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Introduction
Among the severe manifestations of  systemic lupus erythemato-
sus (SLE), lupus nephritis (LuN) is the most common (1–5). Up to 
50% of  SLE patients develop lupus nephritis, in many cases neces-
sitating treatment with toxic immunosuppressive therapies such as 
cyclophosphamide or mycophenolate mofetil (6–8). Despite such 
aggressive treatments, many patients do not respond to therapy, 
and up to 40% of  LuN patients progress to renal failure within 5 
years of  diagnosis (9–12).

Much work in human LuN has focused on peripheral autoim-
munity and its manifestation within the kidney, glomerulonephritis 
(GN) (13). However, prognosis is more tightly linked to tubulointer-

stitial inflammation (TII) and scarring (11, 14–21). TII, and to some 
degree GN, are associated with complex in situ immune states. Single 
cell (sc) RNA-Seq from human lupus biopsies has revealed at least 21 
different adaptive and innate immune cell clusters (22), which orga-
nize into complex tubulointerstitial structures ranging from small 
neighborhoods of  CD8+ T cells through T:B cell aggregates to canon-
ical germinal centers (23–27). TII is associated with selection of  B 
cells expressing unique antibody repertoires and cognate T cell:anti-
gen presenting cell (APC) networks (24, 28, 29). These data indicate 
that LuN is associated with multiple in situ immune mechanisms 
hypothesized to drive local inflammation and tissue destruction (30).

Limited studies have related specific in situ immune cell pop-
ulations to prognosis. For example, infiltrating CD8+ T cells have 
been associated with a poor prognosis (31, 32). In a study of  prin-
cipal adaptive immune cell populations, densities of  CD4– T cells 
were most predictive of  resistance to conventional therapy and pro-
gression to renal failure (27). Furthermore, intrarenal T cells pro-
mote tissue injury in murine LuN and share effector pathways with 
kidney-infiltrating T cells in human LuN (33). Finally, the efficacy 
of  the calcineurin-inhibitor voclosporin highlights the importance 
of  T cells in some patients with LuN (34).
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Quantifying highly multiplex images of  full biopsy renal sections. We 
hypothesized that there would be significant differences in in situ 
immune cell populations between LuN and RAR. Therefore, we 
stained each biopsy with antibodies specific for 42 markers that 
identified known in situ immune cell constituents in LuN and RAR 
(22, 46), other important cell populations (e.g., γδ T cells), proximal 
tubules (CD10), distal tubules (mucin 1, MUC1), as well as markers 
of  inflammation (Myxovirus resistance protein 1, MXA) and scar-
ring (collagen III, COLIII) (Figure 1B).

For our imaging, we used spinning disk confocal microscopy 
coupled to a codetection by indexing (CODEX) microfluidic head 
and CODEX chemistry (47). We captured whole slide images with 
a pixel size of  0.1507 μm. Each cycle of  imaging included a nucle-
us stain (DAPI) imaged at 405 nm and 4 other stains imaged at 
488 nm, 561 nm, 637 nm, and 730 nm. In our analytic pipeline, 
we adapted ASHLAR (48) to stitch and align image tiles into full 
sections to generate an accurate coordinate space. Background was 
subtracted and the resulting full biopsy image stacks were min-max 
normalized to the 99th percentile for each channel.

Analysis of  the resulting large and complex datasets required 
first detection of  cells and approximation of  cell boundaries 
(instance segmentation) and then assignment to known cell class 
(annotation). For nuclear segmentation of  DAPI-stained renal 
tissue, we initially tested several convolutional neural networks 
(CNNs) including Mask R-CNN (49), Cellpose 2.0 (50), Deepcell 
(51), and Stardist (52). However, qualitative comparisons to manu-
ally annotated images revealed Cellpose to perform best, especially 
in highly inflamed areas (data not shown). Therefore, Cellpose 2.0 
was incorporated into our analytic pipeline (Figure 1C).

To assess cell detection and segmentation performance, we 
compared the Cellpose output to a manually segmented dataset 
of  100 regions of  interest (ROIs) from 5 LuN biopsies and 5 RAR 
biopsies (10 ROIs/biopsy). Cellpose had a zero-shot F1 perfor-
mance score of  ~0.80 (LuN) and ~0.58 (RAR), with an average 
precision of  ~0.67 and ~0.38, respectively, at an intersection over 
union (IoU) of  0.25 (Supplemental Figure 1, C and D). When we 
adopted human-in-the-loop (HITL) (53) fine-tuning, we achieved 
a F1 performance score of  ~0.88 (LuN) and ~0.73 (RAR) with 
an average precision of  ~0.77 and 0.53, respectively. Approxi-
mately 2.19 million cells were detected across all 54 samples.

The Cellpose DAPI nuclear segmentation mask was dilated 
approximately 1 micron with Voronoi tessellation to capture cyto-
plasmic staining and approximate whole cell body boundaries. 
From this cell body mask, we captured mean fluorescence inten-
sity (MFI), which was standardized across all 42 channels. We 
used uniform manifold approximation and projection (UMAP) for 
dimension reduction and for plotting a random 10,000 cells from 
each patient cohort in 2-dimensional space (Figure 1, D and E).

The distribution of  cells for each patient cohort was different. 
All 3 cohorts had similarities and difference in their distributions 
within the UMAP space. To begin to understand these differences, 
we projected the distributions of  all 42 markers onto the UMAP 
space (Supplemental Figure 2, A and B). Several lymphocyte mark-
ers, including CD3, CD4, CD8, and CD20 strongly colocalize in the 
upper left of  the UMAP plots. In contrast, some myeloid immune 
cell markers, such as CD14 and BDCA1, colocalize in both the 
upper left and right quadrants. These data suggest that infiltrating 

High densities of  myeloid cells were associated with progres-
sive disease (35–37). However, these studies used simple markers 
of  myeloid cells, while recent studies have revealed great hetero-
geneity in the intrarenal myeloid cell compartment (22, 38). It is 
unclear which in situ myeloid population is most closely linked to 
prognosis in LuN.

The striking responses of  lupus patients to CD19 CAR T cells 
have renewed interest in the pathogenic role of  B cells (39, 40). So 
far, clinical trials with CD19 CAR T cells have been small, uncon-
trolled, and with limited mechanistic studies. Furthermore, they 
appear at odds with observations that in LuN, in situ CD20+ B cell 
densities are associated with a good prognosis (27). These contra-
dictory results could simply reflect different patient populations or 
the effects of  conditioning chemotherapy. However, in aggregate, 
these observations might suggest unexplored relationships between 
systemic and in situ autoimmunity and/or in situ functions(s) for 
B cells not captured by simple total cell densities (41, 42). These 
functions might include secretion of  highly pathogenic antibodies 
or subpopulations of  B cells presenting antigen to large populations 
of  pathogenic T cells (43, 44).

The above studies have each focused on the potential pathogen-
ic role of  individual cell populations. There has been no compre-
hensive study of  the relationships between these immune cell pop-
ulations and how their frequencies and spatial distributions differ 
between patients with LuN. The latter is likely important, as how 
adaptive immune cells organize in the LuN kidney provides unique 
prognostic information (27). Herein, we used high-dimensional 
confocal microscopy and customized computer vision tools to cap-
ture in situ LuN immune cell frequency and spatial distribution het-
erogeneity and compare these to those of  renal allograft rejection 
(RAR). Our data suggest that in situ LuN and RAR heterogeneity 
can be described by quantifying a limited number of  shared and 
unique immune cell states. Furthermore, our data suggest that each 
immune state develops along partially mutually exclusive trajecto-
ries, the constituents of  which are associated with specific features 
of  renal inflammation and damage.

Results
Lupus nephritis and renal allograft rejection patient biopsies. To probe 
the in situ immune differences between prototypical autoim-
mune (e.g., LuN) and alloimmune (e.g., RAR) renal diseases, 
we acquired 25 LuN and 23 RAR initial diagnostic biopsies. An 
additional 6 normal kidney control (KC) samples were acquired 
from nephrectomies for renal cell carcinoma. In LuN, TII is 
more prognostically important than GN (11, 14–19) while RAR 
is primarily a tubulointerstitial disease (45). Therefore, our anal-
ysis focused on comparing TII between both diseases. Conven-
tional histological scoring by a pathologist of  TII, chronicity, 
interstitial fibrosis, and tubular atrophy did not reveal any sig-
nificant differences between the 2 disease cohorts (Figure 1A). 
Supplemental Figure 1A provides LuN class, patient age at diag-
nosis, and age at biopsy (supplemental material available online 
with this article; https://doi.org/10.1172/JCI192669DS1). 
Supplemental Figure 1B provides information on RAR patients, 
including rejection subtype, donor type, age at transplant, and 
age at time of  biopsy. Table 1 lists available clinical and histolog-
ical data on the LuN cohort.
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Briefly, the mean pixel intensities for 26 cardinal markers were 
organized into decision trees (DTs) for cell class annotation (47, 
55) (Supplemental Figure 3). In Supplemental Figure 3A, the DT 
for CD45+ immune cells is given. Some macrophage populations 
expressed undetectable levels of  CD45 (Supplemental Figure 2A). 
Therefore, CD45– renal structures and macrophage populations 
were assigned as in Supplemental Figure 3, B and C. T cell sub-
types were assigned as in Supplemental Figure 3D. The resulting 
33 annotated cell populations are shown in Supplemental Figure 
4A. In this way, markers such as FOXP3 were not used for global 
assignment decisions. Rather, FOXP3 was used to identify regula-
tory cells within T cell populations.

lymphocytes reside in the upper left quadrant while myeloid popu-
lations localize in the upper left and right quadrants.

It was apparent from Supplemental Figure 2 that FOXP3 and 
other markers had apparent broad distributions. Furthermore, in 
areas of  dense inflammation, fluorescence signals can bleed into 
proximate cells. Finally, because we were randomly sampling a 
2-dimensional cut of  a 3-dimensional object, the staining intensity 
within a given cell class can be variable. For these reasons, identify-
ing different cell populations by K-means clustering in the UMAP 
space, as is done for scRNA-Seq data, is not adequate (54).

To circumvent these limitations, we emulated the hierarchi-
cal approach used to immunophenotype cells by flow cytometry. 

Figure 1. Cell detection in multiplex microscopy imaging of renal biopsy tissue. (A) Histological scoring of patient-paired H&E and PAS biopsies. The mean 
autoimmune cohort and standard deviation of the histological features are shown. Mann-Whitney-U nonparametric difference in means P-values are shown. 
(B) CODEX antibody marker panel grouped by cell lineage or cellular activity most associated with that marker. (C) Workflow diagram of cell detection and 
segmentation. Cell nuclei are defined using Cellpose 2.0 on a 512×512 DAPI image after performing Human-in-the-loop model retraining. Cell body was subse-
quently approximated by performing nuclear dilation with Voronoi tessellation. 512×512 images of DAPI segmentations are then knitted and aligned with the 
42 fluorescent channels. (D) UMAP dimensional reduction of cell body MFI from 30,000 cells randomly sampled. 10,000 cells are sampled from each of the 3 
cohorts: Normal Kidney Control, Lupus Nephritis, and Renal Allograft Rejection. Cells are colored according to their cohort of origin: KC, LuN, and RAR. (E) UMAP 
dimensional reduction of cell body MFI from 30,000 cells randomly sampled. Cells are colored according to their cohort of origin.
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ed, renal parenchymal cells were the most prevalent. As described 
above, these were under estimations. Among immune cell popu-
lations, myeloid cells, especially CD14+ macrophages and inflam-
matory monocytes, were enriched in both LuN and RAR. Howev-
er, total CD163+ macrophages were enriched in LuN. In contrast, 
most T cell populations, including CD4+, CD8+, and γδ T cells, 
were enriched in RAR. Indeed, comparing cell densities between 
KC, LuN, and RAR revealed that LuN was enriched for myeloid 
cell populations, especially CD163+ macrophages (Figure 2B). In 
contrast, RAR was enriched for multiple T cell populations. Nota-
bly, CD3+ T cells lacking CD4, CD8, or γ coexpression (double neg-
ative or DN T cells), were not enriched in either disease compared 
with KC samples (27, 56). These data suggest that, in our cohort, 
RAR is characterized by enrichment of  T cell and myeloid popula-
tions, while LuN is enriched primarily in myeloid cell populations.

In comparison with KC biopsies, there was substantial het-
erogeneity in disease groups both in terms of  lymphocyte versus 
myeloid cell populations in each biopsy and the constituents with-
in each broad immune cell class (Figure 2C). In LuN, there were 
4–5 biopsies with relatively high lymphocyte populations, while, 
in the rest of  the biopsies, myeloid cells predominated. Myeloid 
cells predominated in about half  of  RAR biopsies. Furthermore, 
especially in RAR, the myeloid compartment was dominated by 
either macrophages or HLA class II positive or negative inflam-

Approximately 77% of segmented cells were assigned to a cell 
class across disease groups. Primarily, renal tubular cells could not be 
assigned to a class, as identifying markers often stained the plasma 
membrane, which was beyond the 1-micron DAPI dilation in these 
large cells. This limitation was circumvented as described below.

Each annotated cell class expressed the expected cardinal mark-
ers (Supplemental Figure 4B). Furthermore, across biopsy cohorts, 
each annotated class manifested similar distributions of  cell stain-
ing (Supplemental Figure 4C). These data suggest that quantitative 
comparisons could be made across patient cohorts.

Using the above DTs to annotate cells in the UMAP space, simi-
larities and differences between biopsy cohorts became apparent (Fig-
ure 2A). While renal parenchymal structures occupied the center of  
all 3 cohort UMAPs, there were differences in distributions. Some of  
these changes could be ascribed differential expression of markers of  
inflammation (MXA, Claudin 1) and scarring (COLIII) in the disease 
cohorts (Supplemental Figure 4D). Lymphocytes, especially T cells, 
occupied the upper left quadrant. These populations were scant in 
normal kidney and highest in RAR. In contrast, myeloid populations 
were increased in both LuN and RAR. However, there were some dif-
ferences in the distribution of myeloid cells in the UMAP space, sug-
gesting that each disease might be enriched for specific populations.

A more detailed picture was provided when constituent cell 
percentages were examined (Supplemental Figure 5A). As expect-

Table 1. Demographics for patients with LuN

pt Dx Age at bx 
(y)

Sex Ethnicity LuN class Act Chron Pulse  
steroid

Steroids at/after bx  
(pred eq; mg/d)

HCQ 
before bx

Immunosuppression 
before bx

1 LuN 24 F Black IV+V 6/24 4/12 N 40 Y MMF
2 LuN 28 F Black V 0/24 N/A Y 60 Y 0
3 LuN 57 F Black III 5/24 1/12 N 20 Y 0
4 LuN 63 F Black III 0/24 3/12 N 60 Y 0
5 LuN 19 F White IV+V 10/24 2/12 Y 40 Y MMF
6 LuN N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
7 LuN 28 F Asian V 2/24 7/12 N 0 Y 0
8 LuN 44 F N/A IV 7/24 5/12 Y 40 Y MMF
9 LuN 40 F N/A VI 0/24 7/12 N/A N/A N/A N/A
10 LuN 17 F Black II 0/24 0/12 Y 40 Y 0
11 LuN 17 F Hispanic IV 13/24 0/12 Y 20 N 0
12 LuN 16 F Black II 0/24 0/12 Y 50 N 0
13 LuN 17 F Hispanic III+V 3/24 4/12 N 0 Y MMF
14 LuN 19 F Hispanic IV 12/24 6/12 N 0 Y 0
15 LuN 20 F Black III 6/24 2/12 Y 0 Y 0
16 LuN 17 M N/A IV 13/24 0/12 N/A N/A N/A N/A
17 LuN 31 F Hispanic IV 11/24 2/12 N/A N/A N/A N/A
18 LuN 18 F N/A V 1/24 0/12 N/A N/A N/A N/A
19 LuN 54 F Black/AA V 8/24 4/12 Y 20 N 0
20 LuN 17 F Hispanic IV 10/24 0/12 N/A N/A N/A N/A
21 LuN 34 F N/A V 2/24 4/12 N/A N/A N/A N/A
22 LuN 18 M Hispanic IV 19/24 2/12 N/A N/A N/A N/A
23 LuN 10 F Black IV 9/24 2/12 Y 60 Y AZA
24 LuN 33 F Black IV 8/24 4/12 N 50 Y 0
25 LuN 15 F Hispanic IV+V 15/24 3/12 N/A N/A N/A N/A

N/A, not available, pt, patient; Dx, diagnosis; Act, NIK activity index; Chron, chronicity index; bx, biopsy; pred eq, equivalent dose of prednisone; HCQ, 
hydroxychloroquine; MMF, mycophenolate; AZA, azathioprine. Pulse steroid, IV (intravenous) solumedrol. Dose is unknown although typically 1 gram a day 
for three days.
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Distinct immune trajectories in LuN and RAR. Plotting Spearman’s 
correlation between immune cell proportions across LuN and RAR 
biopsies revealed covariance between specific subpopulations. (Fig-
ure 3, A and B, and Supplemental Figure 6, A and B). In both dis-
eases, covariance across T cell populations, including CD4+, CD8+, 
and γδ T cells, was the most striking. Interestingly, there was not a 

matory monocytes (defined by CD14 and CD16 expression) (57). 
Among the RAR samples were 13 mixed rejection (MR) and 10 T 
cell mediated rejection (TCMR). However, there were no apparent 
global differences in the distributions of  lymphoid or myeloid cells 
between these disease classes. As these subgroups were small, no 
further comparisons between the 2 were performed.

Figure 2. Distribution of immune cell classes in KC, LuN, and RAR. (A) UMAP dimensional reduction of cell body MFI from 30,000 cells randomly 
sampled. 10,000 cells were sampled from each of the indicated cohorts. (B) Nonparametric Mann-Whitney-U difference of the mean test for popula-
tion differences in classified cell density between patient cohorts; from the top row: LuN-KC, RAR-KC, and RAR-LuN. Color indicates log2 fold change. 
Benjamini-Hochberg P value correction was performed. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Patient-level proportions of the 33 immune cell classes by 
cohort. Kidney control (top), lupus nephritis (middle), and renal allograft rejection (bottom). Mixed-rejection biopsies are denoted using a beige bar, T-cell 
mediated rejection biopsies are denoted in light blue. All cell classes (except nonclassified cells) are color coded as displayed in the panel in A. Bars at 
bottom identify MR (yellow) and TCMR (blue).

https://doi.org/10.1172/JCI192669
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strong correlation between B cells and plasma cells or plasmablasts, 
and in neither disease was there a correlation between plasma cells/
blasts and most T cell populations. Focusing on innate cells, there 
were covariant subpopulations or blocks among the most common 
cell populations in both LuN and RAR. Specifically, we observed 
covariance between macrophages expressing CD163, including 
CD14+CD163+MerTk+ and CD14+CD163+ populations. There 
were separate covariant cell blocks for CD163– CD14+ macrophages 
(± MerTK) and for CD14+CD16+ monocytes (± HLA class II).

In RAR, some of  the above populations had inverse relation-
ships. For example, CD163+ macrophages inversely varied with 
some CD163– macrophage and monocyte populations. In LuN, 
there was a trend towards these inverse relationships. In LuN, B cell 
densities have been associated with a good prognosis (27). There-
fore, it is interesting that, in LuN, they had an inverse proportion-
al relationship with CD14+MerTK+ macrophages and a positive 
correlation with some CD163+ macrophage populations, both of  
which are much more prevalent than B cells. Similar correlations 
were observed when considering the densities of  the different cell 
populations (Supplemental Figure 6, C–F), suggesting that the 
observed relationships were robust. These separate, covariant sub-
populations, or cell blocks, suggest that a limited number of  discrete 
immune states characterize both LuN and RAR.

Cohort-specific relationships were observed when we plotted the 
densities of  all myeloid cells versus all T cells for each biopsy (Figure 
4A). The size of  each point reflects total humoral cells. Strikingly, 
LuN unfolded along a myeloid axis and RAR along a T cell axis with 
some RAR biopsies also having substantial densities of  myeloid cells. 

These differences in myeloid and T cell densities were associated with 
striking visual differences (Figure 4B). We then plotted the densities 
of  CD14+MerTk+CD163– macrophages versus CD14+CD163+ mac-
rophages versus total CD8+ T cells (Figure 4C). Interestingly, RAR 
unfolds along the CD14+MerTk+CD163– axis, which is also rich in 
CD8+ T cells. In contrast, some LuN biopsies also had relatively high 
CD163– macrophage densities (4 of  25 biopsies) while other biop-
sies had high densities of  CD163+ macrophages (5 of  25). Examples 
from the indicated biopsies are provided in Figure 4D. These data 
suggest that in our patient cohorts, LuN and RAR biopsies often lie 
along different immune cell trajectories.

Immune cell localization within renal compartments. The above 
analyses examined immune cell frequencies across whole biop-
sies. However, the kidney is structurally complex with glomeruli, 
tubules, and the tubulointerstitial space. Compared with hemato-
poietic cells, tubules have a characteristic pattern of  DAPI stain-
ing. Therefore, to identify tubules, Omnipose (58) was trained 
on representative 10-fold downsized DAPI kidney images from 
CODEX image stacks. Glomeruli were segmented manually 
(Supplemental Figure 7, A and B).

We first assessed the densities of  all immune cell populations 
across the different renal compartments (Figure 5A). From left 
to right are provided interstitial, tubular, glomerular, peritubu-
lar (dilated tubular mask), and periglomerular (dilated glomeru-
lar mask) densities for all indicated immune cell populations. In 
both diseases, and for all immune cell populations, densities were 
highest in the periglomerular space. In general, there were more 
plasma cells/blasts in LuN distributed across all compartments. In 

Figure 3. Spearman’s correlation of lupus nephritis cell class proportions. (A) Heatmap of the nonparametric spearman’s correlations between 
patient-level immune and nonimmune cell proportions for lupus nephritis patients. (B) Heatmap of statistically significant (P < 0.05) nonparametric 
spearman’s correlations between patient-level immune and nonimmune cell proportions for lupus nephritis patients.
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contrast, RAR was generally enriched in T cells distributed across 
all renal structures except for glomeruli. Furthermore, there was a 
general enrichment of  CD163+ macrophages in LuN.

We then focused on 2 potential disease-associated populations, 
CD8+ T cells and CD14+MerTK+ macrophages (Figure 5B). In both 
cell populations, the periglomerular enrichment was evident. In 
addition, in some RAR biopsies, there is an enrichment of  both cell 
populations in the peritubular and tubular space compared with the 
interstitial space. Indeed, in RAR biopsies there was both peritubu-
lar inflammation and tubulitis (Figure 5C). In contrast, interstitial 
and peritubular densities were similar in LuN and tubulitis was rare 

(Figure 5D and data not shown). These data suggest that inflam-
mation in the RAR tubulointerstitium is centered around and in 
tubules, while, in LuN, it occurs diffusely through the interstitium.

Organization of  inflammation into neighborhoods. We next used 
DBSCAN (59) to determine if  in situ inflammation was organized 
in LuN and RAR. K-means clustering and bootstrapping were first 
used to estimate the optimal number of  states using spatial coordi-
nates for all immune cells and the indicated cell neighborhood size 
exclusion conditions (Supplemental Figure 8). Based on this anal-
ysis, we used 8 as the optimal number of  clusters (neighborhoods) 
for downstream analysis.

Figure 4. Distinct immune trajectories are associated with distinct pathologic states. (A) Plot of the patient-level T-cell density (x-axis) and myeloid cell 
density (y-axis) colored by cohort: Kidney control (green), LuN (blue), RAR (magenta). Diameter indicates humoral cell density (B cells plus plasma cells). 
(B) Representative microscopy images of immune cell polarization in lupus nephritis and renal allograft rejection patient cohorts. Image numbers corre-
spond to biopsies indicated in A. (C) Plot of the patient-level CD14+MerTk+ macrophage density (x-axis) and CD14+CD163+ macrophage density (y-axis) col-
ored by cohort: Kidney control (green), LuN (blue), RAR (magenta). Diameter indicates T-cell density. (D) Representative microscopy images of CD14+CD163+ 
and CD14+MerTk+ enriched biopsies. Image numbers correspond to biopsies indicated in C. Scale bars: 50 μm.
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Cluster 4 in T cell populations, Cluster 5 in CD14+ macrophages, 
Cluster 6 in CD163+ macrophages, and Cluster 7 in T cell popu-
lations including CD4–CD8–d– T cells (27). While most clusters 
appear more frequent in RAR, the CD163+ macrophage Cluster 
6 was more common in LuN. Representative examples of  clusters 
1 and 6 are shown in 1 LuN biopsy, indicating that clusters of  
CD163+ and CD163– macrophages can occur in the same biopsy 
(Figure 6C). An example in LuN of  the inflammatory monocyte 
and macrophage enriched Cluster 2 is provided in Figure 6D.

We generated a heatmap using features including average total 
cell count across biopsies and average cell proportion to visualize 
the unique elements of  each cluster (Figure 6A). When cell counts 
were examined, Clusters 4 and 7 had the most cells, while Clusters 
2 and 3 were the most frequent (Figure 6B). Each cell cluster had 
unique features. Cluster 0 was enriched in HLA class II mono-
cytes and monocyte-derived macrophages, Cluster 1 in CD163–

MERTK+ macrophages, Cluster 2 in MHC class II+ monocytes 
and CD16+ macrophages, Cluster 3 in HLA class II– monocytes, 

Figure 5. Distribution of inflammation across renal compartments. (A) Heatmap showing the biopsy average density of immune cells of the kidney ana-
tomical compartments, normalized to proportion across cohorts. From the left: interstitium, tubule, glomeruli, perititubular, periglomerular. (Left heatmap) 
kidney control, (middle heatmap) lupus nephritis, and (right heatmap) renal allograft. (B) Violin plots of the biopsy average number of cells per mm2 within 
the indicated tissue compartments for CD8+ T cells and CD14+MerTk+ macrophages (Mϕ). Mann-Whitney U test with Bonferroni correction for multiple tests. 
*P < 0.05, **P < 0.01, ***P < 0.001. (C) RAR example demonstrating tubulitis (yellow arrowhead) and peritubular inflammation (white arrowhead). (D) LuN 
example demonstrating diffuse interstitial inflammation. Scale bars: 50 μm.
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0), and 2 T cell enriched clusters (Clusters 1 and 2). Cluster 6 
had similarities to CODEX Cluster 7, while Cluster 5 was not 
enriched for any specific immune genes. In Supplemental Figure 
9C are the top 10 differentially expressed genes in each cluster 
(55 genes total), demonstrating unique gene expression distribu-
tions in each cluster.

We also performed gene set enrichment analysis (GSEA) com-
paring each cluster to all others (Supplemental Figure 9D). Nota-
bly, the CD163+ Cluster 3 was enriched in fibroblast proliferation 
and mitotic gene programs. In contrast, the CD14+ monocyte Clus-
ter 4 revealed endothelial cell proliferation, MAPK activation, and 
receptor tyrosine kinase activation programs. There was a concom-
itant lack of  adaptive immune system expression programs. These 
results indicate that in both LuN and RAR, renal inflammation is 
organized into distinct clusters. Furthermore, our spatial transcrip-
tomic data suggest that specific injury mechanisms occur in some 
immune cell clusters.

We next sought to confirm our results on a subset of  6 biop-
sies from our LuN cohort using spatial transcriptomics (MER-
SCOPE, Vizgen) and the 500 gene human immune-oncology 
panel. The resulting raw images were resized with a pixel size of  
10 mm and DBSCAN performed on CD3E, CD14, and FCGR3A 
(CD16)–expressing channels. Images with DBSCAN labels were 
further processed to generate neighborhoods for gene density. 
The Z-scored densities of  20 genes whose protein products were 
represented in the CODEX panel were used for K-means clus-
tering as above (optimal was 7 clusters, data not shown). Using 
UMAP to plot the distribution of  cell clusters revealed good sep-
aration of  cluster groups (Supplemental Figure 9A). A Heatmap 
of  the expression distributions of  those genes used for cluster-
ing revealed similar clusters to those detected by CODEX (Sup-
plemental Figure 9B). Indeed, there were CD163+ macrophage 
clusters (Cluster 3), CD14+ enriched monocyte clusters (Cluster 
4), CD16+ macrophage/monocyte enriched clusters (Cluster 

Figure 6. Distribution of cell classes in in situ immune clusters. (A) Heatmap of the Z-score from indicated extracted features from DBSCAN cell networks 
using an optimal K = 8 means clustering of cell clusters larger than 19 cells. Proportions of each cell class were used with the number of cells in each cluster 
represented in right column. (B) Bar plot showing the total count of the various K=8 DBSCAN cell networks colored by patient cohort: KC (green), LuN 
(blue), and RAR (magenta). (C) Example of clusters 6 (box) and 1 (circle) within the same LuN biopsy. (D) Example of cluster 2 in a LuN biopsy containing a 
mix of MHC class II+ (data not shown) inflammatory monocytes and macrophages. Scale bars: 100 μm (C), 50 μm (D).
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Plotting LuN and RAR biopsy cohorts separately allowed bet-
ter visualization of the immune cell densities that characterized each 
disease cohort. In LuN, inflammation unfolds along 3 major density 
axes: CD163+ macrophages, CD163– macrophages, and HLA Class 
II- inflammatory monocytes (Figure 8, C and D). Across the disease 
cohort, RAR appears more complex with significant projections along 
the CD163– macrophage, HLA Class II+ inflammatory monocytes, 
HLA Class II– inflammatory monocytes, CD4+ T cells, and CD8+ T 
cell density axes (Figure 8, E and F). Notable is the lack of substantial 
CD163+ macrophage densities. These data suggest that LuN is char-
acterized by a few myeloid immune cell density axes, while RAR has 
both myeloid and adaptive immune cell density axes.

We then plotted individual disease biopsies. Of the 25 LuN biop-
sies, 6 were characterized by prominent CD163+ macrophage densi-
ties (> 2-fold over CD163– macrophages) and a relative lack of  other 
immune cell populations (Figure 8G and Supplemental Figure 10A). 
One of  these biopsies also had high numbers of  HLA class II– inflam-
matory monocytes (Supplemental Figure 10B). Similarly, 6 biopsies 
were characterized by primarily CD163– macrophage populations 
(Figure 8H and Supplemental Figure 10C). Two of  these also had 
substantial HLA class II– monocyte immune cell densities (Figure 8I 
and Supplemental Figure 10D). The remaining 13 biopsies had both 
substantial CD163+ and CD163– immune cell densities. Seven of  
these biopsies did not have substantial densities of  other populations 
(Figure 8J and Supplemental Figure 10E). The other 6 had concur-
rent HLA class II– inflammatory monocyte densities (Figure 8K and 
Supplemental Figure 10F). Therefore, within our cohort, LuN fell 
into subsets characterized by CD163+ macrophage, CD163– macro-
phage, and HLA class II– inflammatory monocyte densities.

RAR was more complex. Of  the 23 biopsies, 8 had a predomi-
nantly single immune cell population (> 2-fold difference over oth-
er immune cell populations). In 5 of  these, CD163– macrophage 
densities predominated (Figure 8L and Supplemental Figure 11A). 
In 2, HLA class II– inflammatory monocytes predominated, and, 
in 1, CD163+ macrophages. Only 2 biopsies were characterized by 
2 trajectories, both of  which included CD163– macrophages (Sup-
plemental Figure 11B). The rest manifested multiple myeloid and 
adaptive immune cell densities including 6 that had HLA class 
II– inflammatory monocytes (Figure 8M and Supplemental Figure 
11C) and 7 that did not (Figure 8N and Supplemental Figure 11D). 
These data suggest that, in our cohort, RAR falls broadly into 2 
categories, those that can be characterized by myeloid cells, most 
commonly CD163– macrophages, and those characterized by both 
myeloid and adaptive immune cell densities.

Discussion
Using high dimensional imaging and computer vision techniques 
specifically adapted for the kidney, we provide the first compre-
hensive assessment of  LuN and RAR immune cell constituency, 
how these cells are organized into neighborhoods, and their rela-
tionships to renal cortical structures. These data resolve immune 
cell heterogeneity into a limited number of  cell states. Indeed, in 
any 1 biopsy, the inflammatory state could be characterized by the 
relative prevalence and magnitude of  cardinal immune cell trajec-
tories. Notably, in many biopsies from both diseases, CD163– mac-
rophages predominated with or without other concurrent immune 
cell populations. In LuN, concurrent immune cell populations 

Immune cell correlates with tissue inflammation and damage. From 
our high-dimensional staining panel, we could derive 4 measures 
of  tubulointerstitial inflammation and scarring: (a) total biopsy 
immune cell density; (b) total biopsy inflamed tubule cell density 
(MXA and Claudin 1 in tubule mask); (c) COLIII mask area (% 
of  total biopsy area); and (d) MXA mask tissue area (% of  total 
biopsy area). Given the above findings, we plotted these 4 mea-
sures versus whole biopsy densities and proportions of  total CD8+ 
T cells, total CD4+ T cells, CD14+MerTK+CD163– macrophages, 
CD14+CD163+ macrophages, HLA class II+ inflammatory mono-
cytes, and HLA class II– inflammatory monocytes, and then per-
formed ordinary least squares linear regression (OLS). Only graphs 
with positive correlations are provided.

We observed that CD8+ T cell densities were correlated with 
immune cell densities in RAR and LuN (Figure 7A). In contrast, 
only in RAR were CD8+ T cell densities associated with MXA 
expression (Figure 7B). Consistent with the covariance of  CD4+ 
and CD8+ T cell densities across biopsies, similar associations were 
observed for CD4+ T cell densities (Figure 7, C and D). CD14+MerT-
k+CD163– macrophage cell densities were associated with immune 
densities in both diseases (Figure 7E). CD14+MerTk+ macrophages 
were also associated with inflamed tubule density in RAR with a 
similar trend in LuN (Figure 7F). There was a strong association 
between CD163+ macrophage cell densities and immune cell den-
sities in LuN but not RAR (Figure 7G). However, CD163+ mac-
rophage proportions were associated with COL III scores only in 
RAR (Figure 7H). Finally, densities of  HLA class II+ inflammatory 
monocytes were associated with immune cell densities (Figure 7I) 
in both diseases. However, they were only associated with MXA 
scores in RAR (Figure 7J). These data indicate that, in LuN and 
RAR, immune cell populations having the same surface phenotype 
can have either similar or different associations with measures of  
renal inflammation and scaring.

Immune cell trajectories characterize individual biopsies. The above 
data suggest that inflammation heterogeneity can be resolved into 
relatively few covariant blocks of  the most prevalent immune cells. 
Immune cell constituents of  these different inflammatory states 
organized into distinct niches and were associated with specific 
manifestations of  renal inflammation and scarring. To begin to 
graphically quantify inflammation in a way that could be compared 
across diseases and biopsies, we generated radar diagrams in which 
each axis was the density of  a principal cell population: total CD8+ 
T cells, total CD4+ T cells, CD14+CD163– macrophages, CD163+ 
macrophages, HLA class II+ inflammatory monocytes, and HLA 
class II– inflammatory monocytes.

We first plotted all 54 individual biopsies on a single radar 
graph, color coded by clinical cohort (Figure 8A). Compared 
with both LuN and RAR, the KC samples had far less densities 
of  these 6 immune cell population groups. It is also apparent that 
some RAR biopsies had higher densities of  several immune cell 
populations compared with LuN biopsies. Indeed, plotting average 
immune cell densities for each clinical cohort indicate that all pop-
ulations, except for CD163+ macrophages, are higher in RAR than 
LuN (Figure 8B). These data indicate that, on average, the RAR 
biopsies are more inflamed, even though the 2 disease cohorts were 
scored similarly for TII (tubulointerstitial score) by a renal pathol-
ogist (Figure 1A).
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Canonical cell markers identified populations of immune cells that 
covaried with each other and shared common spatial distributions with-
in the tubulointerstitium. CD163+, a marker of some M2 macrophages, 
identified cell populations that formed neighborhoods and distributions 
different from other macrophage populations regardless of other shared 
markers such as the phagocytic receptor MerTK (60). Likewise, inflam-
matory monocytes, especially those expressing MHC class II, did not 

were of  myeloid lineages, while, in RAR, CD163– macrophages 
cooccurred with both myeloid and adaptive immune cell lineages. 
While both diseases manifested inflammatory states anchored by 
CD163– macrophages, only in LuN were there several biopsies in 
which CD163+ macrophages predominated. Our studies suggest an 
approach to quantifying in situ immunity that allows comparisons 
between individual biopsies in and across disease states.

Figure 7. Immune cell trajectories correlate with tissue inflammation and damage. (A and B) CD8+ T cell density as a function of immune cell density (A) 
and score (B). (C and D) CD4+ T cell density as a function of immune cell density (C) and myxovirus resistance protein 1 (MXA) score (D). (E and F) MerT-
K+CD163– macrophage density as a function of immune cell density (E) and inflamed tubule density (F). (G) CD163+ macrophage density as a function of 
immune cell density. (H) CD163+ macrophage proportion as a function of Collagen III (COL III) score. (I and J) Inflammatory HLA class II+ monocytes immune 
cell density as a function of immune cell density (I) and MXA score (J).
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cosegregated into specific neighborhoods. Remarkably, these fun-
damental relationships were apparent in both LuN and RAR. 
Rather, these cell subgroups and niches primarily varied in relative 
prevalence between the 2 diseases. T cell blocks were a dominant 
feature of  RAR, while, in LuN, macrophage subgroups were more 

covary with any other immune cell blocks/subgroups and formed dis-
tinct neighborhoods (57). Our current staining panel did not allow fine 
categorization of either macrophage or monocyte subsets.

Within the limitations of  these small patient cohorts, both 
CD4+ and CD8+ T cells largely behaved as a covariant block and 

Figure 8. Quantifying in situ immune state using principal immune cell trajectories. (A) Composite web graph of all individual biopsies colored by 
cohort. Green, normal kidney; blue, LuN; and purple, RAR. (B) Plot of averages for each clinical cohort. (C) Plot of LuN individual biopsies. (D) Average LuN 
densities for indicated immune cell populations. (E) Plot of RAR individual biopsies. (F) Average RAR densities for indicated immune cell populations. (G) 
Example of individual LuN biopsy with CD163+ macrophage polarity. (H) Example of LuN biopsy with CD163– macrophage polarity. (I) Example of LuN biopsy 
with CD163– macrophage and HLA II inflammatory monocyte polarities. (J) Example of LuN biopsy with CD163+ and CD163– macrophage polarity. (K) Exam-
ple of LuN biopsy with CD163+ and CD163– macrophage polarity in combination with HLA II– inflammatory monocyte polarity. (L) Example of individual RAR 
biopsy with CD163– macrophage polarity. (M) Example of individual RAR biopsy with multiple immune cell lineages plus HLA II– inflammatory monocytes 
trajectory. (N) Example of individual RAR biopsy with multiple immune cell lineages without HLA II– inflammatory monocytes trajectory.
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tissue. Furthermore, some cells, such as plasma cells, survive poorly 
during extraction and handling (65). These and other factors likely make 
scRNA-Seq from renal tissue variable and inefficient. In the 1 available 
study focused on in situ immune cells in LuN, only about 150 CD45+ 
cells were obtained per biopsy (22). In contrast, we identified over 7,000 
immune cells per biopsy, with spatial coordinates on each cell. This 
richness of information per biopsy enabled a dissection of renal inflam-
mation heterogeneity not possible with current scRNA-Seq techniques. 
Finally, our experiments were done on archived FFPE biopsies. Future 
studies, with larger numbers of patients from longitudinal registries, can 
provide clinical context for different in situ immune states.

Our data reveal that, in both LuN and RAR, and across almost 
all patients, the foundation of in situ inflammation is innate immunity. 
This is particularly surprising for LuN, which is a manifestation of the 
canonical systemic autoimmune disease, SLE. Our studies characterize 
the most prevalent immune cell populations. Adaptive cells are present 
in situ and there are likely important functional relationships between 
these and resident innate cell populations. Furthermore, the relation-
ships between systemic adaptive autoimmunity and in situ immunity 
are largely unexplored in humans (66). Future mechanistic studies 
in SLE of concurrent blood and tissue biopsy samples, coupled with 
clinical trials of adaptive immune cell targeted therapies, will begin to 
unravel the complex interrelationships between innate and adaptive cell 
programs and those between systemic and in situ autoimmunity.

Methods
Sex as a biological variable. This study was performed on deidentified, 

archived tissue samples, and therefore knowledge of patient sex is incom-

plete. Of the LuN patients for which sex is known, > 90% were female 

(22/24). The sex of the RAR patients is unknown.

Tissue acquisition. We obtained 54 archival blocks of kidney biopsies 

preserved as formalin-fixed, paraffin-embedded (FFPE) from the Universi-

ty of Chicago Human Tissue Resource Center. Within this, 25 blocks were 

from the initial diagnostic biopsies of LuN patients, 23 were from RAR 

patients, and 6 were from the normal renal tissue at the margins of resected 

renal carcinomas or other pathologies.

FFPE tissue processing and staining. Five-micrometer FFPE tissue 

sections were cut and mounted on 22 mm × 22 mm glass coverslips. 

The tissue coverslips were deparaffinized as described here. The par-

affin embedding was removed from the tissue sections via a 20-min-

ute incubation at 60°C. Coverslips were transferred into Xylene and 

sequentially immersed in a fresh Xylene solution 2 times, 5 minutes 

each; 100% ethanol 2 times 5 minutes each; 95% ethanol 5 minutes; 

70% ethanol 5 minutes; 50% ethanol 5 minutes; 30% ethanol 5 minutes 

and distilled water 5 minutes. Tissue coverslips were then treated with 

1× citrate buffer, pH6 (diluted from 100× stock, Abcam ab93678) for 20 

minutes in a high pressure cooker. After antigen retrieval, tissues were 

then stained with Akoya’s staining kit for PhenoCycler (Akoya Biosci-

ences, SKU7000008) following their protocol.

Marker panel creation. We designed a 42-marker immunofluorescence 

panel after conducting a literature review of relevant immune cell pop-

ulations and those identified on the landmark scRNA-Seq study of LN 

patient biopsies (Table 2) (22). All antibodies were first validated with 

immunofluorescence staining on human tonsil and kidney sections. Val-

idated antibodies were then conjugated with DNA barcodes using the 

conjugation kit (Akoya Biosciences, SKU7000009) and revalidated using 

single-stain CODEX and multicycle CODEX runs.

prevalent. These stereotypic relationships between functionally 
related immune cell populations suggest that, in individual patients, 
inflammation develops along a limited number of  trajectories.

While LuN and RAR can manifest the same immune cell trajec-
tories, they were often associated with different features of tubuloint-
erstitial inflammation and damage. For example, only in RAR were 
HLA class II+ inflammatory monocytes or CD8+ T cells associated 
with MXA expression. The potential mechanism underlying these 
associations are unclear. However, in neither disease were CD8+ T 
cell densities or proportions associated with fibrosis. Our sample was 
small and CD8+ T cells have been linked with progressive renal disease 
in RAR and LuN (31, 32). However, recent data from mouse models 
of LuN suggest that some of these populations have an exhausted 
or even protective phenotype (61, 62). Indeed, both PD-1 and ICOS 
expression were wide spread on our infiltrating T cells. Our data indi-
cate that, within our cohorts, macrophages are more associated with 
renal damage than conventional T cell populations.

There were both similarities and differences in the distribution 
of  immune cell infiltrates in LuN and RAR. In both diseases, there 
was a strong enrichment in the periglomerular space. In contrast, 
the distribution of  inflammation within the tubulointerstitium was 
different in LuN and RAR. In LuN, inflammation was evenly dis-
tributed within the interstitium without peritubular enrichment. In 
contrast, in RAR, there was enrichment at the peritubular border 
with some biopsies also manifesting tubulitis. These data suggest 
that peritubular and tubular inflammation characterize some RAR 
biopsies, while LuN is characterized by interstitial inflammation. 
In LuN and RAR, we did not observe an enrichment of  specific 
immune cells in any tubulointerstitial compartment. This suggests 
that there are no strong immunological barriers within the tubu-
lointerstitium dictating the evolution of  inflammation.

This is a small retrospective study of  deidentified patient sam-
ples. We could not control for variables such as sex, age, or med-
ication use. Regardless, our investigations suggest approaches to 
parsing in situ immune state heterogeneity that can be validated in 
larger, prospective patient cohorts.

Spatial immunology is a new and evolving field in which the imag-
ing and computational tools are rapidly improving (63). Currently, 
there are still technical limitations. While DAPI nuclear segmentation 
is still more reliable than whole-cell segmentation, current techniques 
still under call irregularly shaped nuclei such as those of myeloid cells 
(64). We dilated nuclear segmentations to capture cytoplasmic staining 
for annotation. While this is a reliable strategy for assessing lympho-
cytes, it often fails to capture peripheral staining on large cells such as 
tubule cells. In part, we circumvented this limitation by segmenting 
whole tubules. However, CD138 expression by tubules likely led to 
some plasma cells being included in the tubular mask. Finally, we used 
a hierarchical decision tree for cell class assignment, which is a well-es-
tablished approach used by others (47, 55). However, this strategy uses 
predefined cell classes and can miss novel cell populations. Therefore, 
our analysis is only an approximation. Nevertheless, within these lim-
itations, we provide insights into in situ immune states and conceptual 
frameworks for further investigation.

Other approaches have biases and limitations. Single-cell sort-
ing from renal samples has provided a picture of the overall immune 
landscape that informed our staining panel (22, 46). However, different 
immune cell populations are likely extracted at different efficiencies from 
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rophores conjugated to complementary oligonu-

cleotides and imaging using the PhenoCycler plat-

form. Tissue autofluorescence images were also 

acquired at each imaging wavelength.

ASHLAR was used to stitch image tiles into a 

full-section composite and align the resulting chan-

nels. Ashlar performance was visually checked 

across all samples. Areas with insufficient align-

ment were rejected from downstream analysis. After 

aligning all image channels, the first blank cycle of  

imaging was used for background subtraction and 

normalization of all stained images. First, each 

channel of the blank cycle was subtracted from the 

corresponding fluorescence channel in all imaging 

cycles. Each imaging wavelength has a different 

dynamic range, so the subtracted images were also 

divided by the standard deviation of the background 

image to standardize dynamic range across imag-

ing wavelengths. After standardization relative to 

imaging wavelength, images were min-max normal-

ized to the 99th percentile. After this preprocessing, 

instance segmentation of cell nuclei was performed 

using Cellpose 2.0. Cell body segmentations were 

approximated by dilating the nucleus segmentations 

by 7 pixels (1.05 μm). Mean fluorescence intensity 

(MFI) was calculated from each marker in the panel 

using the cell body pixel mask as reference.

Decision tree classifier and cell mapping to tissue. A 

subsample of 26 of the original 42 immunofluores-

cence markers were used to classify approximately 

1.77 million cells. We used a decision-tree classifier 

for the multiclass annotation of cells that is anal-

ogous to flow cytometry–based cell analyses and 

immunophenotyping. The decision tree considers 

the known experimental covariance between mark-

ers (i.e., CD3– expression would preclude CD4+ 

expression in T-lymphocytes). Cell positivity is 

determined by applying the multi-Otsu threshold-

ing method using each cell’s MFI, across all 1.77 

million cells in all 3 cohorts simultaneously. The 

multi-Otsu threshold that most closely matched 

manual spot validation was used. This manual spot 

validation was done by manually circling 5 positive 

signal cells in the desired cell population (i.e., CD8+ 

expression for cytotoxic lymphocytes) and manual-

ly calculating the cell’s MFI in ImageJ. We further 

use our kidney control to check if  cell thresholds 

are not under calling or over calling cells. Once 

classified, cells are mapped back to computational 

segmentations of the renal tissue for further down-

stream spatial analyses.

Distinct immune trajectory. To statistically test for the differential 

presence of  particular cell classes, we performed a nonparametric 

Mann-Whitney-U test for population differences using cell densities. 

We performed the following comparisons: LuN-KC, RAR-KC, and 

LuN-RAR. Benjamini-Hochberg P-value correction was performed to 

control for multiple P-value hypothesis testing.

Image acquisition and processing. Sections were deparaffinized and 

stained our panel of 42 antibodies each conjugated to a unique oligonu-

cleotide. Images of full biopsy sections were acquired on an Andor Drag-

onfly 200 Spinning Disk Confocal Microscope (0.1507 μm pixel size). The 

staining patterns of our 42-marker panel was acquired through iterative 

staining with Alexa Fluor 488, Atto550, Cy5/AF647, and AF750 fluo-

Table 2. Primary CODEX antibodies

Target Clone Manufacturer Catalog No. Dilution Cycle
BDCA1 OTI2F4 Novus Biologicals NBP2-70345 1:200 1
BDCA2 polyclonal Novus Biologicals AF1376 1:200 2
CD10 EPR22867 Abcam ab256494 1:200 10
CD103(ITGAE) EPR22590-27 Abcam AB254201-1001 1:200 9
CD11c EP1347Y Abcam ab216655 1:200 1
CD138 EPR6454 Abcam ab226108 1:200 4
CD14 SP192 Abcam AB230903-1001 1:200 3
CD16 D1N9L Cell Signaling 72204SF 1:200 7
CD163 EDHu-1 Novus Biologicals NB110-40686 1:200 13
CD20 L26 Abcam ab236434 1:200 8
CD21 EP3093 Abcam ab271855 1:200 11
CD27 BLR083G Abcam ab272072 1:200 10
CD3 SP7 Abcam ab205228 1:200 12
CD31 EP3095 Abcam ab226157 1:200 11
CD4 EPR6855 Abcam ab181724 1:200 6
CD43 SPM503 Novus Biologicals NBP2-34775 1:200 12
CD45 EP322Y Abcam ab214437 1:200 9
CD45 2B11 + PD7/26 Novus Biologicals NBP2-34287 1:200 9
CD56 OTI1G4 OriGene CF506208 1:200 6
CD68 KP1 eBioscience #14-0688-82 1:200 13
CD69 EPR21814 Abcam ab234512 1:200 8
CD8 C8/144B Invitrogen MA5-13473 1:200 7
CD86 E2G8P Cell Signaling 1:100 5
Claudin1 ab238949 Abcam EPR121871 1:200 10
COLIII polyclonal Proteintech 22734-1-AP 1:200 4
FOXP3 PCH101 eBioscience 14-4776-82 1:200 4
GZMA EPR20161 Abcam ab251499 1:200 5
GZMB D6E9W Cell Signaling 79003SF 1:200 9
GZMK polyclonal Abcam EPR24601-164 1:200 8
HLA-DP,-DR,-DQ CR3/43 Abcam ab7856 1:200 11
ICOS D1K2T Cell Signaling 39740SF 1:200 6
IFN-γ EPR21704 Abcam ab231301 1:200 7
IL-10 JES3-9D7 Invitrogen 14-7108-81 1:200 2
IL-10 polyclonal Novus Biologicals AF-217-NA 1:200 2
iNOS SP126 Abcam ab239990 1:100 3
Ki67 B56 BD BDB556003 1:200 7
MERTK Y323 Abcam ab271851 1:200 13
MTOC TU30 Abcam ab27074 1:200 12
MUC-1 955 Novus Biologicals NBP2-44658 1:200 10
MXA polyclonal R&D AF7946 1:200 1
PD1 D4W2J Cell Signaling 63815SF 1:100 2
ROR-γ polyclonal ThermoFisher Scientific PA534164 1:200 3
SLAMF7 E5C4M Cell Signaling 66110 1:200 1
T-bet D6N8B Cell Signaling #27112SF 1:100 5
TCR-delta H-41 Santa Cruz sc-100289 1:200 4

Cycle, the numeric position at which the antibody was probed and imaged during the CODEX 
multiplex imaging process.
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B1+HLA–DRA+HLA–DRB1+HLA–DQA1) denote canonical immune cell 

populations were used for K-mean clustering. Top 10 highly expressed 

genes for each cluster were calculated by wilcoxon rank-sum test com-

paring to the other 6 clusters using scipy.stats. with alternative= ‘great-

er,’ P value < 0.05 and mean difference > 0.

MERSCOPE gene set enrichment analysis. Log2FC data was generated 

by comparing each cluster with the all the other clusters and was used 

for gene set enrichment analysis. Analysis was done by using python 

library gesapy with the prerank function (permutation number=100).

Computational resources. All computational tasks were carried out on 

the MEL server located in the Radiomics and Machine Learning Facil-

ity at the University of  Chicago. MEL is equipped with 256 Xeon Gold 

6130 CPU cores, 3 TB of  DDR4 ECC RAM, 24 TB NVMe SSD stor-

age space, and houses 16 Nvidia Tesla V100 32GB GPU accelerators.

Statistics. Statistical tests used in this paper included Mann-Whitney-U 

test for population differences with Benjamini-Hochberg P value correction 

for multiple P value hypothesis testing and Wilcoxon rank-sum test. A P 

value of less than 0.05 was considered statistically significant.

Study approval. This study was approved by the University of  Chica-

go Institutional Review Board. No consent was obtained for use of  the 

biopsies which were de-identified, left over fragments from clinically 

indicated biopsies. A routine procedure consent was obtained for the 

original clinically indicated biopsy.

Data availability. The computer code used for these analyses has been 

deposited on Github: https://github.com/bkwalsh/Resolution-of-in-si-

tu-inflammation-in-human-lupus-nephritis-into-principal-immune-cell-tra-

jectories; commit ID 6b015dd19794bc915bb6a4d8aa3e345601d6f62c. 

Image data will be provided upon reasonable request. Values for all data 

points in graphs are reported in the Supporting Data Values file.
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Renal structure segmentation. For the instance segmentation of  kid-

ney tubules, Omnipose was trained on 32 tiles of  10-x downsized DAPI 

kidney images (160 x 160 pixels) randomly selected from 3 kidney biop-

sies. The total number of  training annotations was 355 instances. The 

change in training image size compared with the training image size in 

cellular segmentation was to reflect the size differences between a cell 

and a much bigger tubule structure. The training parameters were as 

follows: 1,000 epochs, learning rate = 0.1, batch size = 16, number of  

classes = 2, tyx tuple input = 128 × 128. This model was trained from 

scratch without using any pretrained models. Posttraining validation 

was done on 16 tiles of  downsized DAPI kidney images (160 × 160 

pixels), containing 195 tubule instances.

Whole-slide segmentation of lupus kidney biopsies was performed on 

DAPI channel after preprocessing and downsizing by a factor of 10. The 

segmentation parameters are as follows: mask threshold = 2.04, diameter 

= 30, with affinity segmentation. Postsegmentation of tubules was done 

to remove false positives (red blood cells clusters, clusters of aggregated 

lymphocytes in the interstitial spaces) by calculating the mean fluorescence 

intensity of canonical kidney structural markers per tubule object and sub-

sequently removing the objects which express low tubule markers (CD10, 

MUC-1) and high expression level of all markers, which is typical of red 

blood cells. Using normalized mean fluorescence intensity, objects satis-

fying the following conditions are removed as false positives: μCD10 < 0.8, 

μMUC-1 < 0.8, μClaudin-1 < 1, μCD138 < 1, 0.25 < (μMUC-1)/μCD10 < 6.5.

DBSCAN. We used density-based spatial clustering of  applications 

with (Noise) DBSCAN to find cellular clusters or neighborhoods in our 

multiplex microscopy imaging data. An ε hyperparameter of  85 pixels 

(approx. 13 microns) and minimum points hyperparameter of  5 (all 

points are considered core points). We used bootstrapping to subsample 

75% of the DBSCAN data for a total of  3,000 repetitions for the ideal K 

number of  clusters. Using the average bootstrap sum of squared distance 

plot and the delta sum of square distance plot we found that the empiri-

cally best fit K-clusters was around 8. We used 8 as optimal K for down-

stream analysis; moving forward with phenotyping only those cell neigh-

borhoods with 20 and more cell members. To phenotype these DBSCAN 

segmented cell neighborhoods, we performed feature extraction by char-

acterizing each neighborhood using total proportion for each cell class. 

We included the total cell count as another descriptor. Afterwards, to find 

unique defining features for each of  our clusters, we generated a heatmap 

of  the leave-one-out Z-test for every cluster.

MERSCOPE generation of  DBSCAN cluster masks. To perform DBSCAN 

(Python), raw data from MERSCOPE with coordinates of each detected 

gene was used, and coordinate-to-pixel transformation was performed to 

downsize the image to a pixel size of 10 μm. DBSCAN was performed 

with coordinate information with CD3E (ε = 40, min_min point = 5), CD14 

(ε = 20, min_min point = 5), and FCGR3A (ε = 30, min_min point = 5). 

Output masks of DBSCAN were then applied with postprocessing with 

Skimage including draw (radius_px = 10), binary_closing(footprint of disk 

radius = 5), remove_small_holes (area_threshold = 500), remove_small_

objects (min_size = 100), and gaussian blurring (sigma = 2.0). Manual 

check and correction were done before quantifying the density of genes in 

labeled masks (clusters). Density of genes were calculated with the number 

of transcripts divided by the area of labeled mask.

MERSCOPE clustering of  gene densities. Gene densities of  all 500 

genes for each labeled mask were calculated. Z-scored densities of  

genes: CD3E, CD4, CD8A, FOXP3, PDCD1, ICOS, CD163, MRC1, NOS2, 

CD14, FCGR3A, MS4A1, ITGAX, and HLAII (HLA-DPA1+HLA–DP-
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