
in tight junction function have been observed in vivo (219), and
mice exposed to intranasal or intratracheal particles from ambi-
ent air or diesel exhaust exhibited significantly elevated allergic
responses to subsequent allergen exposure, including eosinophil
infiltration, mucus metaplasia, and sneezing (219-221).

Mucociliary clearance is another major defense mechanism
affected by air pollution. Studies in rabbits and rats have shown
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mucous metaplasia and ciliary abnormalities after exposure to
either CAPs or wood smoke (222, 223). This is consistent with
in vitro studies on human airway epithelial cultures, which have
shown that particles from ambient air or diesel exhaust increase
expression of mucus secretion genes while ciliary genes and beat
frequency are reduced (224, 225). Impaired mucociliary function
can promote respiratory infections and is implicated in the patho-
genesis of COPD (226, 227).

Senescence affects the ability of the lung to regenerate after
injury and is a hallmark of lung fibrosis (228, 229). Exposure to
ambient particles induces senescence in cultured lung epithelial cells
and fibroblasts (230, 231). Moreover, growth of alveolar organoids
was impaired after exposure to diesel exhaust particles (232). While
effects of air pollution exposure on lung senescence have yet to be
demonstrated in vivo, PM, , and black carbon exposure have been
shown to be inversely correlated with telomere length in circulating
blood cells (233-235). Thus, it is likely that air pollution exposure
affects senescence and regenerative responses in the lung.

Inflammatory responses to air pollution may also impair lung
regeneration and promote fibrosis. Epithelial injury in the lung
leads to development of a keratin 5—-expressing, migratory, “fluid”
epithelial phenotype that promotes wound closure (236). Dysreg-
ulation and persistence of this fluid phenotype is found in PF and
was shown to be promoted by IL-6 (237). Lung and circulating IL-6
levels increased in mice after exposure to CAPs, and IL-6 plasma
levels correlated with PM exposure in humans (171, 173, 186, 238),
potentially providing a link between exposure, epithelial remodel-
ing, and lung fibrosis.

Altered immune response. Air pollution exposure also affects how
the immune populations of the lung respond to inhaled pathogens.
AMs respond to PM exposure with upregulation of inflammatory
cytokines including IL-1p, IL-6, IL-8, TNF-a, and GM-CSF (171,
239). Elimination of AMs in mice prevented pulmonary and sys-
temic increases in IL-6 and TNF-a after either inhalation of CAPs
or intranasal instillation of ambient particles (238, 240). However,
long-term exposure to particles by intranasal instillation has been
shown to decrease the ability of AMs to secrete IL-6 and IL-1f,
resulting in increased death in mice subsequently exposed to influ-
enza (241). In vitro cytokine induction (including IL-6, IFN-B,
IL-1B, and TNF-a) after lipopolysaccharide or virus exposure was
also blunted by previous exposure to particles from ambient air or
diesel exhaust (242-244). Moreover, the ability of macrophages
to conduct phagocytosis was impaired by CAP particle exposure
(245). These changes suggest that PM causes a state of immune
insensitivity, which may predispose to pulmonary infections.

PM exposure also affects lymphocyte populations in the lung.
Dendritic cells exposed to ambient particles promote naive CD4*
T cell proliferation but with a reduced proportion of Thl effectors
(246). A similar reduction in Thl cells was observed after in vivo
inhalation exposure to particles, which correlated with more severe
influenza infection (247). Other in vivo coexposure studies using
PM and allergens have shown that prior PM instillation promotes
development of a mixed Th2/Th17 phenotype that may perpetuate
asthmatic responses (248, 249).

Epigenetic changes. Air pollution exposure may affect multiple
epigenetic modifications, including alterations in DNA methylation
and histone modifications. These changes may result in transient,
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and potentially permanent, changes in gene expression affecting
lung function and causing long-term effects on respiratory health.

Changes in histone modifications due to PM exposure have
been demonstrated in vitro (250), in animal models (251), and
human studies (252, 253). Relatively less is known about how these
changes affect cellular function after exposure to pollution; however,
decreased IL-6 secretion from macrophages after long-term in vitro
exposure to particles was shown to be associated with altered histone
methylation events in the IL-6 promoter after exposure (241).

Exposure to air pollutants has generally been shown to coincide
with global hypomethylation of DNA in various tissues, particular-
ly in DNA repetitive elements. Exposure of rats to traffic-related
pollution resulted in hypomethylation of blood and lung tissue
LINE-1 elements (251). Hypomethylation of circulating leukocyte
LINE-1 elements was shown in humans to correlate with black car-
bon exposure (254, 255). Total blood cell deoxycytidine methyla-
tion and total CpG site methylation was also negatively correlated
with residential PM, , levels (256) and with diesel exhaust exposure
in a controlled setting (257). At the gene level, differential meth-
ylation of gene elements has been shown to increase or decrease
depending on gene and exposure (258, 259). One repeated finding
is that exposure to ambient air pollution, diesel exhaust, or second-
hand smoke is associated with hypermethylation of the FOXP3
gene, which leads to suppression of regulatory T cell function and
increased asthma severity (260-262).

Carrier effects. As discussed above, air pollution can disrupt the
airway epithelial barrier, impair mucociliary clearance of patho-
gens, and impair immune responses, all of which cause greater
susceptibility to viral infection; however, air pollution particles
themselves are also carriers of virus that can influence viral infec-
tivity. Infective influenza virus can be transmitted between animals
on nonrespiratory particles (263). Moreover, a study measuring
ambient influenza virus in Taiwan found that ambient virus was
significantly higher on days in which air particulates were elevated
due to Asian dust storms (264). In a recent study, airborne ambient
particles were shown to bind to influenza virus and promote cellu-
lar viral uptake in a receptor-independent manner. Furthermore,
after nasal instillation, particle-associated virus was taken up deep-
er into the lung than virus alone, causing greater inflammation and
sickness (265).

Conclusions and future directions

The current evidence shows that air pollution exposure is a
major modifiable risk factor for the prevention and management
of respiratory disease. As there is no “safe” level of air pollution
exposure, efforts to reduce air pollution production will need to
be combined with mitigation strategies. Future directions that
need to be taken to improve our understanding and to reduce
the impact of air pollution on human health are summarized
in Table 2. A greater mechanistic understanding of the toxic
effects of air pollutants on the lung and other tissues will be
required to develop strategies to combat the harmful effects of
air pollution exposure. Recent advancements in single-cell tran-
scriptomic and epigenomic techniques will likely play a major
role in increasing the understanding of cellular and organismal
response to inhaled pollutants. Furthermore, as the associa-
tions of air pollution exposure with pulmonary disease become
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Table 2. Future directions

Toxicological and mechanistic studies

Advanced transcriptomic studies (i.e., single-cell RNA-Seg, single-nuclei RNA-Seg, spatial
transcriptomics, etc.) on the effects of air pollutants on the lung and on downstream
organs (heart, vasculature, immune cells).

Incorporation of air pollutant exposure into disease model studies (pulmonary fibrosis,
acute lung injury, viral infection, pneumonia).

Epidemiological studies

Develop further understanding of the role of individual PM components that are most
associated with disease.

Develop ground measurement and crowd source measurement capabilities to increase
resolution of epidemiological studies.

Incorporate wearable personal monitoring into epidemiological studies.
Advocacy

Continued advocacy for increased air quality standards, particularly in the most
vulnerable communities.

increasingly clear, increased integration of exposure studies with
disease modeling studies may help to elucidate the mechanisms
by which exposure promotes pulmonary disease.

Advancements in the measurement of air pollutants will be
crucial to aid epidemiologic studies by allowing for accurate quan-
titative assessment of pollutant exposure at greater resolution.
While older studies relied on pollutant measurements from the
nearest ground-based monitor, often categorizing exposure based
on zip code, actual pollutant levels can vary greatly within these
areas. Statistical modeling advances such as land use regression
analysis and technological advances such as satellite monitoring
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have increased the resolution of epidemiologic studies; however,
these advances still lack fine scale resolution, and data gaps exist
due to cloudy days, for example (266). Continued development of
low-cost monitor networks may help to increase study resolution
and allow for integration of indoor exposures to data sets (267).
Finally, studies capable of identifying specific pollutants in the
complex mixture that are particularly toxic will also be required
to mitigate the effects of air pollution exposure. Analysis of PM
elemental composition by the ELAPSE study has shown that V
content of particles is most consistently associated with mortality
as well as lung cancer incidence (268, 269). Such advancements in
epidemiologic analysis may inform future toxicological studies as
well as lead to policy changes that limit specific pollutants. These
future studies will benefit society as a whole, but they will have an
outsized effect on vulnerable populations, including the aged and
low-income populations, on whom the effects of reducing air pol-
lution production have been most acutely demonstrated (270, 271).
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