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Liver fibrosis drives adverse clinical outcomes  
in MASLD
Metabolic dysfunction–associated steatotic liver disease (MASLD) 
and metabolic dysfunction–associated steatohepatitis (MASH) have 
become the most common chronic liver diseases (CLDs) worldwide 
(1, 2). Despite only a minority of  patients developing cirrhosis (3), 
MASH remains the fastest-growing indication for liver transplan-
tation (4) and the leading driver for development of  hepatocellular 
carcinoma (HCC) in the Western world (5). Like other causes of  
CLD, the iterative liver injury observed in patients with MASLD 
results in persistent activation of  hepatic wound-healing responses, 
ultimately leading to excessive extracellular matrix (ECM) deposi-
tion and resultant hepatic scarring, termed fibrosis. Several studies 
have shown that degree of  fibrosis is the best predictor of  adverse 
clinical outcomes in patients with MASLD (6–9). Regression of  
fibrosis following therapy led to improved clinical outcomes in a 
subgroup of  patients with MASH (10). This close association has 
led to improvements in fibrosis becoming a cornerstone of  the sur-
rogate efficacy endpoints in interventional clinical trials. However, 

despite recent encouraging phase III trial data on resmetirom and 
semaglutide, only a minority of  patients (26% and 37%, respective-
ly) showed improvements in fibrosis (11, 12). Hence, more work is 
needed to achieve adequate antifibrotic efficacy.

A major challenge in identifying antifibrotic therapeutic targets 
in MASLD is the complexity of  human liver fibrosis, which often 
develops over years or decades and involves multiple pathophysi-
ological processes and cell types. Modern single-cell or single-nu-
cleus RNA sequencing technologies (scRNA-seq and snRNA-seq, 
respectively) have provided a powerful new lens to examine human 
liver fibrosis at previously unparalleled resolution. Furthermore, 
state-of-the-art spatial omics approaches promise to herald the next 
wave of  insights in human MASLD pathogenesis. Here, we review 
how these approaches have advanced understanding of  the mecha-
nisms of  fibrosis in MASLD and how they will continue to inform 
antifibrotic therapeutic target identification in the years to come.

Single-cell and spatial transcriptomic 
investigation of liver fibrosis
Modern high-throughput single-cell sequencing technologies have 
been increasingly adopted to investigate complex chronic diseases. 
While many early human liver single-cell studies used scRNA-seq 
to provide new insights into disease-associated cell types (13–15), 
several groups have now adopted snRNA-seq protocols instead, 
which offer potential advantages and disadvantages (Table 1). Due 
to the current lack of  human studies combining both scRNA-seq 
and snRNA-seq, existing datasets likely underrepresent key cellu-
lar drivers of  disease and the complexity of  cellular interactions in 
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(29, 30). Nevertheless, in these studies, the presence of  hepatic 
steatosis appeared to alter the ST profile and zonation patterns 
(29, 30), suggesting that ST may yield new biological insights 
when applied to larger patient cohorts.

Notably, current human liver data from capture-based ST 
methods are largely limited by low spatial resolution, meaning 
that each spot captures multiple cells, making it difficult to deter-
mine which specific cell types are within each spatial domain. In 
contrast, imaging-based ST approaches measuring 100s to 1000s 
of  individual RNA or protein molecules at cellular or subcellu-
lar resolution (31) potentially offer more robust single-cell phe-
notyping and spatial localization. Such high-plex in situ RNA 
profiling enabled mapping of  proregenerative migratory hepato-
cytes in acute liver failure (28), disease-associated hepatocytes 
in fibrotic human liver human liver samples (32), and detailed 
characterization of  immune cell localization in human and 
murine steatotic liver tissue (29). While MASLD fibrosis has not 
been studied at scale using in situ RNA profiling, applying these 
methodologies to archival formalin-fixed, paraffin embedded 
(FFPE) samples could enable comprehensive single-cell spatial 
profiling across disease stages. Protein-based spatial approaches 
(e.g., using high-dimensional antibody staining) offer the oppor-
tunity to study 10s to 100s of  proteins at single-cell resolution 
in large patient cohorts, potentially enabling identification of  
immune cell subpopulations with well-described distinguishing 
markers. Such approaches have been applied to study MASH, 
PSC (33), and HCC (34). However, despite continually improv-
ing data dimensionality, imaging-based approaches have not yet 
reached whole transcriptome or proteome coverage, necessitating 
selection of  probe or marker panels based on prior knowledge. 
Therefore, to uncover fibrosis biology and additional therapeutic 
targets, these technologies are currently best performed along-
side unbiased transcriptomics such as scRNA-seq or snRNA-seq. 
Moreover, high costs of  spatial approaches currently limit wide 
application, meaning more affordable solutions are needed to 
truly harness their power for diagnostic and therapeutic applica-
tions in liver fibrosis.

MASLD. Of  course, single-cell technologies continue to improve 
apace with evolving methodologies, promising to offer more sen-
sitive, lower-cost gene detection (16). Technological advances have 
been supplemented by improvements in computational workflows, 
which now enable most laboratories around the world to perform 
robust analyses (17). As these newer data generation and analytical 
methods are applied to human MASLD samples, further biological 
insights are likely to be garnered.

One challenge with scRNA-seq and snRNA-seq data is the 
loss of  spatial location due to tissue dissociation. In spatially pat-
terned diseases such as fibrosis, an understanding of  the spatial 
context and cell-cell communication within the fibrotic niche is 
crucial for dissecting the cellular and molecular drivers of  disease 
and identifying novel therapeutic targets. Most human liver sin-
gle-cell studies have therefore used markers identified from sin-
gle-cell transcriptomic data in immunohistochemistry or in situ 
hybridization approaches to map disease-associated cell types 
into different tissue niches. Despite generating important insights, 
e.g., in studying human liver zonation patterns (15) or identifying 
scar-associated cell populations in the fibrotic niche of  human 
cirrhosis (14), such methodologies do not enable the exhaustive 
comparison of  in situ molecular profiles needed to fully dissect 
the pathological mechanisms driving fibrotic niche expansion 
and disease progression across the spectrum of  MASLD. Howev-
er, new, more unbiased high-dimensional spatial transcriptomics 
(ST) methodologies (18, 19) can provide new insights into the 
pathogenesis of  MASLD fibrosis. Sequencing-based approaches 
directly capture RNA transcripts from tissue while adding spatial 
barcodes via polyT oligo arrays (Visium) (20), DNA-barcoded 
beads (Slide-seq and HDST) (21, 22), or barcoded DNA nanob-
alls (Stereo-seq) (23). Early uses of  ST methods in human liver 
tissue included healthy human liver (24), end-stage cirrhotic liv-
ers (25, 26), primary sclerosing cholangiopathy (PSC) (27), and 
acute liver failure (28), in which the ST profiles of  liver metabolic 
zonation, fibrosis, and regeneration were described. Application 
of  ST to human MASLD is less well established, limited to a 
small number of  samples in patients with low levels of  fibrosis 

Table 1. Overview of the pros and cons of scRNA-seq and snRNA-seq approaches for studying liver cell heterogeneity in MASLD

scRNA-seq snRNA-seq
Tissue type Fresh liver tissue Cryopreserved or potentially FFPE tissue

Isolation methods Mechanical and/or enzymatic dissociation, optional enrichment of particular cell types, 
followed by cellular barcoding, transcript capture, and sequencing (13–15)

Nuclear isolation followed by nuclei barcoding, transcript capture, and sequencing

Advantages •	 Improved gene detection and data quality for immune cells (180, 181)
•	 Capture of both nuclear and cytoplasmic mRNAs
•	 Ability to combine with cell-surface protein (e.g., CITE-seq) (182)
•	 Ability to enrich for particular cell types of interest (e.g., via FACS)

•	 More robust capture of hepatocytes and HSCs (180, 181)
•	 Similar gene detection levels to scRNA-seq (183–185) despite enrichment  

in lncRNA and unspliced transcripts (186)
•	 Use of archival or hard-to-dissociate tissues (44, 187, 188)
•	 Fewer dissociation-associated transcriptomic changes (188–190)

Disadvantages •	 Selection biases with underrepresentation of certain cell types  
(e.g., neutrophils) (191)

•	 Requirement for fresh tissue limits scalability and broad applicability
•	 Difficulty in isolating certain liver cell types (e.g., hepatic stellate cells, 

hepatocytes)
•	 Enzymatic dissociation can induce cell stress artifacts (192)

•	 Inability to enrich for specific cell types, limiting utility for rare cell types
•	 Sparsity of data for immune cells (180, 181)
•	 Limitations in ability to combine with other modalities, e.g., cell-surface 

protein
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targeting metabolic pathways in hepatocytes, for example inhibiting 
de novo lipogenesis (e.g., Aramchol), reducing energy availability 
(e.g., GLP-1 and/or glucagon agonists), or enhancing lipid handling 
(e.g., thyroid hormone receptor [THR] β analog [resmetirom], FXR 
agonist [obeticholic acid], PPAR agonist [lanifibrinor]) (35). Unfor-
tunately, many of  these interventions remain unproven in human 
MASH. What has been less clear in the field are the specific mecha-
nisms and signalling pathways by which injured/dying hepatocytes 
in human liver result in nonparenchymal cell activation at different 
disease stages and spatial locations in the liver, how they lead to the 
establishment of  fibrosis and contribute to disease progression, and 
which specific pathogenic mediators or cell subpopulations can be 
targeted therapeutically. Single-cell and spatial technologies are now 
yielding new insights into these key unanswered questions.

Epithelial cell plasticity. Hepatocyte injury is the key trigger 
of  fibroinflammatory responses in MASH, driving a focus on 
applying single-cell methodologies to better dissect hepatocyte 
heterogeneity and transcriptional responses in regulating disease 
pathogenesis (Figure 1). As discussed in Table 1, the implemen-
tation of  snRNA-seq has circumvented the difficulties of  isolating 
viable hepatocytes from diseased human tissue (14, 42) and pro-
vided more clarity on human hepatocyte heterogeneity and tran-
scriptional responses to disease. The most comprehensive study 
currently available included snRNA-seq data on approximately 
70,000 hepatocytes from 47 patients across the full MASLD/

Single-cell approaches unpick cellular drivers of 
MASLD fibrosis
MASLD and MASH are usually associated with systemic meta-
bolic dysfunction, including obesity, diabetes, hypertension, and 
dyslipidemia. Excessive energy substrate is associated with de 
novo lipogenesis in the liver, while dysfunctional adipose tissue 
results in the release of  excessive free fatty acids (35). Eventually, 
these adaptations overwhelm the liver’s buffering capacity, causing 
hepatic mitochondrial dysfunction and aberrant adipose tissue–liv-
er crosstalk, leading to accumulation of  toxic lipids and reactive 
oxygen species, and ultimately resulting in mitochondrial ER stress 
(35–37). This metabolic injury in hepatocytes then triggers cellular 
activation, death, or senescence, causing stimulation of  inflamma-
tory and fibrogenic signalling cascades that propagate activation of  
nonparenchymal cells (e.g., hepatic stellate cells [HSCs] and macro-
phages) and ultimately lead to the chronic inflammation and fibrosis 
characteristic of  more advanced disease (38, 39). Hepatocyte lipid 
metabolism’s role as a central driver of  MASLD pathogenesis is 
emphasized by large-scale GWAS, where the majority of  genetic 
polymorphisms associated with the development and progression of  
MASLD and liver fibrosis (e.g., PNPLA3, TM6SF2, MBOAT7, and 
HSD17B13) (40) are genes predominantly expressed by hepatocytes 
in the liver that encode proteins responsible for nutrient processing, 
lipid handling, and the resultant hepatic mitochondrial redox state 
(41). Hence, much therapeutic focus in MASLD has been placed on 

Figure 1. Epithelial plasticity in 
MASLD. Hepatocytes and ductular 
epithelial cells (also called cholangio-
cytes) show extensive transcriptional 
and phenotypic changes during MASLD 
pathogenesis. Hepatocytes lose 
their periportal/pericentral zonation, 
show an altered expression of the 
tight junction family of proteins, 
activate NOTCH, become senescent, 
and undergo cell death. Hepatocytes 
and ductular epithelial cells give rise 
to biphenotypic cells, which express 
markers of both cell types and are 
key players of the ductular reaction 
associated with liver disease. Overall, 
these changes contribute to the 
fibroinflammatory response through 
the release of DAMPs, SASP factors, 
cytokines, and chemokines. DAMPs, 
damage-associated molecular pattern; 
SASP, senescence-associated secretory 
phenotype.
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inhibition of  hepatocyte Notch reduced fibrosis despite no change in 
hepatocyte injury or steatosis, while overexpression of  Notch exacer-
bated fibrosis (64). snRNA-seq on human and mouse MASLD liver 
tissue identified expansion of  a MASH-associated hepatocyte sub-
population expressing high levels of  the activation receptor tyrosine 
kinase ephrin type B receptor 2 (EphB2) (65). EphB2 was shown to 
be a downstream transcriptional target of  the Notch pathway and 
promoted inflammatory cytokine and chemokine secretion from 
hepatocytes; accordingly, inhibition of  hepatocyte EphB2 expression 
in a mouse MASH model reduced inflammatory cell recruitment and 
attenuated fibrosis (65). Hence, pathological Notch signalling may 
connect hepatocyte injury, inflammation, and fibrosis in MASH.

Beyond transcriptional changes, lipotoxicity in MASLD can 
drive hepatocyte death, which regulates local inflammatory and 
fibrogenic responses (66). Specifically, hepatocyte apoptosis was 
associated with more advanced MASH and fibrosis (67) and sug-
gested to promote disease progression (68). Caspase inhibitors, 
which inhibit apoptosis and attenuate liver fibrosis in rodent MASH 
models (69, 70), were tested in clinical trials for MASLD, albeit with 
disappointing results so far (71). Alternative forms of  programmed 
cell death may also be relevant; for example, necroptosis has been 
suggested as a predominant driver of  cell death in MASLD (66). 
Interestingly, necroptotic (but not apoptotic) hepatocytes in MASH 
livers upregulate the “don’t eat me” molecule CD47, while hepat-
ic macrophages show increased expression of  the CD47 ligand 
SIRPα (72). Inhibiting either CD47 or SIRPα improved necroptot-
ic hepatocyte clearance and attenuated fibrosis, highlighting this 
axis as a possible therapeutic target (72). Dead or dying hepato-
cytes may also signal directly to HSCs to promote a profibrogenic 
phenotype, e.g., via release of  mitochondria-derived damage-as-
sociated molecular patterns (DAMPs) (73), secretion of  high-mo-
bility group box-1 (HMGB1) (74), or activation of  the purinergic 
receptor P2Y14 on HSCs through the production of  UDP-glucose 
and UDP-galactose (75). Targeting downstream fibroinflammato-
ry responses to hepatocyte death might prove a more specific and 
tractable antifibrotic therapeutic option than global inhibition of  
cell death pathways, with lower potential for off-target effects or 
inducing the persistence of  premalignant epithelial cells.

A fraction of  hepatocytes develop a senescent phenotype, a 
state of  permanent cell cycle arrest. Hepatocyte senescence, like-
ly induced by DNA damage and telomere shortening, has been 
shown to correlate with fibrosis stage and predict adverse clinical 
outcomes in patients with MASLD (76). Senescent hepatocytes 
secrete a range of  autocrine and paracrine factors (called the senes-
cence-associated secretory phenotype [SASP]) that can regulate 
responses of  adjacent epithelial and nonparenchymal cells and con-
trol local inflammation and fibrosis (77). However, before such con-
cepts can be effectively translated, further data are needed to define 
the transcriptome, spatial niche, and cellular interaction partners of  
senescent hepatocytes in human MASH, to dissect the pathologi-
cal versus protective aspects of  this process. High-resolution spatial 
approaches will likely address these questions.

Mesenchymal cell activation. As with other fibrotic disorders, 
myofibroblasts expand in MASLD liver tissue and adopt ECM-pro-
ducing, migratory, immunomodulatory, and contractile properties 
that orchestrate disease progression (78). HSCs become activat-
ed following hepatic injury (79) and have been shown to be the 

MASH disease spectrum with a range of  fibrosis stages (43). 
Hepatocytes showed most transcriptional changes according 
to disease severity of  any cell type, which was most apparent in 
patients with advanced MASLD cirrhosis. Notably, markers of  
hepatocyte zonation such as GLUL and ASS1, which distinguish 
pericentral and periportal hepatocytes in healthy liver, respective-
ly, are progressively more coexpressed in the same hepatocytes as 
MASLD progresses, as demonstrated by snRNA-seq and immu-
nofluorescent staining (43). This observation mirrors spatial mass 
spectrometry data, where zonation patterns of  lipids in the liver 
are lost in more advanced human MASLD (44).

This transcriptional reprogramming of  hepatocytes in MASLD 
also resulted in accumulation of  a subpopulation coexpressing 
hepatocyte and biliary epithelial (cholangiocyte) markers (e.g., 
KRT7, CFTR, EPCAM) that progressively expanded with MASLD 
severity and potentially derive from hepatocytes (43). However, sig-
nificant plasticity was also observed in the cholangiocyte compart-
ment, with expansion of  cholangiocytes coexpressing hepatocyte 
markers (e.g., ALB, ASGR1, TTR, ASS1, PCK1, ABCC2, GPC5, 
HNF4α) noted across the MASLD spectrum (43). These bipheno-
typic cholangiocytes likely represent expanded biliary epithelial 
cells, key to the “ductular reaction” that has been demonstrated to 
be functionally important in hepatocellular regeneration following 
chronic injury in mice (45–48). In human MASLD, the associa-
tion between ductular reaction and increased fibrosis is well recog-
nized (49–51), while in rodent models of  CLD, these biphenotypic 
ductular cells have been shown to promote myofibroblast activa-
tion, ECM deposition, and inflammatory cell infiltration (52–56) 
via secretion of  key mediators such as PDGF (57), osteopontin 
(58), and chemokines (56, 59–61). Due to their transcriptional 
similarities and coexpression of  both hepatocyte and cholangio-
cyte markers, it remains unclear whether hepatocyte-derived and 
cholangiocyte-derived biphenotypic epithelial cells exert functional 
differences in regulating fibrosis. These populations could feasibly 
have a distinct spatial location and local cellular niche regulating 
their functions. Application of  high-resolution ST in MASLD tis-
sue samples will hopefully shed further light on this.

Hepatic expression of  claudin 1 (CLDN1), a member of  the 
tight junction family of  proteins, was increased in patients with 
MASLD (and other etiologies of  CLD) and correlated with more 
advanced fibrosis (62). scRNA-seq and snRNA-seq data localized 
CLDN1 expression to hepatocytes, cholangiocytes, and bipheno-
typic epithelial cells as well as HSCs (62). Notably, inhibition of  
CLDN1 in a range of  in vivo and in vitro models abrogated fibrosis 
and HCC formation, potentially due to reduced cellular plasticity, 
inhibition of  ductular reaction, as well as more direct effects on 
myofibroblast activation and ECM production (62). Inhibition of  
CLDN1 via monoclonal antibody was noted to be safe in nonhu-
man primates (62), with an active phase II clinical trial evaluating 
CLDN1 inhibition in patients with head and neck cancer (Clinical-
trials.gov NCT06054477). Hence, CLDN1 inhibition is potentially 
an appealing target for modulation of  fibrosis in MASLD.

Notch signalling was shown to increase in hepatocytes from 
patients with MASH and fibrosis, while in a longitudinal analysis, 
patients who responded to the treatment in the PIVENS trial (piogl-
itazone versus vitamin E versus placebo) (63) demonstrated reduced 
hepatocyte Notch activation (64). In mouse models of  MASLD, 
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of  quiescent HSCs that is lost during activation (91). FXR agonists 
such as obeticholic acid are being actively tested in patients with 
MASLD (92) and may provide a therapeutic approach for main-
taining HSC quiescence.

snRNA-seq analysis has also identified a senescent HSC sub-
population (93). These senescent HSCs expanded in MASH livers 
and demonstrated an inflammatory and fibrogenic gene expres-
sion profile in both human disease and mouse models (93). Senes-
cent HSCs appeared to derive from activated HSCs and upregulat-
ed a series of  markers, including urokinase plasminogen activator 
receptor (uPAR), MRC1/CD206, SLC9A9, PTPRB, and STAB2 
(93). Notably, targeting senescent cells using chimeric antigen 
receptor (CAR) T cells directed at uPAR was shown to attenuate 
fibrosis in a mouse MASH model (94). However, uPAR expression 
is not specific to senescent HSCs, so it remains uncertain whether 
selective targeting of  senescent HSCs will attenuate or potentially 
exacerbate fibrosis by promoting the persistence of  ECM-produc-
ing myofibroblasts (95).

A subpopulation of  portal fibroblasts with mesenchymal stem 
cell features (PMSCs) was identified in mice using scRNA-seq (96). 
PMSCs and PMSC-derived myofibroblasts expressed a gene signa-
ture (Col1a2, Col15a1, Igfbp6, Loxl1, Mgp, Thy1, Slit2) that facilitated 
distinction from HSCs. Slit2 in particular was specific to PMSCs, 
and SLIT2+ myofibroblasts were identified in the fibrotic niche of  
cirrhotic human liver of  varying etiologies including MASLD, sug-
gesting that PMSC-derived myofibroblasts may contribute to scar 
deposition in human MASLD (96). Spatially, SLIT2+ PMSC-de-
rived myofibroblasts were found adjacent to vessels and in close 
proximity to SLIT2– myofibroblasts (presumed to be HSC derived) 
in fibrotic human liver, while SLIT2 itself  has been shown to 
promote HSC activation (96, 97). This suggests that interactions 
between different mesenchymal cell types may regulate fibrogenesis 
in CLD. The precise role of  this phenomenon in human MASLD 
pathogenesis remains to be determined.

Chronic inflammation and SAMac accumulation. Chronic 
inflammation is a key feature of  MASLD and its fibrotic micro-
environment (Figure 2). The innate immune system has been a 
major focus of  scRNA-seq studies, particularly cells of  the mono-
cyte-macrophage lineage that strongly regulate fibrosis in preclin-
ical models (98–101). Initial studies identified a distinct popula-
tion of  TREM2+CD9+SPP1+GPNMB+ macrophages that expand 
in cirrhotic liver and accumulate in the fibrotic niche (14). These 
SAMacs are derived from the recruitment and differentiation of  
monocytes rather than resident liver macrophages (Kupffer cells, 
KCs) and have been shown to promote HSC activation and pro-
liferation in vitro (14, 102), suggesting a potential target popu-
lation for antiinflammatory and antifibrotic therapies. Notably, 
transcriptionally similar SAMac populations were also described 
in fibrosis in other organs, suggesting conserved pathophysio-
logical mechanisms between different fibrotic diseases (103). To 
confirm that accumulation of  SAMacs in the fibrotic niche is not 
simply a feature of  end-stage cirrhosis, deconvolution of  bulk liv-
er RNA-seq data across the full MASLD disease spectrum using 
annotated reference scRNA-seq data demonstrated that SAMac 
expansion correlates with fibrosis in earlier-stage disease (14), and 
that accumulation of  SAMacs was associated with adverse clinical 
outcomes in patients with MASLD (8). Additionally, circulating 

main source of  myofibroblasts in different mouse models of  liver 
fibrosis, including MASLD (80). Indeed, scRNA-seq analysis from 
patients with cirrhosis of  different etiologies identified a population 
of  PDGFRA+ ECM-expressing mesenchymal cells populating the 
fibrotic niche and predicted to derive from HSCs based on RNA 
velocity analysis (14). However, transcriptionally distinct popula-
tions of  vascular smooth muscle cells and portal fibroblasts demon-
strated in scRNA-seq studies (14, 81) highlight substantial heteroge-
neity in the hepatic mesenchymal compartment. HSCs themselves 
are heterogeneous, with clear patterns of  zonation observed across 
the liver lobule (81, 82). Human HSCs in fibrotic liver can be parti-
tioned into myofibroblastic HSCs (myHSCs), enriched in ECM-re-
lated molecules, and cytokine- and growth factor–enriched HSCs 
(cyHSCs), which express high levels of  factors such as HGF (83). 
In advanced liver disease, cyHSCs, which normally exert protective 
functions, differentiate into myHSCs to promote disease progres-
sion, increased liver stiffness, and the development of  HCC (83). 
The concept of  myofibroblast heterogeneity and early activated 
HSCs/myofibroblasts being as a hub of  cytokine and growth factor 
production before transitioning into a more ECM-producing myo-
fibroblast subpopulation was also identified in rodent MASH- and 
CCl

4-induced fibrosis (82, 84). However, while the balance of  cyH-
SCs and myHSCs may influence MASLD pathogenesis, the spe-
cific signals regulating this transition between cyHSC and myHSC 
(and potentially back again) need further study.

Nonetheless, abundant data exist describing the mediators that 
promote transdifferentiation of  quiescent HSCs into ECM-pro-
ducing myofibroblasts, with TGF-β signalling being the key driver 
(79, 85). However, off-target effects complicate therapeutic target-
ing of  ubiquitous pathways such as TGF-β. Single-cell approach-
es and modeling of  cell-cell communication potentially enable 
identification more specific molecules and pathways regulating 
ECM-producing myofibroblasts (86, 87), for example, PDGF/
PDGFRA, TNFSF12/TNFRSF12A, IL-1β/IL-1R1, and AREG/
EGFR between scar-associated macrophages (SAMacs) and myo-
fibroblasts or Notch signalling between scar-associated endothelial 
cells and myofibroblasts in advanced cirrhosis (14). An snRNA-seq 
study of  9 MASH patients demonstrated a MASH-associated 
HSC phenotype enriched for autocrine signalling (88). These find-
ings were recapitulated in a mouse MASH model that identified 
the neurotrophin-3–neuronal receptor tyrosine kinase (NTF3/
NTRK3) ligand-receptor pair as an autocrine pathway that pro-
motes fibrogenic activity in HSCs and can be therapeutically inhib-
ited in vivo using LOXO-195, a highly specific NTRK3 kinase 
domain inhibitor (88). Further recent snRNA-seq and single-cell 
ATAC-seq data identified transcriptional regulators of  HSC activa-
tion in MASH, highlighting HSC SERPINE1 as a cell-autonomous 
driver of  fibrogenic activity (89). Bulk profiling has also informed 
the identification of  novel molecules that promote HSC activation; 
for example, proteomics revealed elevated soluble folate receptor γ 
(FOLR3) as a driver of  HSC activation in MASH, via modulation 
of  TGF-β signalling (90). The cellular source of  FOLR3 in the 
MASH liver remains uncertain but should become clear in more 
detailed analyses of  scRNA-seq and ST data from human samples. 
In addition to activating signals, HSCs also demonstrate loss of  
quiescence signals in MASH. scRNA-seq and ATAC-seq analyses 
in murine MASH identified NR1H4/FXR activity as a key feature 
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levels of  TREM2, a characteristic SAMac marker, shows promise 
as a serum biomarker of  fibrosis in MASLD (104). Overall, these 
data highlight the potential role of  SAMacs in the evolution of  
fibrosis in MASLD and other causes of  CLD.

A population of  TREM2+CD9+SPP1+GPNMB+ macrophages 
known as lipid-associated macrophages (LAMs) that are transcrip-
tionally similar to SAMacs was also reported in various mouse 
models of  MASLD (102, 104–107). Spatial analysis using high-plex 
in situ hybridization, antibody staining, and unbiased ST localized 
LAMs adjacent to bile ducts in healthy liver and in areas of  steatosis 
in the MASLD liver (29), suggesting that monocytes recruited into 
areas of  tissue injury may differentiate into LAMs/SAMacs within 
this niche.

To interrogate the mechanisms by which SAMacs regulate fibro-
sis, ligand-receptor interaction analyses from scRNA-seq data have 
been used to dissect candidate ligands expressed by SAMacs that are 
predicted to signal to HSCs/myofibroblasts to promote activation 
and/or proliferation (86, 87). A combination of soluble mediators, 
including GM-CSF, IL-17A, and TGF-β1 induced SAMac differenti-
ation from circulating monocytes in vitro, while in vivo blockade of  
these mediators in the mouse carbon tetrachloride (CCl

4) CLD model 
attenuated SAMac differentiation (102). The effect was most striking 
for TGF-β1 inhibition, where HSC activation and SAMac number 
were reduced in models of CLD and lung injury (102), indicating that 
both are at least partially dependent on TGF-β signalling.

Spatially resolved high-plex immunostaining of  human biopsies 
identified a IBA1+CD16loCD163lo subpopulation of  disease-asso-
ciated macrophages derived from monocytes and spatially located 
in portal areas in close proximity to the KRT19+ ductular cells in 
patients with advanced MASH fibrosis, as well as other causes of  
CLD, including PSC (33). This close spatial relationship suggests that 
these cells could have functional relevance in the ductular reaction, 
given that macrophages are known to regulate the ductular reaction 
in mice (108) via secretion of  soluble mediators such as Wnts (109) 
or TWEAK (110). Furthermore, macrophage-hepatocyte crosstalk 
can directly control hepatocyte mitochondrial function, lipid accu-
mulation (111), and clearance of  senescent hepatocytes (112), all 
important factors in epithelial dysfunction observed in MASLD (see 
above). How these direct epithelial-macrophage interactions can be 
modulated to abrogate fibrosis should be a focus of  future work.

Macrophages are producers of  inflammatory mediators, 
including activation of  the NLRP3 inflammasome (resulting 
in release of  proinflammatory cytokines IL-1β and IL-18), an 
important driver of  fibrosis in MASLD models (113, 114). The 
transmembrane molecule membrane-spanning 4-domains A7 
(MS4A7) was identified in TREM2+ SAMacs from MASLD 
livers, and MS4A7 deletion in mouse MASH reduced SAMac 
expansion, liver inflammation, HSC activation, and fibrosis (115). 
Lipid droplets derived from steatotic hepatocytes were shown to 
promote SAMac differentiation, MS4A7 expression, and NLRP3 
inflammasome activation, with inflammasome activation being at 
least partially dependent on MS4A7 expression in a cell-intrinsic 
manner (115). These data potentially provide a mechanistic link 
between hepatocellular injury, SAMac differentiation, inflam-
mation, and fibrosis; MS4A7 therefore warrants further explora-
tion as a therapeutic target in human MASLD. The transcription 
factor EGR2 (116) and Notch signalling (117) were both also 

recently implicated in SAMac differentiation and fibrogenesis in 
MASLD mouse models. However, current studies aimed at inves-
tigating molecular drivers of  liver fibrosis are mainly based on 
mouse models and underestimate the complexity of  interactions 
regulating fibroinflammatory processes in MASLD. Application 
of  spatial omics technologies in human MASLD samples should 
help clarify these interactions.

Some molecules expressed by SAMacs appear to have anti-
inflammatory antifibrotic functions in MASLD. The effero-
cytosis receptor TREM2 is a prime example, as several groups 
have shown that TREM2 deficiency exacerbates liver inflamma-
tion and fibrosis in MASLD models (118, 119), suggesting that 
TREM2 agonism may be an effective therapeutic strategy. The 
complexity of  TREM2 in the liver is further highlighted by the 
presence of  TREM2+ macrophages in healthy human livers, albe-
it at a lower proportion than in MASH (120), while resident KCs 
were recently reported to upregulate TREM2 in certain inflam-
matory contexts (121). Hence, despite numerous candidate anti-
fibrotic targets expressed by SAMacs, it remains unclear which 
candidates are adequately specific to pathogenic macrophages 
and selectively inhibit profibrotic functions without disrupting 
their role in physiological repair and fibrosis regression.

Given their role in lipid metabolism and pathogen clearance, 
tissue-resident KCs may also have a role in MASLD pathogene-
sis. In rodent models, embryologically derived KCs (EmKCs) are 
the main macrophage population in healthy livers but undergo 
transcriptional reprogramming and cell death in the context of  
MASLD (122, 123). scRNA-seq has identified two major subsets of  
EmKCs: CD206loESAM– KC1, characterized by the expression of  
immune signatures, and CD206hiESAM+ KC2, which are involved 
in metabolism (124). Notably, KC2 ablation or depletion of  the fat-
ty acid transporter CD36 in this subset prevented diet-induced obe-
sity (124). The presence of  similar KC subpopulations in human 
MASLD is yet to be confirmed. In MASLD, the EmKC niche is 
repopulated with monocyte-derived macrophages that acquire a 
KC-like phenotype, termed MoKCs (106, 122). Interestingly, there 
are some suggestions that MoKCs remain functionally distinct 
from EmKCs, with a more pronounced inflammatory profile and 
increased liver injury (122, 125). The transcription factor HIF-2α 
was shown to simultaneously promote KC death and inflammato-
ry activation of  monocyte-derived macrophages in MASH, while 
deletion of  HIF-2α protected against inflammation and fibrosis 
both in vivo and in vitro (126). Whether it is feasible to rebalance 
the aberrant macrophage compartment in human MASH remains 
unknown but should be the focus of  future studies.

Of  course, the chronic inflammatory microenvironment in 
MASH livers includes numerous other innate and adaptive immune 
cell types, which have also been studied using single-cell approach-
es and have variously been associated with the propagation of  fibro-
sis (summarized in Table 2 and Figure 2). More detailed evaluation 
of  which cell populations are the most pertinent drivers of  fibrosis 
at different stages of  human MASLD will help rationalize which 
aspects of  this complex inflammatory milieu represent tractable 
antifibrotic therapeutic targets.

Vascular reprogramming. CLD pathogenesis is accompanied 
by vascular remodeling, which can contribute to fibrosis and por-
tal hypertension (127). scRNA-seq in advanced CLD identified 
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CD34+ACKR1+ and CD34+PLVAP+ scar-associated endothelial 
cell subpopulations that could regulate immune cell recruitment 
and drive HSC activation through PDGF and NOTCH pathways 
(14). Specifically in MASLD, changes in the liver sinusoidal endo-
thelial cells (LSECs), the main endothelial population lining the 
hepatic sinusoids, have been reported to promote steatosis, hepat-
ic inflammation, and fibrosis (128–130). Interestingly, in rodent 
models, LSEC dysfunction appears before established fibrosis 
(131, 132), while inhibiting LSEC maladaptation via eNOS acti-
vators (133) or targeting epigenetic reprogramming (134) atten-
uates liver fibrogenesis. However, a detailed study defining the 
molecular changes in human LSEC during different stages of  
MASLD is still lacking.

Systemic drivers of MASLD pathogenesis
MASLD is increasingly recognized as the hepatic component 
of  a systemic disease, with an increased risk of  cardiovascular 
disease and extrahepatic malignancies observed in patients with 

MASLD (135). However, the cellular and molecular connections 
between the diseased liver, its manifestations in other tissues, 
and their reciprocal responses are only starting to be elucidated 
(136–138) (Figure 3). For instance, adipose tissue dysfunction is 
associated with MASLD development, as demonstrated in lipo-
dystrophic mice in which the redirection of  the lipid surplus to 
the liver led to steatohepatitis (139–141). Interestingly, scRNA-
seq analysis of  visceral adipose tissue in patients with MASLD 
showed a change in macrophage phenotype and disruption of  
vascular barrier integrity, suggesting enhanced systemic release 
of  inflammatory mediators that may signal between adipose tis-
sue and the liver (142). Adipose tissue macrophages were shown 
to secrete GDF-15 during the early stages of  obesity and type 2 
diabetes, while hepatocytes upregulated GDF-15 in the liver in 
during MASH (143). Indeed, GDF-15 has been suggested as a 
circulating biomarker of  disease and fibrosis stage (144). GDF-
15 can attenuate the proinflammatory features of  macrophages 
(144, 145) and may therefore represent a mechanism by which 

Table 2. Summary of the evidence for a role of other immune cells in the propagation of fibrosis in MASLD

Summary
Neutrophils •	 Expression of neutrophil chemoattractants associated with human MASH (50, 193, 194)

•	 Neutrophil depletion alleviates fibrosis in mouse CLD models (195)
•	 Ductular reaction–associated neutrophils (DRANs) in CLD are long-lived (61). DRAN depletion results in an attenuated ductular 

reaction and reduced fibrosis (61)
•	 Neutrophil extracellular traps (NETs) have direct profibrotic effects on HSCs and monocyte activation, especially in MASH patients 

with intercurrent alcohol use (196)

Classical dendritic cells (cDCs) •	 scRNA-seq identified expansion of CD1c–CD141+XCR1+ (cDC1) and CD1C+CD141– (cDC2) subpopulations across multiple models of 
murine MASH (197)

•	 cDC1 expansion correlates with human MASH histological severity (197)
•	 cDC1 depletion reduces fibrosis in mouse MASH (197)
•	 cDC2s upregulate maturity markers (LAMP1 and LAMP3) and chemokines (CCL22 and CCL17) in MASH (197)
•	 Paired-cell sequencing (PIC-seq) to study interacting cell partners (198) shows proinflammatory cDC–T cell interactions in  

liver-draining lymph nodes of MASH mice (197)

NK cells and innate lymphoid cells  
(ILCs) (149)

•	 NK cells have antifibrotic properties via the killing of activated HSCs (178) and/or secretion of IFN-γ (199, 200)
•	 Altered hepatic NK cell composition and activation revealed by scRNA-seq in patients with end-stage CLD (201)
•	 Role in human liver fibrogenesis unclear. Obesity can abrogate NK cytotoxic activity (202, 203) – potential to facilitate HSC 

persistence in the liver
•	 Other ILC subpopulations identified in MASLD (204) – functional role in fibrosis uncertain

T cells •	 Accumulation of CXCR6+CD8+ T cells in mouse and human MASH livers. Activation in a non–antigen-driven manner by metabolic 
stimuli such as ATP and acetate to become autoaggressive and promote liver injury through the killing of hepatocytes (205).  
Effects on fibrosis unclear.

•	 Instruction of CD8+ liver-resident T cells by liver myeloid and mesenchymal cells in non–antigen-specific manner to modulate 
inflammatory activity (206). Effects on fibrosis still to be explored.

•	 CD4+ IL-17–secreting Th17 cells associated with fibrosis pathogenesis in MASLD (134, 207, 208) and are enriched in more advanced 
disease (209)

•	 Amphiregulin-producing Tregs promote liver fibrosis and insulin resistance in MASH (210)
•	 Unconventional T cells (including NKT cells, MAIT cells, and γδ T cells) are enriched in the liver and have various reported roles  

in fibrosis pathogenesis (39, 211). Exact role in MASH requires further study.

B cells •	 B cell depletion reduces liver injury and fibrosis (212)
•	 B cells adopt a proinflammatory, profibrogenic phenotype in MASH, driven by intestine-derived microbial antigens through  

cell-intrinsic MyD88 signalling (212)
•	 Activated HSCs releasing retinoic acid can enhance B cell activation and fibrogenic activity, suggesting direct B cell–HSC  

interactome (213)
•	 Intestinal B cells in MASH capable of promoting autoaggressive T cell activation and SAMac modulation (214)
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metabolites in the portal circulation, which trigger hepatic inflam-
mation (150, 152). While many microbiota signatures have been 
associated with MASLD and reviewed elsewhere (150), little is 
known about the spatiotemporal regulation of  cellular and molec-
ular pathways governing the transmission of  inflammatory signals 
between the microbiome, gut, and ultimately the liver.

Skeletal muscle secretes myokines that influence distant 
organs, impacting insulin sensitivity, glucose, and lipid metabolism 
(153, 154). Accumulation of  muscle fat was associated with the 
presence of  MASH (155), while individual myokines such as IL-6 
(156), myostatin (157), or follistatin-like protein 1 (FSTL1) (158) 
are known to regulate liver fibrosis. Application of  scRNA-seq and 

tissue damage influences local and systemic inflammation. Obe-
sity also induces changes in other adipose tissue immune cell 
populations, including NK cells (146, 147), T cells (148), and 
B cells (149), with additional potential consequences for liver 
inflammation and fibrosis.

The gut and its microbiome have also gained increased atten-
tion in MASLD pathogenesis (150). Fecal microbiota transplan-
tation (FMT) from patients with MASH to germ-free mice fed a 
high-fat diet led to exacerbation of  steatosis (151). However, how 
changes in the gut and microbiome drive changes in the liver is cur-
rently unknown. The main hypothesis is that dysbiosis can alter 
intestinal permeability, increasing levels of  microbially produced 

Figure 2. The role of immune cells in MASLD fibrosis. The activation of HSCs, which are responsible for ECM remodeling and fibrosis progression, is 
tightly controlled by myeloid and lymphoid cells. After injury, monocytes migrate to the liver, where they differentiate into SAMacs, which promote 
HSC collagen deposition. HSCs can promote additional monocyte recruitment through the secretion of CCL2, IL-6, and EVs. DRANs and recruited 
neutrophils modulate monocyte and HSC activation through NET production. T cells also contribute to tissue injury and HSC activation through a 
proinflammatory interaction between CD8+ T cells and cDC1 as well as through release of IL-17 and AREG from Th17+ and Treg CD4+ T cells, respec-
tively. B cells become activated by intestine-derived microbial antigens and HSC-secreted retinoic acids, acquiring a proinflammatory phenotype. NK 
cells can kill activated HSCs and thus promote fibrosis regression, a role which has been shown to be inhibited by obesity. SAMac, scar-associated 
macrophage; emKC, embryologically derived Kupffer cells; moKC, monocyte-derived Kupffer cells; DRANs, ductular reaction–associated neutrophils; 
NETs, neutrophil extracellular traps; cDC, classical dendritic cell; Treg, regulatory T cell; HSC, hepatic stellate cell; ECM, extracellular matrix.
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of  fibroblasts and ECM degradation. In contrast, in the context 
of  cold fibrosis, targeting autocrine fibroblast signalling (e.g., via 
PDGFs or NTRK3) (160) would be a more effective approach to 
disrupt disease progression (Figure 4).

Such modeling approaches offer potential conceptual advances 
in our understanding of  fibrosis pathogenesis but are currently large-
ly based on simplified in vitro studies that underrepresent both the 
number of  cell types and complexity of  molecular drivers involved. 
Spatial profiling data have suggested the existence of  hot and cold 
fibrosis in kidney (161) and cardiac disease (162), but whether this 
paradigm is also relevant for MASLD remains unclear. Going for-
ward, more comprehensive spatial omics analyses of  human liver 
biopsies at different fibrosis stages will be important to determine 
how hot and cold fibrosis evolve in MASLD. Importantly, better 
characterization of  these spatial and temporal niches, for example 
by measuring serological ECM components, as was recently pro-
posed (163), could facilitate the identification of  circulating bio-
markers to decipher the contributions of  hot and cold fibrosis and 
immune-mesenchymal interactions to MASLD pathogenesis in 
individual patients,

Fibrosis regression in MASLD – myth or reality?
The potential for fibrosis and even cirrhosis regression has been 
well described in human liver disease due to chronic viral hepa-

spatial omics to skeletal muscle of  patients with MASLD may yield 
further insights into muscle-specific features or myokines that can 
be targeted to attenuate liver fibrosis progression.

Hot versus cold fibrosis: importance of cell circuits
A key output of  scRNA-seq and spatial omics studies is modeling 
of  cellular crosstalk within tissue domains. These analyses have 
highlighted the importance of  macrophage-fibroblast signalling 
in fibrosis in the liver and other tissues (103). This insight led to 
the development of  a cell circuit model that is predictive of  fibro-
sis progression or healing according to the degree and duration 
of  injury and inflammation (159). Following a short duration of  
injury, monocyte-derived macrophages accumulate and transiently 
promote fibroblast activation; if  the injury is not sustained, stable 
macrophage-fibroblast cell circuits are not established and healing 
occurs. However, if  injury is iterative or prolonged, more persistent 
accumulation of  macrophages and fibroblasts then form bistable 
cell circuits resulting in ECM deposition and establishment of  a 
fibrotic steady state (159). Two distinct fibrotic steady states have 
been suggested: “hot” fibrosis, characterized by the presence of  
both macrophages and fibroblasts, and “cold” fibrosis, where only 
fibroblasts are present. If  a patient has hot fibrosis, modulation of  
inflammation (e.g., by macrophage depletion or by blockade of  
macrophage-fibroblast signalling) would potentially result in loss 

Figure 3. Systemic regulators of MASLD pathogenesis. MASLD is part of a multisystem disorder that occurs concomitantly with liver disease. Changes 
in the gut, visceral adipose tissue, skeletal muscle, and systemic inflammation drive changes and disease progression in the liver through the release of 
lipids, cytokines, chemokines, myokines, and microbial metabolites. Ultimately, chronic systemic metabolic dysfunction can lead to intra- and extra
hepatic manifestations, including cirrhosis, HCC, cardiovascular disease, and cancer. MASLD, metabolic dysfunction–associated steatotic liver disease; 
HCC, hepatocellular carcinoma.
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acetyl-6-formylpterin enhanced proresolution macrophage accu-
mulation and enhanced fibrosis regression (176), suggesting that 
MAIT cells may favor a profibrotic macrophage phenotype.

Immune cells may also directly interact with HSCs during 
fibrosis regression. HSCs express a ligand for NKp46, a major NK 
cell activating receptor, which enhances HSC apoptosis (177). In 
addition, NK-driven killing of  HSCs via NKG2D and TNF-re-
lated apoptosis-inducing ligand (TRAIL) can ameliorate mouse 
liver fibrosis (178). scRNA-seq identified accumulation of  liver 
CD69+CD103–CD8+ tissue-resident memory (Trm) CD8+ T cells 
during the resolution of  murine MASH and associated induction of  
FasL/Fas-mediated HSC apoptosis with fibrosis regression (179).

However, rodent liver fibrosis models often resolve rapidly, 
calling into question the translational applicability to human dis-
ease. It is therefore imperative to use modern single-cell and spa-
tial approaches to study mechanisms of  fibrosis regression in large 
cohorts of  human MASLD liver biopsies.

Conclusions and future perspectives
As described above, high-resolution omics techniques are trans-
forming our understanding of  the mechanisms of  fibrosis in 
MASLD, defining key pathogenic cell types, and identifying can-
didate therapeutic targets. Crucially, these approaches are being 
widely applied in human samples, shifting discovery science in 
MASLD away from imperfect rodent and in vitro models and pri-
oritizing target and biomarker identification in patients. However, 
omics methods cannot recapitulate “dynamic” aspects of  cell-cell 
interactions in fibrosis, and datasets should continue to be supple-

titis following antiviral therapy (164, 165). In MASLD, detailed 
phenotyping of  patients following bariatric surgery demonstrated 
that 45.5% of  patients with advanced fibrosis (F3–F4) at baseline 
showed complete resolution after 5 years (166). Importantly, recent 
data also showed that patients with MASLD exhibiting fibrosis 
regression following treatment have improved clinical outcomes 
(10). Hence, fibrosis regression in MASLD should be a realistic 
goal of  therapeutic interventions.

However, the mechanisms orchestrating liver fibrosis regres-
sion in human MASLD remain poorly described, with most 
mechanistic knowledge being derived from rodent models (167, 
168). During rodent fibrosis regression, activated HSCs can 
undergo apoptosis, become senescent, or revert to a quiescent 
state with downregulation of  ECM production (167, 168). Specif-
ic subpopulations of  monocyte-derived macrophages upregulate 
matrix-degrading enzymes such as MMP9, MMP12, and MMP13 
and antiinflammatory mediators such as TREM2 to abrogate 
inflammatory activity and enhance fibrosis regression (118, 169–
172). These proresolution features of  macrophages are promoted 
by signals, including phagocytosis (169), autophagy (173), nuclear 
receptor subfamily 4 group A member 1 (NR4A1) activity (174), 
and TREM2 signalling (118, 121). Interplay with other immune 
cells can also reprogram macrophages to favor scar resolution. 
For example, in mouse MASH, neutrophils can promote macro-
phage reprogramming via the microRNA miR-223, resulting in 
increased macrophage IL-10 secretion, reduced hepatic inflam-
mation, and accelerated fibrosis regression (175). The inhibition 
of  MAIT cell–macrophage interactions via the administration of  

Figure 4. Hot versus cold fibrosis in 
MASLD. After acute liver injury, recruited 
monocytes differentiate into SAMacs, 
which interact with HSCs to orchestrate 
ECM remodeling and healing. If the 
injury is prolonged, stable macrophage-
fibroblast cell circuit interactions are 
established, which lead to a fibrotic 
steady state. Two fibrotic states have 
been proposed: (i) hot fibrosis, charac-
terized by the presence of both cell types 
and governed by paracrine macrophage-
fibroblast interactions, and (ii) cold fibro-
sis, where only fibroblasts are present 
and able to self-sustain fibrosis through 
their autocrine signaling. Future thera-
peutic approaches could aim to target 
specific signaling pathways according to 
the type of fibrosis present. HSC, hepatic 
stellate cell; SAMac, scar-associated 
macrophage.
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ly, such studies will potentially enable a more precision med-
icine–based approach to MASLD, where host factors and the 
nature of  fibrosis (e.g., hot vs. cold) will inform which thera-
pies might be most efficacious in particular individuals. Finally, 
more detailed cellular and molecular interrogation of  fibrosis 
regression in patient samples will be essential going forward, 
as ultimately the goal of  antifibrotic interventions should be to 
reverse established disease.
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mented with functional biology, for example intravital microscopy 
in rodents or perfusable biochips using human cells. Nevertheless, 
the advance that single-cell and spatial omics provides is starting to 
bear dividends, with a range of  new therapies being developed and 
tested in clinical trials.

There remain key unanswered questions to be addressed 
in the forthcoming years. First, more data during earlier-stage 
disease is needed to better define pathological cell types and 
candidate therapeutic targets at fibrosis stages where antifibrot-
ic interventions are more likely to be tractable. Second, factors 
such as genetics, sex, and ethnicity impact fibrosis heterogene-
ity and progression. Future omics studies should be conducted 
in sufficient patient numbers with detailed clinical metadata 
from different ethnicities and geographical regions, to allow 
the effects of  these host factors on pathophysiological mech-
anisms to be elucidated. Ideally, such studies will also sample 
tissue from different body compartments (e.g., adipose tissue, 
gut, bone marrow), to comprehensively examine the systemic 
impact of  MASLD and its effects on fibrogenesis. Eventual-
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