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Immune cell quantification of in situ inflammation
partitions human lupus nephritis into
mechanistic subtypes
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BACKGROUND. In human lupus nephritis (LuN), tubulointerstitial inflammation (TII) is prognostically more important than
glomerular inflammation. However, a comprehensive understanding of both Tll complexity and heterogeneity is lacking.

METHODS. Herein, we used high-dimensional confocal microscopy, spatial transcriptomics, and specialized computer vision
techniques to quantify immune cell populations and localize these within normal and diseased renal cortex structures. With
these tools, we compared LuN to renal allograft rejection (RAR) and normal kidney tissues on 54 deidentified biopsies.

RESULTS. In both LuN and RAR, the 33 characterized immune cell populations formed discrete subgroups whose constituents
covaried in prevalence across biopsies. In both diseases, these covariant immune cell subgroups organized into the same
unique niches. Therefore, inflammation could be resolved into trajectories representing the relative prevalence and density

discrete mechanistic categories.

Alliance (MRC).

Introduction
Among the severe manifestations of systemic lupus erythemato-
sus (SLE), lupus nephritis (LuN) is the most common (1-5). Up to
50% of SLE patients develop lupus nephritis, in many cases neces-
sitating treatment with toxic immunosuppressive therapies such as
cyclophosphamide or mycophenolate mofetil (6-8). Despite such
aggressive treatments, many patients do not respond to therapy,
and up to 40% of LuN patients progress to renal failure within 5
years of diagnosis (9-12).

Much work in human LuN has focused on peripheral autoim-
munity and its manifestation within the kidney, glomerulonephritis
(GN) (13). However, prognosis is more tightly linked to tubulointer-
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of cardinal immune cell members of each covariant subgroup. Indeed, in any one biopsy, the inflammatory state could be
characterized by quantifying constituent immune cell trajectories. Remarkably, LuN heterogeneity could be captured by
quantifying a few myeloid immune cell trajectories, while RAR was more complex with additional T cell trajectories.

CONCLUSIONS. Our studies identify rules governing renal inflammation and thus provide an approach for resolving LuN into
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stitial inflammation (TII) and scarring (11, 14-21). TII, and to some
degree GN, are associated with complex in situ immune states. Single
cell (sc) RNA-Seq from human lupus biopsies has revealed at least 21
different adaptive and innate immune cell clusters (22), which orga-
nize into complex tubulointerstitial structures ranging from small
neighborhoods of CD8* T cells through T:B cell aggregates to canon-
ical germinal centers (23-27). TII is associated with selection of B
cells expressing unique antibody repertoires and cognate T cell:anti-
gen presenting cell (APC) networks (24, 28, 29). These data indicate
that LuN is associated with multiple in situ immune mechanisms
hypothesized to drive local inflammation and tissue destruction (30).

Limited studies have related specific in situ immune cell pop-
ulations to prognosis. For example, infiltrating CD8* T cells have
been associated with a poor prognosis (31, 32). In a study of prin-
cipal adaptive immune cell populations, densities of CD4~ T cells
were most predictive of resistance to conventional therapy and pro-
gression to renal failure (27). Furthermore, intrarenal T cells pro-
mote tissue injury in murine LuN and share effector pathways with
kidney-infiltrating T cells in human LuN (33). Finally, the efficacy
of the calcineurin-inhibitor voclosporin highlights the importance
of T cells in some patients with LuN (34).
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High densities of myeloid cells were associated with progres-
sive disease (35-37). However, these studies used simple markers
of myeloid cells, while recent studies have revealed great hetero-
geneity in the intrarenal myeloid cell compartment (22, 38). It is
unclear which in situ myeloid population is most closely linked to
prognosis in LuN.

The striking responses of lupus patients to CD19 CAR T cells
have renewed interest in the pathogenic role of B cells (39, 40). So
far, clinical trials with CD19 CAR T cells have been small, uncon-
trolled, and with limited mechanistic studies. Furthermore, they
appear at odds with observations that in LuN, in situ CD20* B cell
densities are associated with a good prognosis (27). These contra-
dictory results could simply reflect different patient populations or
the effects of conditioning chemotherapy. However, in aggregate,
these observations might suggest unexplored relationships between
systemic and in situ autoimmunity and/or in situ functions(s) for
B cells not captured by simple total cell densities (41, 42). These
functions might include secretion of highly pathogenic antibodies
or subpopulations of B cells presenting antigen to large populations
of pathogenic T cells (43, 44).

The above studies have each focused on the potential pathogen-
ic role of individual cell populations. There has been no compre-
hensive study of the relationships between these immune cell pop-
ulations and how their frequencies and spatial distributions differ
between patients with LuN. The latter is likely important, as how
adaptive immune cells organize in the LuN kidney provides unique
prognostic information (27). Herein, we used high-dimensional
confocal microscopy and customized computer vision tools to cap-
ture in situ LuN immune cell frequency and spatial distribution het-
erogeneity and compare these to those of renal allograft rejection
(RAR). Our data suggest that in situ LuN and RAR heterogeneity
can be described by quantifying a limited number of shared and
unique immune cell states. Furthermore, our data suggest that each
immune state develops along partially mutually exclusive trajecto-
ries, the constituents of which are associated with specific features
of renal inflammation and damage.

Results

Lupus nephritis and renal allograft rejection patient biopsies. To probe
the in situ immune differences between prototypical autoim-
mune (e.g., LuN) and alloimmune (e.g., RAR) renal diseases,
we acquired 25 LuN and 23 RAR initial diagnostic biopsies. An
additional 6 normal kidney control (KC) samples were acquired
from nephrectomies for renal cell carcinoma. In LuN, TII is
more prognostically important than GN (11, 14-19) while RAR
is primarily a tubulointerstitial disease (45). Therefore, our anal-
ysis focused on comparing TII between both diseases. Conven-
tional histological scoring by a pathologist of TII, chronicity,
interstitial fibrosis, and tubular atrophy did not reveal any sig-
nificant differences between the 2 disease cohorts (Figure 1A).
Supplemental Figure 1A provides LuN class, patient age at diag-
nosis, and age at biopsy (supplemental material available online
with this article; https://doi.org/10.1172/JCI192669DS1).
Supplemental Figure 1B provides information on RAR patients,
including rejection subtype, donor type, age at transplant, and
age at time of biopsy. Table 1 lists available clinical and histolog-
ical data on the LuN cohort.
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Quantifying highly multiplex images of full biopsy renal sections. We
hypothesized that there would be significant differences in in situ
immune cell populations between LuN and RAR. Therefore, we
stained each biopsy with antibodies specific for 42 markers that
identified known in situ immune cell constituents in LulN and RAR
(22, 46), other important cell populations (e.g., yd T cells), proximal
tubules (CD10), distal tubules (mucin 1, MUC1), as well as markers
of inflammation (Myxovirus resistance protein 1, MXA) and scar-
ring (collagen III, COLIII) (Figure 1B).

For our imaging, we used spinning disk confocal microscopy
coupled to a codetection by indexing (CODEX) microfluidic head
and CODEX chemistry (47). We captured whole slide images with
a pixel size of 0.1507 pm. Each cycle of imaging included a nucle-
us stain (DAPI) imaged at 405 nm and 4 other stains imaged at
488 nm, 561 nm, 637 nm, and 730 nm. In our analytic pipeline,
we adapted ASHLAR (48) to stitch and align image tiles into full
sections to generate an accurate coordinate space. Background was
subtracted and the resulting full biopsy image stacks were min-max
normalized to the 99th percentile for each channel.

Analysis of the resulting large and complex datasets required
first detection of cells and approximation of cell boundaries
(instance segmentation) and then assignment to known cell class
(annotation). For nuclear segmentation of DAPI-stained renal
tissue, we initially tested several convolutional neural networks
(CNNs) including Mask R-CNN (49), Cellpose 2.0 (50), Deepcell
(51), and Stardist (52). However, qualitative comparisons to manu-
ally annotated images revealed Cellpose to perform best, especially
in highly inflamed areas (data not shown). Therefore, Cellpose 2.0
was incorporated into our analytic pipeline (Figure 1C).

To assess cell detection and segmentation performance, we
compared the Cellpose output to a manually segmented dataset
of 100 regions of interest (ROIs) from 5 LuN biopsies and 5 RAR
biopsies (10 ROIs/biopsy). Cellpose had a zero-shot F1 perfor-
mance score of ~0.80 (LulN) and ~0.58 (RAR), with an average
precision of ~0.67 and ~0.38, respectively, at an intersection over
union (IoU) of 0.25 (Supplemental Figure 1, C and D). When we
adopted human-in-the-loop (HITL) (53) fine-tuning, we achieved
a F1 performance score of ~0.88 (LulN) and ~0.73 (RAR) with
an average precision of ~0.77 and 0.53, respectively. Approxi-
mately 2.19 million cells were detected across all 54 samples.

The Cellpose DAPI nuclear segmentation mask was dilated
approximately 1 micron with Voronoi tessellation to capture cyto-
plasmic staining and approximate whole cell body boundaries.
From this cell body mask, we captured mean fluorescence inten-
sity (MFI), which was standardized across all 42 channels. We
used uniform manifold approximation and projection (UMAP) for
dimension reduction and for plotting a random 10,000 cells from
each patient cohort in 2-dimensional space (Figure 1, D and E).

The distribution of cells for each patient cohort was different.
All 3 cohorts had similarities and difference in their distributions
within the UMAP space. To begin to understand these differences,
we projected the distributions of all 42 markers onto the UMAP
space (Supplemental Figure 2, A and B). Several lymphocyte mark-
ers, including CD3, CD4, CD8, and CD20 strongly colocalize in the
upper left of the UMAP plots. In contrast, some myeloid immune
cell markers, such as CD14 and BDCAI, colocalize in both the
upper left and right quadrants. These data suggest that infiltrating

J Clin Invest. 2025;135(21):e192669 https://doi.org/10.1172/)CI1192669


https://doi.org/10.1172/JCI192669
https://www.jci.org/articles/view/192669#sd
https://www.jci.org/articles/view/192669#sd
https://www.jci.org/articles/view/192669#sd
https://doi.org/10.1172/JCI192669DS1
https://www.jci.org/articles/view/192669#sd

The Journal of Clinical Investigation

CLINICAL RESEARCH AND PUBLIC HEALTH

A B
Histolqgical _Eeatures LuN (N=25) RAR (N=23) p-value CODEX panel (42 markers)
Tubulqr)terstltlal score (0-3) 2.32+0.80 2.47 +0.67 0.56 G el MEras
Chron!c!ty Index( G+Tl) (0-12) 4.80 + 3.26 3.85+1.74 0.56 T lymphooytes Humoral lymphocytes
Chronicity Index (G) (0-6) 1.52+1.78 0.61£0.80 0.11 CcD3 T-bet CD20 CcD21 CD138
Chronicity Index (TI) 3.28 £ 1.67 3.23+1.48 0.88 CD4  RORyT
Tubule Fibrosis (0-3) 1.64 £ 0.90 1.61+0.74 0.89 CD8 Foxp3 Monocyte/Macrophage
Tubule Atrophy (0-3) 1.64 £ 0.81 1.61+0.74 0.88 ICOS PD1 CD14 CDe68 iNOS
TCRyd CD69 CD16  SLAMF7 CD163
Immune functional Interferon Dendritic cells
GZMA  MerTK MXA IFNy BDCA1 CD11c
Nucleus GZMB  CD27 BDCA2
dilation GZMK
+ Antigen presentation Natural killer
) HLAIl CD43 mTOC CD86 CD56
Voronoi
tessellation Renal cell markers Other markers
CD10 Claudin1 DAPI Ki67
CD31 MUCA1 CD45 COLIlI
D E Lupus Nepbhritis

UMAP 2

UMAP 2

Kidney Control

UMAP 2

UMAP 1

Renal Allograft Rejection

-
UMAP 2

i Kidney Control
H | upus Nephritis
BN Renal Allograft

UMAP 1

Figure 1. Cell detection in multiplex microscopy imaging of renal biopsy tissue. (A) Histological scoring of patient-paired HGE and PAS biopsies. The mean
autoimmune cohort and standard deviation of the histological features are shown. Mann-Whitney-U nonparametric difference in means P-values are shown.
(B) CODEX antibody marker panel grouped by cell lineage or cellular activity most associated with that marker. (C) Workflow diagram of cell detection and
segmentation. Cell nuclei are defined using Cellpose 2.0 on a 512x512 DAPI image after performing Human-in-the-loop model retraining. Cell body was subse-
quently approximated by performing nuclear dilation with Voronoi tessellation. 512x512 images of DAPI segmentations are then knitted and aligned with the

42 fluorescent channels. (B) UMAP dimensional reduction of cell body MFI from 30,000 cells randomly sampled. 10,000 cells are sampled from each of the 3
cohorts: Normal Kidney Control, Lupus Nephritis, and Renal Allograft Rejection. Cells are colored according to their cohort of origin: KC, LuN, and RAR. (E) UMAP
dimensional reduction of cell body MFI from 30,000 cells randomly sampled. Cells are colored according to their cohort of origin.

lymphocytes reside in the upper left quadrant while myeloid popu-
lations localize in the upper left and right quadrants.

It was apparent from Supplemental Figure 2 that FOXP3 and
other markers had apparent broad distributions. Furthermore, in
areas of dense inflammation, fluorescence signals can bleed into
proximate cells. Finally, because we were randomly sampling a
2-dimensional cut of a 3-dimensional object, the staining intensity
within a given cell class can be variable. For these reasons, identify-
ing different cell populations by K-means clustering in the UMAP
space, as is done for scRNA-Seq data, is not adequate (54).

To circumvent these limitations, we emulated the hierarchi-
cal approach used to immunophenotype cells by flow cytometry.

J Clin Invest. 2025;135(21):e192669 https://doi.org/10.1172/JC1192669

Briefly, the mean pixel intensities for 26 cardinal markers were
organized into decision trees (DTs) for cell class annotation (47,
55) (Supplemental Figure 3). In Supplemental Figure 3A, the DT
for CD45* immune cells is given. Some macrophage populations
expressed undetectable levels of CD45 (Supplemental Figure 2A).
Therefore, CD45 renal structures and macrophage populations
were assigned as in Supplemental Figure 3, B and C. T cell sub-
types were assigned as in Supplemental Figure 3D. The resulting
33 annotated cell populations are shown in Supplemental Figure
4A. In this way, markers such as FOXP3 were not used for global
assignment decisions. Rather, FOXP3 was used to identify regula-
tory cells within T cell populations.
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Table 1. Demographics for patients with LuN

pt Dx Age at bx Sex Ethnicity LuN class Act
(y)

1 LuN 24 F Black V+V 6/24
2 LuN 28 F Black v 0/24
3 LuN 57 F Black I} 5/24
4 LuN 63 F Black 1l 0/24
5 LuN 19 F White IV+V 10/24
6 LuN N/A N/A N/A N/A N/A

7 LuN 28 F Asian v 2/24
8 LuN 44 F N/A v 7124
9 LuN 40 F N/A Vi 0/24
10 LuN 17 F Black Il 0/24
n LuN 17 F Hispanic v 13/24
12 LuN 16 F Black Il 0/24
13 LuN 17 F Hispanic lI+V 3/24
14 LuN 19 F Hispanic v 12/24
15 LuN 20 F Black 1] 6/24
16 LuN 17 M N/A v 13/24
17 LuN 31 F Hispanic IV 1/24
18 LuN 18 F N/A v 1/24
19 LuN 54 F Black/AA ) 8/24
20 LuN 17 F Hispanic v 10/24
21 LuN 34 F N/A Vv 2/24
22 LuN 18 M Hispanic v 19/24
23 LuN 10 F Black v 9/24
24 LuN 33 F Black v 8/24
25 LuN 15 F Hispanic IV+V 15/24

Chron Pulse Steroids at/after bx HCQ  Immunosuppression
steroid (pred eq; mg/d) before bx before bx
4/12 N 40 Y MMF
N/A Y 60 Y 0
1/12 N 20 Y 0
3/12 N 60 Y 0
2/12 Y 40 Y MMF
N/A N/A N/A N/A N/A
712 N 0 Y 0
5/12 Y 40 Y MMF
7/12 N/A N/A N/A N/A
0/12 Y 40 Y 0
0/12 Y 20 N 0
0/12 Y 50 N 0
4/12 N 0 Y MMF
6/12 N 0 Y 0
2/12 Y 0 Y 0
0/12 N/A N/A N/A N/A
2/12 N/A N/A N/A N/A
0/12 N/A N/A N/A N/A
4/12 Y 20 N 0
0/12 N/A N/A N/A N/A
4/12 N/A N/A N/A N/A
2/12 N/A N/A N/A N/A
2/12 Y 60 Y AZA
4/12 N 50 Y 0
3/12 N/A N/A N/A N/A

N/A, not available, pt, patient; Dx, diagnosis; Act, NIK activity index; Chron, chronicity index; bx, biopsy; pred eq, equivalent dose of prednisone; HCQ,
hydroxychloroquine; MMF, mycophenolate; AZA, azathioprine. Pulse steroid, IV (intravenous) solumedrol. Dose is unknown although typically 1gram a day

for three days.

Approximately 77% of segmented cells were assigned to a cell
class across disease groups. Primarily, renal tubular cells could not be
assigned to a class, as identifying markers often stained the plasma
membrane, which was beyond the 1-micron DAPI dilation in these
large cells. This limitation was circumvented as described below.

Each annotated cell class expressed the expected cardinal mark-
ers (Supplemental Figure 4B). Furthermore, across biopsy cohorts,
each annotated class manifested similar distributions of cell stain-
ing (Supplemental Figure 4C). These data suggest that quantitative
comparisons could be made across patient cohorts.

Using the above DTs to annotate cells in the UMAP space, simi-
larities and differences between biopsy cohorts became apparent (Fig-
ure 2A). While renal parenchymal structures occupied the center of
all 3 cohort UMAPs, there were differences in distributions. Some of
these changes could be ascribed differential expression of markers of
inflammation (MXA, Claudin 1) and scarring (COLIII) in the disease
cohorts (Supplemental Figure 4D). Lymphocytes, especially T cells,
occupied the upper left quadrant. These populations were scant in
normal kidney and highest in RAR. In contrast, myeloid populations
were increased in both LuN and RAR. However, there were some dif-
ferences in the distribution of myeloid cells in the UMAP space, sug-
gesting that each disease might be enriched for specific populations.

A more detailed picture was provided when constituent cell
percentages were examined (Supplemental Figure 5A). As expect-

ed, renal parenchymal cells were the most prevalent. As described
above, these were under estimations. Among immune cell popu-
lations, myeloid cells, especially CD14* macrophages and inflam-
matory monocytes, were enriched in both LuN and RAR. Howev-
er, total CD163" macrophages were enriched in LuN. In contrast,
most T cell populations, including CD4*, CD8*, and y§ T cells,
were enriched in RAR. Indeed, comparing cell densities between
KC, LuN, and RAR revealed that LuN was enriched for myeloid
cell populations, especially CD163* macrophages (Figure 2B). In
contrast, RAR was enriched for multiple T cell populations. Nota-
bly, CD3" T cells lacking CD4, CD8, or y coexpression (double neg-
ative or DN T cells), were not enriched in either disease compared
with KC samples (27, 56). These data suggest that, in our cohort,
RAR is characterized by enrichment of T cell and myeloid popula-
tions, while LuN is enriched primarily in myeloid cell populations.

In comparison with KC biopsies, there was substantial het-
erogeneity in disease groups both in terms of lymphocyte versus
myeloid cell populations in each biopsy and the constituents with-
in each broad immune cell class (Figure 2C). In LuN, there were
4-5 biopsies with relatively high lymphocyte populations, while,
in the rest of the biopsies, myeloid cells predominated. Myeloid
cells predominated in about half of RAR biopsies. Furthermore,
especially in RAR, the myeloid compartment was dominated by
either macrophages or HLA class II positive or negative inflam-

J Clin Invest. 2025;135(21):e192669 https://doi.org/10.1172/)CI1192669
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Figure 2. Distribution of immune cell classes in KC, LuN, and RAR. (A) UMAP dimensional reduction of cell body MFI from 30,000 cells randomly
sampled. 10,000 cells were sampled from each of the indicated cohorts. (B) Nonparametric Mann-Whitney-U difference of the mean test for popula-
tion differences in classified cell density between patient cohorts; from the top row: LuN-KC, RAR-KC, and RAR-LuN. Color indicates log, fold change.
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Benjamini-Hochberg P value correction was performed. *P < 0.05, **P < 0.01, ***P < 0.001. (C) Patient-level proportions of the 33 immune cell classes by
cohort. Kidney control (top), lupus nephritis (middle), and renal allograft rejection (bottom). Mixed-rejection biopsies are denoted using a beige bar, T-cell

mediated rejection biopsies are denoted in light blue. All cell classes (except nonclassified cells) are color coded as displayed in the panel in A. Bars at

bottom identify MR (yellow) and TCMR (blue).

matory monocytes (defined by CD14 and CD16 expression) (57).
Among the RAR samples were 13 mixed rejection (MR) and 10 T
cell mediated rejection (TCMR). However, there were no apparent
global differences in the distributions of lymphoid or myeloid cells
between these disease classes. As these subgroups were small, no
further comparisons between the 2 were performed.
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Distinct immune trajectories in LuN and RAR. Plotting Spearman’s
correlation between immune cell proportions across LuN and RAR
biopsies revealed covariance between specific subpopulations. (Fig-
ure 3, A and B, and Supplemental Figure 6, A and B). In both dis-
eases, covariance across T cell populations, including CD4*, CD8*,

and yd T cells, was the most striking. Interestingly, there was not a
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Figure 3. Spearman’s correlation of lupus nephritis cell class proportions. (A) Heatmap of the nonparametric spearman’s correlations between
patient-level immune and nonimmune cell proportions for lupus nephritis patients. (B) Heatmap of statistically significant (P < 0.05) nonparametric
spearman’s correlations between patient-level immune and nonimmune cell proportions for lupus nephritis patients.

strong correlation between B cells and plasma cells or plasmablasts,
and in neither disease was there a correlation between plasma cells/
blasts and most T cell populations. Focusing on innate cells, there
were covariant subpopulations or blocks among the most common
cell populations in both LuN and RAR. Specifically, we observed
covariance between macrophages expressing CD163, including
CD14*CD163*MerTk* and CD14*CD163" populations. There
were separate covariant cell blocks for CD163~ CD14* macrophages
(£ MerTK) and for CD14*CD16" monocytes (= HLA class II).

In RAR, some of the above populations had inverse relation-
ships. For example, CD163" macrophages inversely varied with
some CD163~ macrophage and monocyte populations. In LuN,
there was a trend towards these inverse relationships. In LuN, B cell
densities have been associated with a good prognosis (27). There-
fore, it is interesting that, in LuN, they had an inverse proportion-
al relationship with CD14*MerTK" macrophages and a positive
correlation with some CD163" macrophage populations, both of
which are much more prevalent than B cells. Similar correlations
were observed when considering the densities of the different cell
populations (Supplemental Figure 6, C-F), suggesting that the
observed relationships were robust. These separate, covariant sub-
populations, or cell blocks, suggest that a limited number of discrete
immune states characterize both LuN and RAR.

Cohort-specific relationships were observed when we plotted the
densities of all myeloid cells versus all T cells for each biopsy (Figure
4A). The size of each point reflects total humoral cells. Strikingly,
LuN unfolded along a myeloid axis and RAR alonga T cell axis with
some RAR biopsies also having substantial densities of myeloid cells.

These differences in myeloid and T cell densities were associated with
striking visual differences (Figure 4B). We then plotted the densities
of CD14"MerTk*CD163™ macrophages versus CD14*CD163* mac-
rophages versus total CD8" T cells (Figure 4C). Interestingly, RAR
unfolds along the CD14*MerTk*CD163~ axis, which is also rich in
CD8* T cells. In contrast, some LuN biopsies also had relatively high
CD163" macrophage densities (4 of 25 biopsies) while other biop-
sies had high densities of CD163* macrophages (5 of 25). Examples
from the indicated biopsies are provided in Figure 4D. These data
suggest that in our patient cohorts, LuN and RAR biopsies often lie
along different immune cell trajectories.

Immune cell localization within renal compartments. The above
analyses examined immune cell frequencies across whole biop-
sies. However, the kidney is structurally complex with glomeruli,
tubules, and the tubulointerstitial space. Compared with hemato-
poietic cells, tubules have a characteristic pattern of DAPI stain-
ing. Therefore, to identify tubules, Omnipose (58) was trained
on representative 10-fold downsized DAPI kidney images from
CODEX image stacks. Glomeruli were segmented manually
(Supplemental Figure 7, A and B).

We first assessed the densities of all immune cell populations
across the different renal compartments (Figure 5A). From left
to right are provided interstitial, tubular, glomerular, peritubu-
lar (dilated tubular mask), and periglomerular (dilated glomeru-
lar mask) densities for all indicated immune cell populations. In
both diseases, and for all immune cell populations, densities were
highest in the periglomerular space. In general, there were more
plasma cells/blasts in LuN distributed across all compartments. In

J Clin Invest. 2025;135(21):e192669 https://doi.org/10.1172/)CI1192669
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Figure 4. Distinct immune trajectories are associated with distinct pathologic states. (A) Plot of the patient-level T-cell density (x-axis) and myeloid cell
density (y-axis) colored by cohort: Kidney control (green), LuN (blue), RAR (magenta). Diameter indicates humoral cell density (B cells plus plasma cells).
(B) Representative microscopy images of immune cell polarization in lupus nephritis and renal allograft rejection patient cohorts. Image numbers corre-
spond to biopsies indicated in A. (C) Plot of the patient-level CD14*MerTk* macrophage density (x-axis) and CD14*CD163* macrophage density (y-axis) col-
ored by cohort: Kidney control (green), LuN (blue), RAR (magenta). Diameter indicates T-cell density. (D) Representative microscopy images of CD14*CD163*
and CD14*MerTk* enriched biopsies. Image numbers correspond to biopsies indicated in C. Scale bars: 50 pm.

contrast, RAR was generally enriched in T cells distributed across
all renal structures except for glomeruli. Furthermore, there was a
general enrichment of CD163* macrophages in LuN.

‘We then focused on 2 potential disease-associated populations,
CD8* T cells and CD14*MerTK* macrophages (Figure 5B). In both
cell populations, the periglomerular enrichment was evident. In
addition, in some RAR biopsies, there is an enrichment of both cell
populations in the peritubular and tubular space compared with the
interstitial space. Indeed, in RAR biopsies there was both peritubu-
lar inflammation and tubulitis (Figure 5C). In contrast, interstitial
and peritubular densities were similar in LuN and tubulitis was rare

J Clin Invest. 2025;135(21):e192669 https://doi.org/10.1172/JC1192669

(Figure 5D and data not shown). These data suggest that inflam-
mation in the RAR tubulointerstitium is centered around and in
tubules, while, in LuN, it occurs diffusely through the interstitium.

Organization of inflammation into neighborhoods. We next used
DBSCAN (59) to determine if in situ inflammation was organized
in LuN and RAR. K-means clustering and bootstrapping were first
used to estimate the optimal number of states using spatial coordi-
nates for all immune cells and the indicated cell neighborhood size
exclusion conditions (Supplemental Figure 8). Based on this anal-
ysis, we used 8 as the optimal number of clusters (neighborhoods)
for downstream analysis.

7


https://doi.org/10.1172/JCI192669
https://www.jci.org/articles/view/192669#sd

CLINICAL RESEARCH AND PUBLIC HEALTH The Journal of Clinical Investigation

Plasmablast
Plasma cell
CD4+Foxp3+ T cell
CD4+ICOS+PD1+ T cell
CD4+ ICOS+ T cell
CD4+PD1+ T cell

CD4+ T cell

CD4+ intraepithelial T cell e |
CD8+Foxp3+ T cell
CD8+ICOS+PD1+ T cell
CD8+ICOS+ T cell
CD8+PD1+ T cell

CD8+ T cell

CD8+ intraepithelial T cell
CD3+ T cell

TCRyYS T cell

Natural killer T cell -l

Natural killer cell
CD14+CD163+MerTk+ M
CD14+CD163+ Mo
CD14+MerTk+ Mo

CD14+ Mo

CD16+ Mo

HLAII+ Monocyte

HLAII- Monocyte
Monocyte-derived Mo -l
Neutrophil
BDCA2+CD103+ DC
cDC1
cDC2
pDC

Peritubular
Periglomerular -

,

Aso i g
20 W Dot st o
MerTK/CD8/CD68/DAPI

LuN RAR
-02 6000
B KC
L %000 mELuN
| I RAR
0.175 E 4000 . - .
(2]
5 3000 "
[&]
| 2000
+ £l
0 1000 ! *
o
o 0 6‘ @ ‘ 0‘ ‘
-1000
5
3
S 5000
N
S £
g' € 4000 *%
=~ *kkk
§ so00| —*- * *hkk *kkk
+ *kk *
X
2000
'_
o *k% L *kkk
= 1000 *kk
<
0. | Y'Y I
0 —_ — —_
o
o
-1000
s = = P
. E o=t E=] E] £ 2 @
2 BEEz¢ £ © & <)
s £ oes o)
2 £ Tap o
& &

D LuN

MerTK/CD8/CD68/DAPI

Figure 5. Distribution of inflammation across renal compartments. (A) Heatmap showing the biopsy average density of immune cells of the kidney ana-
tomical compartments, normalized to proportion across cohorts. From the left: interstitium, tubule, glomeruli, perititubular, periglomerular. (Left heatmap)
kidney control, (middle heatmap) lupus nephritis, and (right heatmap) renal allograft. (B) Violin plots of the biopsy average number of cells per mm? within
the indicated tissue compartments for CD8* T cells and CD14*MerTk* macrophages (M¢). Mann-Whitney U test with Bonferroni correction for multiple tests.
*P < 0.05, **P < 0.01, ***P < 0.001. (C) RAR example demonstrating tubulitis (yellow arrowhead) and peritubular inflammation (white arrowhead). (D) LuN
example demonstrating diffuse interstitial inflammation. Scale bars: 50 pm.

We generated a heatmap using features including average total ~ Cluster 4 in T cell populations, Cluster 5 in CD14* macrophages,
cell count across biopsies and average cell proportion to visualize ~ Cluster 6 in CD163* macrophages, and Cluster 7 in T cell popu-
the unique elements of each cluster (Figure 6A). When cell counts  lations including CD4 CD8d™ T cells (27). While most clusters
were examined, Clusters 4 and 7 had the most cells, while Clusters ~ appear more frequent in RAR, the CD163" macrophage Cluster
2 and 3 were the most frequent (Figure 6B). Each cell cluster had 6 was more common in LulN. Representative examples of clusters
unique features. Cluster 0 was enriched in HLA class II mono- 1 and 6 are shown in 1 LuN biopsy, indicating that clusters of
cytes and monocyte-derived macrophages, Cluster 1 in CD163~ CD163" and CD163™ macrophages can occur in the same biopsy
MERTK" macrophages, Cluster 2 in MHC class II* monocytes  (Figure 6C). An example in LuN of the inflammatory monocyte
and CD16" macrophages, Cluster 3 in HLA class II" monocytes, = and macrophage enriched Cluster 2 is provided in Figure 6D.

:
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Figure 6. Distribution of cell classes in in situ immune clusters. (A) Heatmap of the Z-score from indicated extracted features from DBSCAN cell networks
using an optimal K = 8 means clustering of cell clusters larger than 19 cells. Proportions of each cell class were used with the number of cells in each cluster
represented in right column. (B) Bar plot showing the total count of the various K=8 DBSCAN cell networks colored by patient cohort: KC (green), LuN
(blue), and RAR (magenta). (C) Example of clusters 6 (box) and 1 (circle) within the same LuN biopsy. (D) Example of cluster 2 in a LuN biopsy containing a
mix of MHC class II* (data not shown) inflammatory monocytes and macrophages. Scale bars: 100 um (C), 50 pm (D).

We next sought to confirm our results on a subset of 6 biop-
sies from our LuN cohort using spatial transcriptomics (MER-
SCOPE, Vizgen) and the 500 gene human immune-oncology
panel. The resulting raw images were resized with a pixel size of
10 mm and DBSCAN performed on CD3E, CD14, and FCGR3A4
(CDI16)-expressing channels. Images with DBSCAN labels were
further processed to generate neighborhoods for gene density.
The Z-scored densities of 20 genes whose protein products were
represented in the CODEX panel were used for K-means clus-
tering as above (optimal was 7 clusters, data not shown). Using
UMAP to plot the distribution of cell clusters revealed good sep-
aration of cluster groups (Supplemental Figure 9A). A Heatmap
of the expression distributions of those genes used for cluster-
ing revealed similar clusters to those detected by CODEX (Sup-
plemental Figure 9B). Indeed, there were CD163* macrophage
clusters (Cluster 3), CD14"* enriched monocyte clusters (Cluster
4), CD16" macrophage/monocyte enriched clusters (Cluster

J Clin Invest. 2025;135(21):e192669 https://doi.org/10.1172/JC1192669

0), and 2 T cell enriched clusters (Clusters 1 and 2). Cluster 6
had similarities to CODEX Cluster 7, while Cluster 5 was not
enriched for any specific immune genes. In Supplemental Figure
9C are the top 10 differentially expressed genes in each cluster
(55 genes total), demonstrating unique gene expression distribu-
tions in each cluster.

‘We also performed gene set enrichment analysis (GSEA) com-
paring each cluster to all others (Supplemental Figure 9D). Nota-
bly, the CD163* Cluster 3 was enriched in fibroblast proliferation
and mitotic gene programs. In contrast, the CD14* monocyte Clus-
ter 4 revealed endothelial cell proliferation, MAPK activation, and
receptor tyrosine kinase activation programs. There was a concom-
itant lack of adaptive immune system expression programs. These
results indicate that in both LuN and RAR, renal inflammation is
organized into distinct clusters. Furthermore, our spatial transcrip-
tomic data suggest that specific injury mechanisms occur in some
immune cell clusters.
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Immune cell correlates with tissue inflammation and damage. From
our high-dimensional staining panel, we could derive 4 measures
of tubulointerstitial inflammation and scarring: (a) total biopsy
immune cell density; (b) total biopsy inflamed tubule cell density
(MXA and Claudin 1 in tubule mask); (c) COLIII mask area (%
of total biopsy area); and (d) MXA mask tissue area (% of total
biopsy area). Given the above findings, we plotted these 4 mea-
sures versus whole biopsy densities and proportions of total CD8*
T cells, total CD4* T cells, CD14*"MerTK*CD163- macrophages,
CD14*CD163* macrophages, HLA class II* inflammatory mono-
cytes, and HLA class II" inflammatory monocytes, and then per-
formed ordinary least squares linear regression (OLS). Only graphs
with positive correlations are provided.

We observed that CD8* T cell densities were correlated with
immune cell densities in RAR and LuN (Figure 7A). In contrast,
only in RAR were CD8* T cell densities associated with MXA
expression (Figure 7B). Consistent with the covariance of CD4*
and CD8"* T cell densities across biopsies, similar associations were
observed for CD4* T cell densities (Figure 7, Cand D). CD14"MerT-
k*CD163- macrophage cell densities were associated with immune
densities in both diseases (Figure 7E). CD14"MerTk" macrophages
were also associated with inflamed tubule density in RAR with a
similar trend in LuN (Figure 7F). There was a strong association
between CD163* macrophage cell densities and immune cell den-
sities in LuN but not RAR (Figure 7G). However, CD163* mac-
rophage proportions were associated with COL III scores only in
RAR (Figure 7H). Finally, densities of HLA class IT* inflammatory
monocytes were associated with immune cell densities (Figure 7I)
in both diseases. However, they were only associated with MXA
scores in RAR (Figure 7J). These data indicate that, in LuN and
RAR, immune cell populations having the same surface phenotype
can have either similar or different associations with measures of
renal inflammation and scaring.

Immune cell trajectories characterize individual biopsies. The above
data suggest that inflammation heterogeneity can be resolved into
relatively few covariant blocks of the most prevalent immune cells.
Immune cell constituents of these different inflammatory states
organized into distinct niches and were associated with specific
manifestations of renal inflammation and scarring. To begin to
graphically quantify inflammation in a way that could be compared
across diseases and biopsies, we generated radar diagrams in which
each axis was the density of a principal cell population: total CD8*
T cells, total CD4* T cells, CD14*CD163~ macrophages, CD163*
macrophages, HLA class II* inflammatory monocytes, and HLA
class II" inflammatory monocytes.

We first plotted all 54 individual biopsies on a single radar
graph, color coded by clinical cohort (Figure 8A). Compared
with both LuN and RAR, the KC samples had far less densities
of these 6 immune cell population groups. It is also apparent that
some RAR biopsies had higher densities of several immune cell
populations compared with LuN biopsies. Indeed, plotting average
immune cell densities for each clinical cohort indicate that all pop-
ulations, except for CD163* macrophages, are higher in RAR than
LuN (Figure 8B). These data indicate that, on average, the RAR
biopsies are more inflamed, even though the 2 disease cohorts were
scored similarly for TII (tubulointerstitial score) by a renal pathol-
ogist (Figure 1A).

The Journal of Clinical Investigation

Plotting LuN and RAR biopsy cohorts separately allowed bet-
ter visualization of the immune cell densities that characterized each
disease cohort. In LuN, inflammation unfolds along 3 major density
axes: CD163* macrophages, CD163~ macrophages, and HLA Class
II- inflammatory monocytes (Figure 8, C and D). Across the disease
cohort, RAR appears more complex with significant projections along
the CD163~ macrophage, HLA Class II* inflammatory monocytes,
HLA Class II" inflammatory monocytes, CD4" T cells, and CD8* T
cell density axes (Figure 8, E and F). Notable is the lack of substantial
CD163" macrophage densities. These data suggest that LuN is char-
acterized by a few myeloid immune cell density axes, while RAR has
both myeloid and adaptive immune cell density axes.

‘We then plotted individual disease biopsies. Of the 25 LuN biop-
sies, 6 were characterized by prominent CD163* macrophage densi-
ties (> 2-fold over CD163~ macrophages) and a relative lack of other
immune cell populations (Figure 8G and Supplemental Figure 10A).
One of these biopsies also had high numbers of HLA class II" inflam-
matory monocytes (Supplemental Figure 10B). Similarly, 6 biopsies
were characterized by primarily CD163~ macrophage populations
(Figure 8H and Supplemental Figure 10C). Two of these also had
substantial HLA class II" monocyte immune cell densities (Figure 8I
and Supplemental Figure 10D). The remaining 13 biopsies had both
substantial CD163* and CD163" immune cell densities. Seven of
these biopsies did not have substantial densities of other populations
(Figure 8J and Supplemental Figure 10E). The other 6 had concur-
rent HLA class II" inflammatory monocyte densities (Figure 8K and
Supplemental Figure 10F). Therefore, within our cohort, LuN fell
into subsets characterized by CD163* macrophage, CD163- macro-
phage, and HLA class II" inflammatory monocyte densities.

RAR was more complex. Of the 23 biopsies, 8 had a predomi-
nantly single immune cell population (> 2-fold difference over oth-
er immune cell populations). In 5 of these, CD163~ macrophage
densities predominated (Figure 8L and Supplemental Figure 11A).
In 2, HLA class II" inflammatory monocytes predominated, and,
in 1, CD163* macrophages. Only 2 biopsies were characterized by
2 trajectories, both of which included CD163- macrophages (Sup-
plemental Figure 11B). The rest manifested multiple myeloid and
adaptive immune cell densities including 6 that had HLA class
IT" inflammatory monocytes (Figure 8M and Supplemental Figure
11C) and 7 that did not (Figure 8N and Supplemental Figure 11D).
These data suggest that, in our cohort, RAR falls broadly into 2
categories, those that can be characterized by myeloid cells, most
commonly CD163~ macrophages, and those characterized by both
myeloid and adaptive immune cell densities.

Discussion

Using high dimensional imaging and computer vision techniques
specifically adapted for the kidney, we provide the first compre-
hensive assessment of LuN and RAR immune cell constituency,
how these cells are organized into neighborhoods, and their rela-
tionships to renal cortical structures. These data resolve immune
cell heterogeneity into a limited number of cell states. Indeed, in
any 1 biopsy, the inflammatory state could be characterized by the
relative prevalence and magnitude of cardinal immune cell trajec-
tories. Notably, in many biopsies from both diseases, CD163~ mac-
rophages predominated with or without other concurrent immune
cell populations. In LuN, concurrent immune cell populations
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Figure 7. Immune cell trajectories correlate with tissue inflammation and damage. (A and B) CD8* T cell density as a function of immune cell density (A)
and score (B). (C and D) CD4"* T cell density as a function of immune cell density (C) and myxovirus resistance protein 1(MXA) score (D). (E and F) MerT-
K*CD163" macrophage density as a function of immune cell density (E) and inflamed tubule density (F). (G) CD163* macrophage density as a function of
immune cell density. (H) CD163* macrophage proportion as a function of Collagen Ill (COL 1I) score. (1 and J) Inflammatory HLA class II* monocytes immune

cell density as a function of immune cell density (1) and MXA score (J).

were of myeloid lineages, while, in RAR, CD163~ macrophages
cooccurred with both myeloid and adaptive immune cell lineages.
While both diseases manifested inflammatory states anchored by
CD163™ macrophages, only in LuN were there several biopsies in
which CD163* macrophages predominated. Our studies suggest an
approach to quantifying in situ immunity that allows comparisons
between individual biopsies in and across disease states.

J Clin Invest. 2025;135(21):e192669 https://doi.org/10.1172/JC1192669

Canonical cell markers identified populations of immune cells that
covaried with each other and shared common spatial distributions with-
in the tubulointerstitium. CD163*, a marker of some M2 macrophages,
identified cell populations that formed neighborhoods and distributions
different from other macrophage populations regardless of other shared
markers such as the phagocytic receptor MerTK (60). Likewise, inflam-
matory monocytes, especially those expressing MHC class II, did not
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Figure 8. Quantifying in situ immune state using principal immune cell trajectories. (A) Composite web graph of all individual biopsies colored by

cohort. Green, normal kidney; blue, LuN; and purple, RAR. (B) Plot of averages for each clinical cohort. (C) Plot of LuN individual biopsies. (D) Average LuN
densities for indicated immune cell populations. (E) Plot of RAR individual biopsies. (F) Average RAR densities for indicated immune cell populations. (G)
Example of individual LuN biopsy with CD163* macrophage polarity. (H) Example of LuN biopsy with CD163- macrophage polarity. (I) Example of LuN biopsy
with CD163" macrophage and HLA Il inflammatory monocyte polarities. (J) Example of LuN biopsy with CD163* and CD163- macrophage polarity. (K) Exam-
ple of LuN biopsy with CD163* and CD163- macrophage polarity in combination with HLA II- inflammatory monocyte polarity. (L) Example of individual RAR
biopsy with CD163- macrophage polarity. (M) Example of individual RAR biopsy with multiple immune cell lineages plus HLA II- inflammatory monocytes
trajectory. (N) Example of individual RAR biopsy with multiple immune cell lineages without HLA II- inflammatory monocytes trajectory.
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covary with any other immune cell blocks/subgroups and formed dis-  cosegregated into specific neighborhoods. Remarkably, these fun-
tinct neighborhoods (57). Our current staining panel did not allow fine ~ damental relationships were apparent in both LuN and RAR.
categorization of either macrophage or monocyte subsets. Rather, these cell subgroups and niches primarily varied in relative

Within the limitations of these small patient cohorts, both  prevalence between the 2 diseases. T cell blocks were a dominant
CD4" and CD8" T cells largely behaved as a covariant block and  feature of RAR, while, in LuN, macrophage subgroups were more
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prevalent. These stereotypic relationships between functionally
related immune cell populations suggest that, in individual patients,
inflammation develops along a limited number of trajectories.

While LuN and RAR can manifest the same immune cell trajec-
tories, they were often associated with different features of tubuloint-
erstitial inflammation and damage. For example, only in RAR were
HLA class IT* inflammatory monocytes or CD8" T cells associated
with MXA expression. The potential mechanism underlying these
associations are unclear. However, in neither disease were CD8* T
cell densities or proportions associated with fibrosis. Our sample was
small and CD8" T cells have been linked with progressive renal disease
in RAR and LuN (31, 32). However, recent data from mouse models
of LuN suggest that some of these populations have an exhausted
or even protective phenotype (61, 62). Indeed, both PD-1 and ICOS
expression were wide spread on our infiltrating T cells. Our data indi-
cate that, within our cohorts, macrophages are more associated with
renal damage than conventional T cell populations.

There were both similarities and differences in the distribution
of immune cell infiltrates in LulN and RAR. In both diseases, there
was a strong enrichment in the periglomerular space. In contrast,
the distribution of inflammation within the tubulointerstitium was
different in LuN and RAR. In LuN, inflammation was evenly dis-
tributed within the interstitium without peritubular enrichment. In
contrast, in RAR, there was enrichment at the peritubular border
with some biopsies also manifesting tubulitis. These data suggest
that peritubular and tubular inflammation characterize some RAR
biopsies, while LuN is characterized by interstitial inflammation.
In LuN and RAR, we did not observe an enrichment of specific
immune cells in any tubulointerstitial compartment. This suggests
that there are no strong immunological barriers within the tubu-
lointerstitium dictating the evolution of inflammation.

This is a small retrospective study of deidentified patient sam-
ples. We could not control for variables such as sex, age, or med-
ication use. Regardless, our investigations suggest approaches to
parsing in situ immune state heterogeneity that can be validated in
larger, prospective patient cohorts.

Spatial immunology is a new and evolving field in which the imag-
ing and computational tools are rapidly improving (63). Currently,
there are still technical limitations. While DAPI nuclear segmentation
is still more reliable than whole-cell segmentation, current techniques
still under call irregularly shaped nuclei such as those of myeloid cells
(64). We dilated nuclear segmentations to capture cytoplasmic staining
for annotation. While this is a reliable strategy for assessing lympho-
cytes, it often fails to capture peripheral staining on large cells such as
tubule cells. In part, we circumvented this limitation by segmenting
whole tubules. However, CD138 expression by tubules likely led to
some plasma cells being included in the tubular mask. Finally, we used
a hierarchical decision tree for cell class assignment, which is a well-es-
tablished approach used by others (47, 55). However, this strategy uses
predefined cell classes and can miss novel cell populations. Therefore,
our analysis is only an approximation. Nevertheless, within these lim-
itations, we provide insights into in situ immune states and conceptual
frameworks for further investigation.

Other approaches have biases and limitations. Single-cell sort-
ing from renal samples has provided a picture of the overall immune
landscape that informed our staining panel (22, 46). However, different
immune cell populations are likely extracted at different efficiencies from
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tissue. Furthermore, some cells, such as plasma cells, survive poorly
during extraction and handling (65). These and other factors likely make
scRINA-Seq from renal tissue variable and inefficient. In the 1 available
study focused on in situ immune cells in LuN, only about 150 CD45*
cells were obtained per biopsy (22). In contrast, we identified over 7,000
immune cells per biopsy, with spatial coordinates on each cell. This
richness of information per biopsy enabled a dissection of renal inflam-
mation heterogeneity not possible with current sScRNA-Seq techniques.
Finally, our experiments were done on archived FFPE biopsies. Future
studies, with larger numbers of patients from longitudinal registries, can
provide clinical context for different in situ immune states.

Our data reveal that, in both LuN and RAR, and across almost
all patients, the foundation of in situ inflammation is innate immunity.
This is particularly surprising for LuN, which is a manifestation of the
canonical systemic autoimmune disease, SLE. Our studies characterize
the most prevalent immune cell populations. Adaptive cells are present
in situ and there are likely important functional relationships between
these and resident innate cell populations. Furthermore, the relation-
ships between systemic adaptive autoimmunity and in situ immunity
are largely unexplored in humans (66). Future mechanistic studies
in SLE of concurrent blood and tissue biopsy samples, coupled with
clinical trials of adaptive immune cell targeted therapies, will begin to
unravel the complex interrelationships between innate and adaptive cell
programs and those between systemic and in situ autoimmunity.

Methods

Sex as a biological variable. This study was performed on deidentified,
archived tissue samples, and therefore knowledge of patient sex is incom-
plete. Of the LuN patients for which sex is known, > 90% were female
(22/24). The sex of the RAR patients is unknown.

Tissue acquisition. We obtained 54 archival blocks of kidney biopsies
preserved as formalin-fixed, paraffin-embedded (FFPE) from the Universi-
ty of Chicago Human Tissue Resource Center. Within this, 25 blocks were
from the initial diagnostic biopsies of LuN patients, 23 were from RAR
patients, and 6 were from the normal renal tissue at the margins of resected
renal carcinomas or other pathologies.

FFPE tissue processing and staining. Five-micrometer FFPE tissue
sections were cut and mounted on 22 mm x 22 mm glass coverslips.
The tissue coverslips were deparaffinized as described here. The par-
affin embedding was removed from the tissue sections via a 20-min-
ute incubation at 60°C. Coverslips were transferred into Xylene and
sequentially immersed in a fresh Xylene solution 2 times, 5 minutes
each; 100% ethanol 2 times 5 minutes each; 95% ethanol 5 minutes;
70% ethanol 5 minutes; 50% ethanol 5 minutes; 30% ethanol 5 minutes
and distilled water 5 minutes. Tissue coverslips were then treated with
1x citrate buffer, pH6 (diluted from 100x stock, Abcam ab93678) for 20
minutes in a high pressure cooker. After antigen retrieval, tissues were
then stained with Akoya’s staining kit for PhenoCycler (Akoya Biosci-
ences, SKU7000008) following their protocol.

Marker panel creation. We designed a 42-marker immunofluorescence
panel after conducting a literature review of relevant immune cell pop-
ulations and those identified on the landmark scRNA-Seq study of LN
patient biopsies (Table 2) (22). All antibodies were first validated with
immunofluorescence staining on human tonsil and kidney sections. Val-
idated antibodies were then conjugated with DNA barcodes using the
conjugation kit (Akoya Biosciences, SKU7000009) and revalidated using
single-stain CODEX and multicycle CODEX runs.
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Table 2. Primary CODEX antibodies

Target
BDCA1
BDCA2
(D10
CD103(ITGAE)
(D1c
(D138
(D14
(D16
(D163
(D20
(021
(D27
(D3
(D31
(p4
(D43
(D45
(D45
(D56
(D68
(D69
(D8
(D86
Claudin1
coLn
FOXP3
GZMA
GZMB
GZMK
HLA-DP.-DR,-DQ
IC0S
IFN-y
IL-10
110
iNOS
Kie7
MERTK
MTOC
MUC
MXA
PD1
ROR-y
SLAMF7
T-bet
TCR-delta

Clone
OTI2F4
polyclonal
EPR22867
EPR22590-27
EP1347Y
EPR6454
SP192
DINIL
EDHu-1
L26
EP3093
BLRO83G
SP7
EP3095
EPR6855
SPM503
EP322Y
2811+ PD7/26
0TG4
KP1
EPR21814
(8/144B
E2G8P
ab238949
polyclonal
PCH101
EPR20161
D6EIW
polyclonal
(R3/43
DIK2T
EPR21704
JES3-9D7
polyclonal
SP126
B56
Y323
TU30
955
polyclonal
D4W2)
polyclonal
E5C4M
D6N8B
H-41

Manufacturer
Novus Biologicals
Novus Biologicals

Abcam
Abcam
Abcam
Abcam
Abcam
Cell Signaling
Novus Biologicals
Abcam
Abcam
Abcam
Abcam
Abcam
Abcam
Novus Biologicals
Abcam
Novus Biologicals
OriGene
eBioscience
Abcam
Invitrogen
Cell Signaling
Abcam
Proteintech
eBioscience
Abcam
Cell Signaling
Abcam
Abcam
Cell Signaling
Abcam
Invitrogen
Novus Biologicals
Abcam
BD
Abcam
Abcam
Novus Biologicals
R&D
Cell Signaling
ThermoFisher Scientific
Cell Signaling
Cell Signaling
Santa Cruz

Catalog No.
NBP2-70345
AF1376
ab256494
AB254201-1001
ab216655
ab226108
AB230903-1001
72204SF
NB110-40686
ab236434
ab271855
ab272072
ab205228
ab226157
ab181724
NBP2-34775
ab214437
NBP2-34287
CF506208
#14-0688-82
ab234512
MAS-13473

EPR121871
22734-1-AP
14-4776-82

ab251499

79003SF
EPR24601-164
ab7856
39740SF
ab231301

14-7108-81

AF-217-NA

ab239990
BDB556003

ab271851
ab27074
NBP2-44658
AF7946
63815SF
PA534164
66110

#27112SF

sc-100289

Dilution
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:100
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:200
1:100
1:200
1:200
1:200
1:200
1:200
1:100
1:200
1:200
11100
1:200

Cycle

Cycle, the numeric position at which the antibody was probed and imaged during the CODEX
multiplex imaging process.

Image acquisition and processing. Sections were deparaffinized and
stained our panel of 42 antibodies each conjugated to a unique oligonu-
cleotide. Images of full biopsy sections were acquired on an Andor Drag-
onfly 200 Spinning Disk Confocal Microscope (0.1507 um pixel size). The
staining patterns of our 42-marker panel was acquired through iterative
staining with Alexa Fluor 488, Atto550, Cy5/AF647, and AF750 fluo-
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rophores conjugated to complementary oligonu-
cleotides and imaging using the PhenoCycler plat-
form. Tissue autofluorescence images were also
acquired at each imaging wavelength.

ASHLAR was used to stitch image tiles into a
full-section composite and align the resulting chan-
nels. Ashlar performance was visually checked
across all samples. Areas with insufficient align-
ment were rejected from downstream analysis. After
aligning all image channels, the first blank cycle of
imaging was used for background subtraction and
normalization of all stained images. First, each
channel of the blank cycle was subtracted from the
corresponding fluorescence channel in all imaging
cycles. Each imaging wavelength has a different
dynamic range, so the subtracted images were also
divided by the standard deviation of the background
image to standardize dynamic range across imag-
ing wavelengths. After standardization relative to
imaging wavelength, images were min-max normal-
ized to the 99th percentile. After this preprocessing,
instance segmentation of cell nuclei was performed
using Cellpose 2.0. Cell body segmentations were
approximated by dilating the nucleus segmentations
by 7 pixels (1.05 pm). Mean fluorescence intensity
(MFT) was calculated from each marker in the panel
using the cell body pixel mask as reference.

Decision tree classifier and cell mapping to tissue. A
subsample of 26 of the original 42 immunofluores-
cence markers were used to classify approximately
1.77 million cells. We used a decision-tree classifier
for the multiclass annotation of cells that is anal-
ogous to flow cytometry—based cell analyses and
immunophenotyping. The decision tree considers
the known experimental covariance between mark-
ers (i.e., CD3 expression would preclude CD4*
expression in T-lymphocytes). Cell positivity is
determined by applying the multi-Otsu threshold-
ing method using each cell’s MFI, across all 1.77
million cells in all 3 cohorts simultaneously. The
multi-Otsu threshold that most closely matched
manual spot validation was used. This manual spot
validation was done by manually circling 5 positive
signal cells in the desired cell population (i.e., CD8*
expression for cytotoxic lymphocytes) and manual-
ly calculating the cell’s MFI in ImagelJ. We further
use our kidney control to check if cell thresholds
are not under calling or over calling cells. Once
classified, cells are mapped back to computational
segmentations of the renal tissue for further down-
stream spatial analyses.

Distinct immune trajectory. To statistically test for the differential

presence of particular cell classes, we performed a nonparametric

Mann-Whitney-U test for population differences using cell densities.
We performed the following comparisons: LuN-KC, RAR-KC, and
LuN-RAR. Benjamini-Hochberg P-value correction was performed to

control for multiple P-value hypothesis testing.
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Renal structure segmentation. For the instance segmentation of kid-
ney tubules, Omnipose was trained on 32 tiles of 10-x downsized DAPI
kidney images (160 x 160 pixels) randomly selected from 3 kidney biop-
sies. The total number of training annotations was 355 instances. The
change in training image size compared with the training image size in
cellular segmentation was to reflect the size differences between a cell
and a much bigger tubule structure. The training parameters were as
follows: 1,000 epochs, learning rate = 0.1, batch size = 16, number of
classes = 2, tyx tuple input = 128 x 128. This model was trained from
scratch without using any pretrained models. Posttraining validation
was done on 16 tiles of downsized DAPI kidney images (160 x 160
pixels), containing 195 tubule instances.

‘Whole-slide segmentation of lupus kidney biopsies was performed on
DAPI channel after preprocessing and downsizing by a factor of 10. The
segmentation parameters are as follows: mask threshold = 2.04, diameter
= 30, with affinity segmentation. Postsegmentation of tubules was done
to remove false positives (red blood cells clusters, clusters of aggregated
lymphocytes in the interstitial spaces) by calculating the mean fluorescence
intensity of canonical kidney structural markers per tubule object and sub-
sequently removing the objects which express low tubule markers (CD10,
MUC-1) and high expression level of all markers, which is typical of red
blood cells. Using normalized mean fluorescence intensity, objects satis-
fying the following conditions are removed as false positives: ., < 0.8,
Hyoen <08, e v <1 ttep e < 1,0.25 < (uMUC-1)/uCD10 < 6.5.

DBSCAN. We used density-based spatial clustering of applications
with (Noise) DBSCAN to find cellular clusters or neighborhoods in our
multiplex microscopy imaging data. An ¢ hyperparameter of 85 pixels
(approx. 13 microns) and minimum points hyperparameter of 5 (all
points are considered core points). We used bootstrapping to subsample
75% of the DBSCAN data for a total of 3,000 repetitions for the ideal K
number of clusters. Using the average bootstrap sum of squared distance
plot and the delta sum of square distance plot we found that the empiri-
cally best fit K-clusters was around 8. We used 8 as optimal K for down-
stream analysis; moving forward with phenotyping only those cell neigh-
borhoods with 20 and more cell members. To phenotype these DBSCAN
segmented cell neighborhoods, we performed feature extraction by char-
acterizing each neighborhood using total proportion for each cell class.
‘We included the total cell count as another descriptor. Afterwards, to find
unique defining features for each of our clusters, we generated a heatmap
of the leave-one-out Z-test for every cluster.

MERSCOPE generation of DBSCAN cluster masks. To perform DBSCAN
(Python), raw data from MERSCOPE with coordinates of each detected
gene was used, and coordinate-to-pixel transformation was performed to
downsize the image to a pixel size of 10 um. DBSCAN was performed
with coordinate information with CD3E (e = 40, min_min point = 5), CD14
(¢ = 20, min_min point = 5), and FCGR3A (¢ = 30, min_min point = 5).
Output masks of DBSCAN were then applied with postprocessing with
Skimage including draw (radius_px = 10), binary_closing(footprint of disk
radius = 5), remove_small_holes (area_threshold = 500), remove_small_
objects (min_size = 100), and gaussian blurring (sigma = 2.0). Manual
check and correction were done before quantifying the density of genes in
labeled masks (clusters). Density of genes were calculated with the number
of transcripts divided by the area of labeled mask.

MERSCOPE clustering of gene densities. Gene densities of all 500
genes for each labeled mask were calculated. Z-scored densities of
genes: CD3E, CD4, CD8A, FOXP3, PDCDI, ICOS, CD163, MRC1, NOS2,
CD14, FCGR3A4, MS4Al, ITGAX, and HLAII (HLA-DPAI*HLA DP-
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BI"HLA"DRA*HLA DRBI*HLA DQA1) denote canonical immune cell
populations were used for K-mean clustering. Top 10 highly expressed
genes for each cluster were calculated by wilcoxon rank-sum test com-
paring to the other 6 clusters using scipy.stats. with alternative= ‘great-
er,’ Pvalue < 0.05 and mean difference > 0.

MERSCOPE gene set enrichment analysis. Log,FC data was generated
by comparing each cluster with the all the other clusters and was used
for gene set enrichment analysis. Analysis was done by using python
library gesapy with the prerank function (permutation number=100).

Computational resources. All computational tasks were carried out on
the MEL server located in the Radiomics and Machine Learning Facil-
ity at the University of Chicago. MEL is equipped with 256 Xeon Gold
6130 CPU cores, 3 TB of DDR4 ECC RAM, 24 TB NVMe SSD stor-
age space, and houses 16 Nvidia Tesla V100 32GB GPU accelerators.

Statistics. Statistical tests used in this paper included Mann-Whitney-U
test for population differences with Benjamini-Hochberg P value correction
for multiple P value hypothesis testing and Wilcoxon rank-sum test. A P
value of less than 0.05 was considered statistically significant.

Study approval. This study was approved by the University of Chica-
go Institutional Review Board. No consent was obtained for use of the
biopsies which were de-identified, left over fragments from clinically
indicated biopsies. A routine procedure consent was obtained for the
original clinically indicated biopsy.

Data availability. The computer code used for these analyses has been
deposited on Github: https://github.com/bkwalsh/Resolution-of-in-si-
tu-inflammation-in-human-lupus-nephritis-into-principal-immune-cell-tra-
jectories; commit ID 6b015dd19794bc915bb6add8aa3e345601d6f62c.
Image data will be provided upon reasonable request. Values for all data
points in graphs are reported in the Supporting Data Values file.
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