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Air pollution is composed of  a complex mixture of  particulate and 
gaseous components. Toxicological and epidemiological study of  
air pollutants began in earnest in the mid-20th century after indus-
trial smog events, including the Great Smog of  London of  1952, 
caused acute rises in hospitalizations and deaths. These studies 
have consistently shown that ambient air pollution is the largest 
environmental health risk factor, contributing to as many as 4.7 
million premature deaths per year (1). Among modifiable risk fac-
tors, air pollution exposure contributes to 8% of  disability adjust-
ed life years, ranking above factors such as high blood pressure, 
smoking, and high fasting plasma glucose (2). Most of  the excess 
deaths linked to air pollution are due to acute ischemic/thrombotic 
cardiovascular events (3); however, chronic air pollution exposure 
is also a significant cause of  respiratory morbidity and mortality. In 
this Review, we discuss the studies that link air pollution exposure 
with respiratory diseases in humans.

Components of air pollution
The components of  air pollution vary greatly depending on the source 
of  production, emission rate, and weather conditions. Gaseous com-
ponents of  air pollution include sulfur dioxide (SO2), nitrogen diox-
ide (NO2), nitric oxide (NO), ozone (O3), and carbon monoxide (CO) 
(4, 5). The particulate component of  air pollution consists of  car-
bon-based particles onto which various metals and organic chemicals 
are adsorbed. Common components of  particulate matter (PM) are 
elemental carbon and organic carbon molecules, such as polyaromat-
ic hydrocarbons (PAHs), nitrates, sulfates, sodium ion, and silicon as 
well as metals, including transition metals (e.g., Cd, Co, Cr, Fe, Ni, 
vanadium [V]) (6, 7) (Figure 1). PM is categorized based on parti-

cle size. Coarse particles with a diameter of  less than 10 μm (PM10) 
are derived from both natural and industrial sources. These particles 
do not generally penetrate beyond the upper airway. Fine particles 
have a diameter of  less than 2.5 μm (PM2.5), and ultrafine particles 
(nanoparticles) are those that are less than 0.1 μm diameter (PM0.1). 
They are produced by combustion of  fossil fuels and penetrate into 
the small airways and alveoli (8, 9). This makes PM2.5 and PM0.1 
greater threats to respiratory health than PM10.

PM and NO2 (along with O3, which is a secondary pollutant) 
are the main industrial and traffic-related air pollutants measured in 
the industrialized world. SO2 is produced from combustion of  high 
sulfur-containing fuels such as coal, and its levels have decreased 
in most of  the world (6, 10). Indoor production of  air pollutants 
through cooking and heating are also major sources of  exposure-re-
lated health effects, particularly in the developing world, where 
burning of  biomass is a major source of  energy (11). Due to the 
coproduction of  air pollutants, it is often difficult to determine the 
independent contribution of  each pollutant with health effects; 
however, levels of  PM2.5 have consistently been correlated negative-
ly with cardiovascular and respiratory outcomes. Under the Clean 
Air Act, the US Environmental Protection Agency regulates PM2.5 
and PM10 levels to establish National Ambient Air Quality Stan-
dards to protect public health and the environment (12) (Table 1).

Epidemiology
Time-series studies. The Great Smog of  London directly contributed 
to an estimated 12,000 deaths, with tens of  thousands more suffer-
ing adverse health effects afterward (13, 14). Similar observations 
linked with industrial smog events in Europe and the United States 
also provided evidence for the adverse effects of  air pollution expo-
sure on health; however, it was not until the late 20th century that 
a greater understanding of  confounding factors such as weather, 
temperature, and lag effects as well as advances in statistical analy-
sis allowed for epidemiological associations between air pollution 
and health outcomes to become apparent.

Air pollution comprises a complex mixture of gaseous and particulate components. Particulate matter (PM) air pollution is 
associated with 4.7 million premature deaths per year. Among modifiable risk factors, air pollution exposure contributes 
to 8% of disability adjusted life years and ranks above factors such as high blood pressure, smoking, and high fasting 
plasma glucose. As the site of entry, exposure to PM air pollution causes respiratory symptoms and is a significant cause of 
respiratory morbidity and mortality. In this Review, we discuss the studies that link air pollution exposure with respiratory 
diseases. We review the epidemiological evidence linking PM exposure and lung diseases including asthma, chronic 
obstructive pulmonary disease, pulmonary fibrosis, pneumonia, acute respiratory distress syndrome, and lung cancer. We 
also provide an overview of current knowledge about the mechanisms by which PM exerts its biological effects leading to 
adverse health effects in the respiratory system.

Particulate matter air pollution: effects on the 
respiratory system
Robert B. Hamanaka and Gökhan M. Mutlu

Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, USA.

Conflict of interest: The authors have declared that no conflict of interest exists.
Copyright: © 2025, Hamanaka et al. This is an open access article published under 
the terms of the Creative Commons Attribution 4.0 International License.
Reference information: J Clin Invest. 2025;135(17):e194312.  
https://doi.org/10.1172/JCI194312.

https://doi.org/10.1172/JCI194312


The Journal of Clinical Investigation   R E V I E W

2 J Clin Invest. 2025;135(17):e194312  https://doi.org/10.1172/JCI194312

there is no threshold value of  PM pollution below which positive 
associations are not detectable between exposure and deaths.

Cohort studies. The repeated finding that there exists no threshold 
below which air pollution levels are considered “safe” has led to three 
recent long-term studies in areas of  low ambient pollution in the Unit-
ed States (US Medicare Study) (27), Canada (Mortality-Air Pollution 
Associations in Low-Exposure Environments [MAPLE] Study) (28), 
and Europe (Effects of  Low-Level Air Pollution: A Study in Europe 
[ELAPSE Study]) (29), which use large administrative cohorts and 
advanced exposure assessment techniques to determine the effects 
of  air pollution on health below current air quality standards. All 
three studies found associations between PM

2.5 levels and mortality 
down to the lowest observed PM2.5 level of  4 μg/m3 (30). Significant 
correlations between NO2 and PM2.5 levels were observed with respi-
ratory-related mortality at levels below the current WHO guideline 
values for both pollutants (29, 31). The findings from these new large 
studies mostly corroborate the results from older studies using small-
er cohorts, including the Harvard Six Cities Study, the American 
Cancer Association Cancer Prevention Study, and European Study 
of  Cohorts for Air Pollution Effects (ESCAPE) (32–34).

Interventional and other studies. The implementation of  the 
Clean Air Act in 1970 resulted in a progressive decline in air pol-
lution levels in the United States. While the decline has occurred 

Large, multicity epidemiological studies, including the Nation-
al Morbidity, Mortality, and Air Pollution Study (NMMAPS) and 
Air Pollution and Health: A European Approach (APHEA) studies, 
showed that increases in PM and other pollutants were associated 
with significant increases in all-cause mortality (15–19). Increased 
hospitalizations from cardiovascular and respiratory events were 
also associated with increases in PM levels (20, 21).

The recent Multi-City Multi-Country (MCC) study collect-
ed data from over 600 cities, mainly in North America, Europe, 
and Eastern Asia, and reported similar findings to those of  the 
NMMAPS and APHEA studies, associating PM

2.5 concentrations 
with total, cardiovascular, and respiratory mortality (22, 23). This 
study showed that associations between mortality and PM con-
centrations were strongest in locations with lower average annual 
PM concentrations. This finding is consistent with previous stud-
ies that showed a biphasic relationship between PM and mortality 
in which a steep concentration-response relationship is observed 
at lower PM concentrations, while the curve flattened at higher 
concentrations (24–26). This flattening of  the curve is interpreted 
to be due to the higher basal PM levels seen in more polluted cit-
ies; however, other factors such as younger populations in devel-
oping countries may also play a role. The MCC study also con-
firmed the findings of  the NMMAPS and APHEA studies that 

Figure 1. Particulate matter size and components. (A) Images of urban particulate matter (PM) generated by scanning electron microscopy. Original 
magnification, ×2,000 (left), ×10,000 (center), and ×50,000 (right). (B) Relative sizes of PM10 (coarse), PM2.5 (fine), and PM0.1 (ultrafine or nanoparticles) 
in comparison to alveolar macrophage and influenza A virus (IAV). (C) Common components of PM. Other category includes metals (Al, K, Ca), transition 
metals (Fe, Zn, Cd, Ti, Ag, Cu, Mn, Au, Mg, Hg, Cr, Zr, Ni, V, and Co), nonmetals, halogens, and lanthanides (7, 272).
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cardiovascular and respiratory diseases have been seen in South-
ern California during increased wildfire activity (57–59). Wildfire 
smoke exposure in California is estimated to have caused over 
50,000 premature deaths between 2008 and 2018 (60). Increased 
asthma- and cardiopulmonary-related hospital visits were also 
found after wildfire smoke from Quebec spread throughout the 
northeastern United States in June 2023 (61–63).

The destruction of  the New York World Trade Center on Sep-
tember 11, 2001, resulted in an atmospheric dust plume containing 
thousands of  tons of  PM from pulverized building materials and 
combustion products of  the fires (64). Many first responders experi-
enced persistent cough accompanied by respiratory symptoms that 
required medical leave for at least four weeks (65, 66). Extended 
analysis of  lung function from first responders showed an acute 
decline in lung function (measured by forced expiratory volume in 
1 second [FEV

1]) that did not recover even after years of  follow-up 
(67, 68). Asthma, persistent airway hyperreactivity, obstructive air-
way disease, and interstitial lung disease have been associated with 
exposure to the World Trade Center dust (69–72).

Exposure to air pollution and respiratory disease
Strong associations exist between air pollution exposure and total 
mortality as well as cardiovascular and respiratory mortality. The 
MCC study showed that each 10 μg/m3 increase in PM concen-
tration was associated with a 0.47% (95% CI, 0.35%–0.58%) rise 
in respiratory mortality (22). Using International Classification of  
Diseases (ICD) codes, the ELAPSE project studied four outcomes: 
nonaccidental, cardiovascular, nonmalignant respiratory, and lung 
cancer mortality. Significant associations were found between 
levels of  PM2.5 and all four mortality outcomes, with lung cancer 
mortality showing the strongest relationship (29). Follow-up stud-
ies showed that PM2.5 levels significantly correlated with incidence 
of  asthma, COPD, and lung cancer (73–75). The US Medicare 
Study, which did not stratify mortality based on cause, found that 
all-cause and respiratory hospital admissions were significantly 
correlated with exposure to PM2.5 (76). Below we discuss the epi-
demiologic and experimental evidence for the associations of  air 
pollution exposure with lung diseases.

gradually over an extended period of  time, extended analysis 
of  the NMMAPS and Harvard Six Cities Study revealed that 
reductions in PM2.5 levels contributed to significant increases in 
life expectancy (35–37). More drastic changes in air pollution 
occurred in China after the implementation of  the Air Pollution 
Prevention and Control Action Plan (APPCAP) in 2013. Between 
2013 and 2017, annual average PM2.5 concentrations decreased by 
one-third, leading to an estimated 47,000 fewer deaths in the 47 
cities studied (38).

Recent years have offered several other natural experiments 
with which the association of  abrupt changes in air pollution with 
health effects can be measured. Before and during the 2008 Olym-
pic Games, Chinese government implemented emission control 
policies in Beijing and the surrounding area that reduced particu-
late and gaseous pollutants, including an average 31% decrease in 
PM2.5 (39). This was associated with reductions in pulmonary and 
systemic markers of  inflammation in study participants (40–42) 
as well as reductions in emergency room visits for cardiovascular 
and asthma-related events and a decrease in cardiovascular mor-
tality (42–47).

The COVID-19 pandemic led to wide-spread societal shut-
downs to limit transmission of  the SARS-CoV-2 virus. These shut-
downs led to a 31% reduction in PM2.5 levels measured across 34 
countries during the shutdown periods (48). Early studies have 
shown that during the time of  these policies, significant reductions 
in non–COVID-19–associated mortality were detected, to which 
reductions in traffic accidents and exposure to air pollution are 
proposed as causal (49, 50). Air pollution monitoring and epidemi-
ological modeling allowed for the calculation of  the avoided mor-
tality due to improvements in air quality. Reductions in premature 
mortality were particularly strong in China, which had the most 
stringent COVID-19 containment policies (51–53).

Exposure to wildfire smoke is a growing public health con-
cern, with pollution due to wildfires increasingly influencing aver-
age annual PM

2.5 concentrations in the United States (54). Health 
effects of  wildfire smoke on cardiovascular and respiratory-related 
deaths are similar to those seen with industry- and traffic-related 
pollution (55, 56). Increases in hospital visits and admissions for 

Table 1. National ambient air quality standards

Pollutant Averaging time Standard Criteria
PM2.5 24 hours

1 year
35 μg/m3

9 μg/m3
98th percentile, averaged over 3 years
Annual mean, averaged over 3 years

PM10 24 hours 150 μg/m3 Not to be exceeded more than once per year on average over 3 years

Sulfur dioxide 1 hour
1 year

75 ppb
10 ppb

99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
Annual mean, averaged over 3 years

Nitrogen dioxide 1 hour
1 year

100 ppb
53 ppb

98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
Annual mean

Ozone 8 hours 0.070 ppm Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years

Carbon monoxide 8 hours
1 hour

9 ppm
35 ppm

Not to be exceeded more than once per year

Lead Rolling 3 month average 0.15 μg/m3 Maximum arithmetic mean of 3 consecutive monthly means in a 3-year period

Adapted from ref. 12. Information on primary standards is shown. Primary standards provide public health, protection including protecting the health of 
sensitive populations such as people with asthma, children, and the elderly. ppb, parts per billion by volume; ppm, parts per million by volume.
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PM2.5 levels as well as wildfire smoke and incidence of  influenza 
infection (122–125). Correlations of  PM2.5 with respiratory syncy-
tial virus and SARS-CoV2 infections have also been reported (125–
128). While bacterial pneumonias are not as commonly diagnosed 
as viral pneumonias, mycoplasma pneumonia as well as tubercu-
losis have also been positively correlated with exposure to PM2.5 
(129, 130), suggesting that the effects of  air pollution exposure on 
pneumonia are not limited to viral infections.

Acute respiratory distress syndrome. Although acute respiratory 
distress syndrome (ARDS) has heterogeneous causes, including 
pneumonia, sepsis, trauma, or aspiration, downstream common 
pathways include inflammatory responses, immune infiltration 
into the lung, increased endothelial and epithelial permeability, and 
dysregulated coagulation (131, 132). Increasing findings suggest 
that air pollution exposure increases the likelihood of  developing 
ARDS. A cohort study of  critically ill patients stratified by air pol-
lution exposures at their residences showed that the 3-year average 
exposure to PM

2.5, is significantly associated with development of  
ARDS (133). Exposure to PM2.5 was also linked with an increased 
90-day mortality rate from ARDS (134).

SARS-CoV-2 infection during the COVID-19 pandemic was a 
significant cause of  ARDS. Several studies have shown correlations 
between residential exposure to air pollution and severity of  SARS-
CoV-2 infection and mortality (135–138). Annual PM2.5 exposure 
most closely correlated with COVID-19 hospitalization and death. 
Similar findings were found when exposure to wildfire smoke was 
correlated with COVID-19 cases and deaths (139).

Pulmonary fibrosis. Compared with other lung diseases, the 
link between pulmonary fibrosis (PF) and air pollution exposure 
has only recently been uncovered. The first linkages between PF 
and air pollution were associations between acute exacerbations 
and increases in NO2 and O3 levels (140). Patients with PF have 
since been shown to exhibit lower lung function (FVC) (141), 
increased rate of  FVC decline (142), and increased rates of  mor-
tality associated with exposure level to PM2.5 (143). Although 
these were relatively small studies, a recent larger prospective 
cohort study showed an inverse correlation between PM2.5 expo-
sure and transplant-free survival. Patients with higher PM2.5 
exposure also had a lower baseline FVC and more rapid FVC 
decline (144). Another large retrospective study showed that dai-
ly hospital admissions based on ICD codes for PF correlated with 
PM2.5 levels, both on the day of  admission and average levels in 
the preceding 4 days (145). There was no correlation when anal-
ysis was performed on average pollutant levels for the preceding 
30 days, providing evidence of  the acute impairment caused by 
pollution in patients with PF.

More recently, evidence has emerged that incidence of  PF also 
correlates with chronic exposure to air pollution. Each interquar-
tile range increase in PM2.5 at residential addresses of  UK Biobank 
participants was found to correlate with a hazard ratio of  1.09 
(95% CI, 1.02–1.17) for incidence of  PF (146). High attenuation 
area (HAA) and interstitial lung abnormalities (ILA) are chest 
tomography-based measures used to identify subclinical forms of  
interstitial lung diseases and PF. Exposure to PM correlated with 
the progression of  HAA in a prospective cohort enrolled in the 
Multi-Ethnic Study of  Atherosclerosis (MESA) (147). Elemen-
tal carbon (a component of  PM) exposure correlated with both 

Asthma. Early experiments exposing humans to SO2 showed that 
patients with asthma have greater sensitivity to pollutant exposure 
than individuals acting as controls (77–79). Subsequent studies have 
consistently shown that the average local levels of  air pollutants, 
including PM2.5, strongly correlate with severity of  asthma symptoms 
and medication usage (80–83), emergency department visits (84–87), 
and hospitalizations (88–90). A classic example of  these observations 
centers around a labor dispute that led to the closing of  a steel mill in 
Utah Valley for one year over 1986 and 1987. This led to an over 50% 
reduction in the mean daily high PM10 levels. Inpatient admissions to 
local hospitals for children with bronchitis or asthma similarly halved 
during the period that the mill was closed (91, 92).

It is also increasingly accepted that air pollution exposure caus-
es new-onset asthma, with evidence being particularly strong for 
childhood exposure. Birth cohort studies that track residential air 
pollution exposure have consistently shown that local air pollution, 
particularly PM2.5 and NO2 levels, correlate with development of  
childhood asthma (93–96). The Southern California Children’s 
Health Study found that children who live in high pollution areas, 
particularly near major roadways, show reduced lung function (as 
measured by FEV1, forced vital capacity [FVC], and maximum 
mid-expiratory flow rate [MMEF]) and higher incidence of  asth-
ma compared with children from less-polluted areas (97–101). 
Individuals who moved during the course of  the study to areas of  
lower pollution showed increased rate of  MMEF growth compared 
with participants who did not move (102). As air quality increased 
during the course of  the study, improvements in lung function mea-
surements and reduced incidence of  asthma were noted (103, 104).

COPD. As with asthma, patients with COPD suffer increases 
in disease-related health events after increases in local air pollu-
tion. Daily gaseous and particulate pollutant levels correlate with 
reduced respiratory function (FEV

1 and FVC) and recorded respi-
ratory symptoms and medication usage by patients with COPD 
(105–108). Emergency room visits, hospital admissions, and mor-
tality due to COPD are positively correlated with elevations in daily 
particulate and gaseous pollutants (109–114). Patients with COPD 
are also more susceptible to mortality after local increases in PM2.5 
than the general population (115).

While tobacco smoking is the greatest risk factor for COPD, 
increasing evidence suggests that air pollution exposure is also a 
risk factor. Two recent large cross-sectional studies have shown 
that local PM2.5 levels correlate significantly with the incidence of  
COPD (116, 117). A large longitudinal study showed that each 5 
μg/m3 increase in 2-year average PM2.5 level was associated with a 
decrease of  1.18% in FVC and 1.46% decrease in FEV1. Compared 
with the participants exposed to the lowest PM2.5 levels, patients 
with the highest exposure had a hazard ratio of  1.39 (95% CI, 1.16–
1.46) for COPD development (118).

Pneumonia. Correlations of  air pollution exposure with respi-
ratory infections have been observed for nearly 100 years (119). 
Recent estimates suggest that every 10 μg/m3 increase in PM2.5 is 
associated with a 5.4% increase in respiratory tract infections in the 
Medicare population (120). Children also show heightened sensi-
tivity to PM air pollution, which significantly correlates with pneu-
monia incidence (121).

Influenza infection is the best studied cause of  pollution-associ-
ated pneumonia. Multiple studies have shown correlations between 

https://doi.org/10.1172/JCI194312


The Journal of Clinical Investigation      R E V I E W

5J Clin Invest. 2025;135(17):e194312  https://doi.org/10.1172/JCI194312

patient (157). Air pollution exposure is also correlated with neg-
ative outcomes after lung transplantation. Posttransplant develop-
ment of  bronchiolitis obliterans or chronic lung allograft dysfunc-
tions are associated with residential traffic density and proximity 
to a major roadway (158–160). Transplant recipients with higher 
PM2.5 exposure exhibited reduced FVC and FEV1 and increased 
rates of  graft failure or death (161–163).

Biologic mechanisms
While the epidemiological evidence for the effect of  PM exposure 
on lung health is increasingly clear, insight into the mechanisms by 
which PM exerts its harmful effects is also increasingly understood 
(Figure 2). Experimental systems have been designed to allow 
study of  both in vivo and in vitro effects of  exposure to air pollu-
tion particulates. Ambient fine particle concentrators enrich ambi-
ent PM2.5 from the local air, allowing for inhalation of  concen-
trated ambient particles (CAPs) by humans or animal test subjects 
(164). Particles can also be collected on filters and used to treat cul-
tured cells in vitro or can be suspended and instilled into the lungs 
of  test animals when inhalation systems are unavailable. Standard 
reference materials (SRMs), such as SRM1649 Urban Dust and 
SRM2786, which are commercially available, and certified by the 
National Institute of  Standards and Technology, allow for in vitro 
exposures of  particles that are uniform across laboratories (165). 
Below, we discuss the current understanding of  the mechanisms by 
which PM exposure leads to lung disease.

ILA incidence and progression in participants of  the Framingham 
Heart Study (148). These findings suggest that air pollution expo-
sure may promote the earliest stages of  subclinical interstitial and 
fibrotic lung diseases.

Lung cancer. Lung cancer is leading cause of  cancer-associated 
death, and while smoking is the primary risk factor for lung cancer, 
one-third of  lung cancer occurs in nonsmokers, making lung cancer 
in nonsmokers the fifth leading cause of  cancer-associated death 
(149). The connection between air pollution exposure and lung can-
cer has been acknowledged since the 1950s (150), and large epide-
miological studies have correlated exposure to multiple pollutants, 
particularly PM

2.5, with both lung cancer incidence (75, 151, 152) 
and mortality (29, 153, 154).

Air pollution exposure has also been shown to decrease sur-
vival after lung cancer diagnosis. After adjustment for demo-
graphic factors, tumor characteristics at diagnosis, and treatment, 
patients with early-stage tumors living with low PM2.5 exposure 
(<10 μg/m3) had a median survival of  5.7 years compared with 
2.4 years for patients with high PM2.5 exposure (>16 μg/m3) (155). 
Survival after lobectomy was also shown to be reduced by high 
exposure to PM2.5 (156).

Lung transplant. As would be expected from the negative effects 
on pollution on PF and COPD outcomes, annual average PM2.5 
levels at the residential addresses of  lung transplant candidates are 
associated with increased rates of  removal from transplant waiting 
lists either due to mortality or from clinical deterioration of  the 

Figure 2. Mechanisms by which PM air pollution affects the respiratory system. Inhaled PM induces an inflammatory response in the lung. PM acts on the 
cells of the lung, including airway and alveolar epithelial cells and macrophages, causing mitochondrial ROS-dependent transcriptional responses, including 
NF-κB and NRF2 activation. Oxidative stress promotes production of proinflammatory cytokines and oxidative damage. These PM-induced changes cause 
lung and systemic inflammation (due to spillover of cytokines into the circulation), altered immune response, and epigenetic changes. Clinically, PM-induced 
effects are exhibited through the development of respiratory symptoms such as cough and dyspnea in healthy individuals. PM exposure is associated with the 
development, progression, and exacerbation of lung diseases, including asthma, COPD, pulmonary fibrosis, pneumonia, ARDS, and lung cancer.
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Oxidative stress and inflammation. It is widely understood that air 
pollution exerts many of  its biologic effects by causing oxidative 
stress, which promotes subsequent inflammatory responses. Metals 
contained in PM are capable of  redox cycling, and other chemicals 
adsorbed onto particles, including PAHs, can generate redox-active 
quinones. NO2 and O3 are reactive and lead to free radical accumula-
tion (166, 167). Increases in ambient PM2.5 or controlled exposure to 
CAPs are associated with increased levels of  DNA and lipid oxida-
tion products in blood, urine, and breath condensate (40, 168, 169). 
These markers correlate with inflammatory markers such as IL-1β, 
IL-6, GM-CSF, TNF-α, fibrinogen, and C-reactive protein (170–173).

At the cellular level, in vitro exposure of lung cells, including 
nasal, airway, and lung epithelial cells, macrophages, and endothelial 
cells to particles isolated either from ambient air or from diesel exhaust 
leads to elevations in cellular reactive oxygen species (ROS) levels 
(174–182). This stress environment activates transcriptional programs, 
including those regulated by the oxidative stress–responsive transcrip-
tion factor NRF2 and the proinflammatory transcription factor NF-κB 
(178, 183, 184). Oxidative stress is required for the biologic effects of  
PM exposure, as genetic inhibition of oxidant production or treatment 
of cells with antioxidants is sufficient to inhibit inflammatory cytokine 
production and proapoptotic signaling (174, 175, 185–188). NRF2-de-
ficient mice exhibited greater lung inflammation after a 24-week inha-
lation exposure to CAPs, demonstrating the key role that oxidative 
stress plays in air pollution–induced inflammation (189).

The oxidative and inflammatory environment caused by expo-
sure to air pollution likely plays an important role in the develop-
ment of  inflammatory airway diseases. Markers of  oxidative stress 
are increased in the blood, urine, and breath condensate of  patients 
with asthma and COPD (190, 191). Air pollution–linked cyto-
kines such as IL-1β, IL-6, and TNF-α are highly elevated in the 
lungs of  patients with COPD and play roles in modifying asthma 
phenotypes (192, 193). Furthermore, both diseases are associated 
with gene polymorphisms related to oxidative stress phenotypes, 
suggesting that an individual’s sensitivity to oxidative stress may 
regulate susceptibility to airway disease (194, 195).

Increased lung inflammation may also be an important can-
cer-promoting mechanism of air pollution. In a recent study, tumor 
formation in EGFR- or KRAS-mutant mice was accelerated by intra-
tracheal instillation of  exposure to PM (SRM2786) for 3 weeks (196). 
Despite this difference in tumor burden, there was no significant 
increase in mutational burden in the PM-exposed mice. The investi-
gators demonstrated that production of  IL-1β by lung macrophages 
promotes expansion of  mutant cells and that inhibition of  IL-1β 
using neutralizing antibodies prevented PM-promoted tumor forma-
tion. In nonmalignant human lung tissue from two separate clinical 
cohorts, EGFR and KRAS mutations were present in 18% and 53% 
of samples, respectively (196). Thus, these findings suggest that the 
primary mechanism by which air pollution exposure promotes can-
cer is through inflammatory effects on cells with preexisting muta-
tions. Indeed, a study of  UK Biobank participants in which single 
nucleotide polymorphism data were analyzed alongside air pollution 
exposure data showed an additive interaction between genetic risk 
factors and air pollution exposure (197). High air pollution exposure, 
particularly to PM

2.5, increased the risk of  developing lung cancer in 
all participants, with patients with high genetic risk scores and high 
pollution exposure at the greatest risk for lung cancer.

Mitochondrial dysfunction. While air pollution gases and PM-ad-
sorbed chemicals and metals can generate free radicals, increasing 
evidence points to changes in mitochondrial function and mito-
chondrial production of  ROS playing key roles in the response to 
air pollution. Air pollution particles have been shown to accumulate 
in the mitochondria of  cultured airway epithelial and macrophages, 
leading to changes in mitochondrial morphology and increased 
oxidative stress (179, 198–203). Lung cells, including alveolar 
macrophages (AMs) and epithelial cells, that have been genetical-
ly engineered to be deficient in mitochondrial ROS production, or 
treated with mitochondria-targeted antioxidants or electron trans-
port chain inhibitors, exhibit attenuated inflammatory responses to 
particles in culture (175, 186, 203, 204).

Similar to air pollution particulates, exposure of  cells to cig-
arette smoke (CS) extract display altered mitochondrial function 
and increased ROS production (205–207). These mitochondrial 
changes are also observed in airway epithelial cells from CS-ex-
posed mice and from patients with COPD (207–209). Alterations 
in mitochondrial turnover may play a role in linking mitochondri-
al dysfunction with lung phenotypes, as the mitophagy regulator 
PINK1 was found to be highly expressed in lung tissue of  patients 
with COPD. Furthermore, PINK1-deficient mice were protected 
against mitochondrial dysfunction, defects in mucociliary clear-
ance, and airspace enlargement after CS exposure (207). Other 
evidence points to increased mitochondrial iron uptake promot-
ing CS-induced mitochondrial dysfunction, as mice deficient for 
iron-responsive element-binding protein 2 (IRP2) were also protect-
ed from mitochondrial and airway dysfunction after CS inhalation 
exposure. Supporting the translatability of  this finding, IREB2, the 
gene encoding IRP2, has been identified as a COPD susceptibility 
gene in humans (206, 210). How these mitochondrial regulators 
affect the response to air pollutants remains to be determined.

Epithelial dysfunction and senescence. The lung epithelium is 
the primary contact for inhaled pathogens and toxins and, thus, 
plays an important role in barrier function, pathogen clearance, 
and innate immunity (211). Specialized epithelial populations line 
the respiratory tract that contribute not only to gas exchange, but 
also to mucus production and removal of  pathogens by mucocili-
ary clearance. Homeostasis of  the lung epithelium is regulated by 
region-specific regenerative programs that restore homeostasis after 
injury (212). Dysregulation of  the immune and regenerative func-
tions of  the lung epithelium can contribute to disease (213).

Impaired barrier function has been proposed as a mechanism 
by which environmental exposures promote allergic diseases, 
including asthma (214). Exposure to ambient particles disrupts bar-
rier integrity in cultured airway epithelial cells through downreg-
ulation of  tight junction protein expression (215–218). Increasing 
cellular antioxidant capacity reduces inflammatory gene expression 
and prevents barrier loss, suggesting a link between oxidative stress, 
inflammation, and barrier integrity (215–217). Similar reductions 
in tight junction function have been observed in vivo (219), and 
mice exposed to intranasal or intratracheal particles from ambi-
ent air or diesel exhaust exhibited significantly elevated allergic 
responses to subsequent allergen exposure, including eosinophil 
infiltration, mucus metaplasia, and sneezing (219–221).

Mucociliary clearance is another major defense mechanism 
affected by air pollution. Studies in rabbits and rats have shown 
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mucous metaplasia and ciliary abnormalities after exposure to 
either CAPs or wood smoke (222, 223). This is consistent with 
in vitro studies on human airway epithelial cultures, which have 
shown that particles from ambient air or diesel exhaust increase 
expression of  mucus secretion genes while ciliary genes and beat 
frequency are reduced (224, 225). Impaired mucociliary function 
can promote respiratory infections and is implicated in the patho-
genesis of  COPD (226, 227).

Senescence affects the ability of  the lung to regenerate after 
injury and is a hallmark of  lung fibrosis (228, 229). Exposure to 
ambient particles induces senescence in cultured lung epithelial cells 
and fibroblasts (230, 231). Moreover, growth of  alveolar organoids 
was impaired after exposure to diesel exhaust particles (232). While 
effects of  air pollution exposure on lung senescence have yet to be 
demonstrated in vivo, PM

2.5 and black carbon exposure have been 
shown to be inversely correlated with telomere length in circulating 
blood cells (233–235). Thus, it is likely that air pollution exposure 
affects senescence and regenerative responses in the lung.

Inflammatory responses to air pollution may also impair lung 
regeneration and promote fibrosis. Epithelial injury in the lung 
leads to development of  a keratin 5–expressing, migratory, “fluid” 
epithelial phenotype that promotes wound closure (236). Dysreg-
ulation and persistence of  this fluid phenotype is found in PF and 
was shown to be promoted by IL-6 (237). Lung and circulating IL-6 
levels increased in mice after exposure to CAPs, and IL-6 plasma 
levels correlated with PM exposure in humans (171, 173, 186, 238), 
potentially providing a link between exposure, epithelial remodel-
ing, and lung fibrosis.

Altered immune response. Air pollution exposure also affects how 
the immune populations of  the lung respond to inhaled pathogens. 
AMs respond to PM exposure with upregulation of  inflammatory 
cytokines including IL-1β, IL-6, IL-8, TNF-α, and GM-CSF (171, 
239). Elimination of  AMs in mice prevented pulmonary and sys-
temic increases in IL-6 and TNF-α after either inhalation of  CAPs 
or intranasal instillation of  ambient particles (238, 240). However, 
long-term exposure to particles by intranasal instillation has been 
shown to decrease the ability of  AMs to secrete IL-6 and IL-1β, 
resulting in increased death in mice subsequently exposed to influ-
enza (241). In vitro cytokine induction (including IL-6, IFN-β, 
IL-1β, and TNF-α) after lipopolysaccharide or virus exposure was 
also blunted by previous exposure to particles from ambient air or 
diesel exhaust (242–244). Moreover, the ability of  macrophages 
to conduct phagocytosis was impaired by CAP particle exposure 
(245). These changes suggest that PM causes a state of  immune 
insensitivity, which may predispose to pulmonary infections.

PM exposure also affects lymphocyte populations in the lung. 
Dendritic cells exposed to ambient particles promote naive CD4+ 
T cell proliferation but with a reduced proportion of  Th1 effectors 
(246). A similar reduction in Th1 cells was observed after in vivo 
inhalation exposure to particles, which correlated with more severe 
influenza infection (247). Other in vivo coexposure studies using 
PM and allergens have shown that prior PM instillation promotes 
development of  a mixed Th2/Th17 phenotype that may perpetuate 
asthmatic responses (248, 249).

Epigenetic changes. Air pollution exposure may affect multiple 
epigenetic modifications, including alterations in DNA methylation 
and histone modifications. These changes may result in transient, 

and potentially permanent, changes in gene expression affecting 
lung function and causing long-term effects on respiratory health.

Changes in histone modifications due to PM exposure have 
been demonstrated in vitro (250), in animal models (251), and 
human studies (252, 253). Relatively less is known about how these 
changes affect cellular function after exposure to pollution; however, 
decreased IL-6 secretion from macrophages after long-term in vitro 
exposure to particles was shown to be associated with altered histone 
methylation events in the IL-6 promoter after exposure (241).

Exposure to air pollutants has generally been shown to coincide 
with global hypomethylation of  DNA in various tissues, particular-
ly in DNA repetitive elements. Exposure of  rats to traffic-related 
pollution resulted in hypomethylation of  blood and lung tissue 
LINE-1 elements (251). Hypomethylation of  circulating leukocyte 
LINE-1 elements was shown in humans to correlate with black car-
bon exposure (254, 255). Total blood cell deoxycytidine methyla-
tion and total CpG site methylation was also negatively correlated 
with residential PM

2.5 levels (256) and with diesel exhaust exposure 
in a controlled setting (257). At the gene level, differential meth-
ylation of  gene elements has been shown to increase or decrease 
depending on gene and exposure (258, 259). One repeated finding 
is that exposure to ambient air pollution, diesel exhaust, or second-
hand smoke is associated with hypermethylation of  the FOXP3 
gene, which leads to suppression of  regulatory T cell function and 
increased asthma severity (260–262).

Carrier effects. As discussed above, air pollution can disrupt the 
airway epithelial barrier, impair mucociliary clearance of  patho-
gens, and impair immune responses, all of  which cause greater 
susceptibility to viral infection; however, air pollution particles 
themselves are also carriers of  virus that can influence viral infec-
tivity. Infective influenza virus can be transmitted between animals 
on nonrespiratory particles (263). Moreover, a study measuring 
ambient influenza virus in Taiwan found that ambient virus was 
significantly higher on days in which air particulates were elevated 
due to Asian dust storms (264). In a recent study, airborne ambient 
particles were shown to bind to influenza virus and promote cellu-
lar viral uptake in a receptor-independent manner. Furthermore, 
after nasal instillation, particle-associated virus was taken up deep-
er into the lung than virus alone, causing greater inflammation and 
sickness (265).

Conclusions and future directions
The current evidence shows that air pollution exposure is a 
major modifiable risk factor for the prevention and management 
of  respiratory disease. As there is no “safe” level of  air pollution 
exposure, efforts to reduce air pollution production will need to 
be combined with mitigation strategies. Future directions that 
need to be taken to improve our understanding and to reduce 
the impact of  air pollution on human health are summarized 
in Table 2. A greater mechanistic understanding of  the toxic 
effects of  air pollutants on the lung and other tissues will be 
required to develop strategies to combat the harmful effects of  
air pollution exposure. Recent advancements in single-cell tran-
scriptomic and epigenomic techniques will likely play a major 
role in increasing the understanding of  cellular and organismal 
response to inhaled pollutants. Furthermore, as the associa-
tions of  air pollution exposure with pulmonary disease become 
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have increased the resolution of  epidemiologic studies; however, 
these advances still lack fine scale resolution, and data gaps exist 
due to cloudy days, for example (266). Continued development of  
low-cost monitor networks may help to increase study resolution 
and allow for integration of  indoor exposures to data sets (267). 
Finally, studies capable of  identifying specific pollutants in the 
complex mixture that are particularly toxic will also be required 
to mitigate the effects of  air pollution exposure. Analysis of  PM 
elemental composition by the ELAPSE study has shown that V 
content of  particles is most consistently associated with mortality 
as well as lung cancer incidence (268, 269). Such advancements in 
epidemiologic analysis may inform future toxicological studies as 
well as lead to policy changes that limit specific pollutants. These 
future studies will benefit society as a whole, but they will have an 
outsized effect on vulnerable populations, including the aged and 
low-income populations, on whom the effects of  reducing air pol-
lution production have been most acutely demonstrated (270, 271).
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increasingly clear, increased integration of  exposure studies with 
disease modeling studies may help to elucidate the mechanisms 
by which exposure promotes pulmonary disease.

Advancements in the measurement of  air pollutants will be 
crucial to aid epidemiologic studies by allowing for accurate quan-
titative assessment of  pollutant exposure at greater resolution. 
While older studies relied on pollutant measurements from the 
nearest ground-based monitor, often categorizing exposure based 
on zip code, actual pollutant levels can vary greatly within these 
areas. Statistical modeling advances such as land use regression 
analysis and technological advances such as satellite monitoring 

Table 2. Future directions

Toxicological and mechanistic studies
Advanced transcriptomic studies (i.e., single-cell RNA-Seq, single-nuclei RNA-Seq, spatial 
transcriptomics, etc.) on the effects of air pollutants on the lung and on downstream 
organs (heart, vasculature, immune cells).

Incorporation of air pollutant exposure into disease model studies (pulmonary fibrosis, 
acute lung injury, viral infection, pneumonia).

Epidemiological studies
Develop further understanding of the role of individual PM components that are most 
associated with disease.

Develop ground measurement and crowd source measurement capabilities to increase 
resolution of epidemiological studies.

Incorporate wearable personal monitoring into epidemiological studies.

Advocacy
Continued advocacy for increased air quality standards, particularly in the most 
vulnerable communities.
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