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Introduction
Metabolic dysfunction–associated steatotic liver disease (MASLD) 
is defined as the presence of  excess hepatic triglycerides on imaging 
(for example, >5.6% volume using proton density fat fraction with 
magnetic resonance spectroscopy) or histology with at least one fea-
ture of  the metabolic syndrome, including obesity or type 2 diabetes 
in the absence of  excess alcohol intake or other chronic liver disease 
(1). This condition affects a third of  the global adult population and 
up to 70% of  individuals living with type 2 diabetes (1). It is a silent 
pandemic; as few as 5% of  the individuals affected are aware of  the 
disease (2), and there is considerable clinical inertia with regard to 
diagnosis and management among non-hepatologists (3). Hepatic 
inflammation and fibrosis develop in approximately 20%–30% of  
people with MASLD, a condition called metabolic dysfunction–
associated steatohepatitis (MASH), and this leads to a dramatic 
increase in morbidities and mortalities including liver failure, hepa-
tocarcinoma, cardiovascular diseases, cognitive decline, and chronic 

kidney diseases (1). Therefore, understanding the mechanisms that 
lead to the transition from MASLD to MASH is critical to identify 
new therapeutic targets that may maximize therapeutic benefits.

Hepatocytes, hepatic stellate cells (HSCs), and liver macro-
phages operate in a finely tuned and spatially coordinated network 
to support metabolic homeostasis (4). In the healthy liver, changes in 
hepatocellular lipid acquisition from fatty acid uptake and de novo 
lipogenesis (DNL) are balanced with lipid consumption and storage 
from fatty acid oxidation and very low-density lipoprotein (VLDL) 
export, respectively, over fasting and feeding periods throughout 
the day (Figure 1). Hepatocytes, comprising about 70%–80% of  
liver volume, carry out critical metabolic functions including glu-
coneogenesis and lipid and cholesterol metabolism. Kupffer cells, 
the resident embryonically derived liver macrophages, continuously 
sample portal blood for microbial components and debris, playing 
a crucial role in immune surveillance and clearance of  gut-derived 
antigens (5, 6). They also contribute to immune tolerance and sup-
port hepatocyte function through clearance of  senescent cells and 
orchestration of  early responses to tissue injury (6). Macrophages 
and hepatocytes interact closely with HSCs, which, in addition to 
vitamin A storage, play several essential roles in maintaining liver 
structure and function by regulating sinusoidal blood flow through 
contractile responses and contributing to the homeostatic turnover 
of  extracellular matrix (ECM) components (7, 8). Under most 
homeostatic conditions, hepatocytes, Kupffer cells, and HSCs pri-
marily rely on mitochondrial oxidative phosphorylation and fatty 
acid metabolism to support their physiological roles (4–6).

The stability of  this homeostatic network is highly suscepti-
ble to chronic metabolic perturbation, and in the context of  sus-
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to hepatic steatosis but also generate metabolic intermediates that 
activate HSCs and macrophages to promote MASH and fibrosis.

Uptake of fatty acids from extrahepatic sources
Increased uptake of  dietary fatty acids. After a meal, triglycerides are 
packaged into chylomicrons by the intestine and hydrolyzed by 
lipoprotein lipase (LPL), delivering fatty acids to muscle and adi-
pose tissue. Hepatic dietary fatty acid uptake (from chylomicron 
remnants plus chylomicron-triglyceride non-esterified fatty acid 
spillover) accounts for 20%–30% of  total fatty acids taken up by the 
liver after meals (16) (Figure 1). A meta-analysis of  large genome-
wide association studies has linked MASLD with genetic polymor-
phisms associated with lower activity of  adipose tissue LPL, an 
enzyme that is not normally expressed in hepatocytes (17). This 
is in accordance with high risk of  MASLD independent of  obesity 
in subjects with LPL deficiency (18). It is important to note that 
not all dietary fats are equivalent, as intake of  saturated fatty acids, 
particularly palmitate and stearate, is much more closely linked 
to MASLD than intake of  polyunsaturated fatty acids (19, 20). 
Consistent with these associations, spatial lipidomics has found 
that saturated fatty acids are enriched within fibrotic areas while 
polyunsaturated fatty acids are reduced (21). And although satu-
rated fatty acids can promote inflammatory pathways, this likely 
does not involve direct binding to Toll-like receptor 4 (TLR4) (22). 
Instead, saturated fatty acids may promote inflammation and fibro-
sis in MASH by increasing free cholesterol (23).

In livers of  both mice and humans with MASH, there are 
increases in free cholesterol in hepatocytes, Kupffer cells, and HSCs 

tained overnutrition, hepatocyte lipid handling becomes dysregu-
lated. This results in the accumulation of  triglycerides and, more 
importantly, toxic lipid and metabolic intermediates that can be 
primarily attributed to defects in four interrelated pathways: (a) 
increased uptake of  fatty acids from extrahepatic sources includ-
ing diet and adipose tissue; (b) increased DNL; (c) reduced fatty 
acid oxidation; and (d) impaired VLDL production. While recent 
studies have highlighted how VLDL production impacts the risk 
of  liver damage versus cardiovascular complications in people 
with MASLD (9), we will not focus on this topic, in order to con-
centrate on interactions with the first three variables. Important-
ly, with the accumulation of  lipotoxic and metabolic intermedi-
ates in the liver, there is recruitment and differentiation of  bone 
marrow–derived monocytes that give rise to monocyte-derived 
macrophages (10–13), which express TREM2 and are common-
ly referred to as lipid-associated macrophages (14), and/or scar- 
associated macrophages (15). Steatotic hepatocytes and activated 
immune cells also trigger a phenotypic shift in HSCs marked by 
loss of  lipid droplets and increased glycolysis, leading to prolifera-
tion and transdifferentiation into fibrogenic myofibroblasts that are 
characterized by a contractile, ECM-producing phenotype (4–6). 
These changes in hepatocyte, macrophage, and HSC identity and 
function reinforce a feed-forward cycle of  metabolic stress, inflam-
mation, and tissue remodeling that characterize the development 
of  MASH and fibrosis.

In this Review we aim to describe in an integrative manner 
how the metabolic pathways of  fatty acid uptake, DNL, and fatty 
acid oxidation are tightly interconnected and not only contribute 

Figure 1. Interrelated mechanisms of intrahepatic triglyceride accretion in MASLD. Interconnections between fatty acid (FA) delivery from dietary sourc-
es, including chylomicrons and nonesterified fatty acids (NEFA) from adipose tissue, and intravascular lipolysis. This process intersects with liver-specific 
effects related to de novo lipogenesis (DNL) from carbohydrates, including fructose and amino acids, fatty acid oxidation (FAO), and very low-density 
lipoprotein (VLDL) production. TG, triglycerides.
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is highly expressed in macrophages compared with hepatocytes. 
This leads to the cleavage of  pro-caspase-1 into active caspase-1, 
which subsequently processes IL-1β and IL-18 into their mature 
forms (34–36). IL-1β and IL-18 receptor binding in hepatocytes 
promotes pyroptotic cell death and activates NF-κB, establishing a 
self-amplifying loop of  proinflammatory signaling that also induces 
chemokines (e.g., CXCL8) and adhesion molecules (e.g., ICAM-1, 
VCAM-1), promoting further recruitment of  neutrophils and mono-
cytes (37, 38). This cascade culminates in Kupffer cell activation and 
the formation of  hepatic crown-like structures surrounding necrotic 
hepatocytes (27, 28). Treatment with a selective NLRP3 inhibitor 
(MCC950) was found to reduce liver fibrosis in the methionine- and 

(24–28) (Figure 2). In hepatocytes, free cholesterol increases sensi-
tivity to tumor necrosis factor– (TNF) and Fas (CD95)-mediated 
apoptosis, resulting in the release of  cholesterol crystals and other 
danger-associated molecular patterns, such as endogenous ATP and 
uric acid (29–31). Increases in free cholesterol disrupt mitochondri-
al membrane integrity, impairing respiratory capacity and inducing 
mitochondrial damage, which promotes the release of  mitochon-
drial DNA (mtDNA) (32), while cholesterol sequestration within 
lysosomes induces phagolysosomal damage (33) that leads to the 
release of  cathepsins (34, 35). The release of  cholesterol crystals, 
ATP, uric acid, mtDNA, and cathepsins triggers activation of  the 
NLRP3 inflammasome, a cytosolic multiprotein complex that 

Figure 2. Increases in free cholesterol trigger liver inflammation and fibrosis. (Left) Loss-of-function polymorphisms in genes such as MBOAT7 and 
EHBP1 lead to increased free cholesterol levels and activation of the YAP/TAZ pathway. Cholesterol enhances hepatic stellate cell (HSC) responsiveness 
to TGF-β via TLR4/TGF receptor and stabilizes YAP/TAZ signaling in hepatocytes, promoting the secretion of Indian hedgehog ligands, activation of NKT 
cells, HSC activation through communication network factor 1 (CYR61) and osteopontin, and the production of fibrogenic ECM. (Right) Cholesterol accumu-
lation in hepatocytes and macrophages promotes cell death and inflammation by enhancing sensitivity to TNF and FAS ligands, disrupting mitochondrial 
membranes, and inducing phagolysosomal damage, which together trigger NLRP3 inflammasome activation in macrophages causing the release of IL-1β 
and IL-18. These cytokines activate NF-κB signaling and upregulate chemokines and adhesion molecules, further driving immune cell recruitment and 
amplifying liver inflammation.
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pression, such that NEFA release continues at high rates despite 
elevated insulin levels (16, 55–57). Upper body subcutaneous and 
visceral adipose tissues are the most important contributors to cir-
culating NEFA reaching the liver (58, 59), and while the visceral 
adipose tissue mass is much smaller, it drains directly into the portal 
vein, potentially explaining the strong correlation between viscer-
al fat and liver triglycerides (60, 61), a relationship also observed 
in lean individuals (62). In children and adolescents, prospective 
changes in insulin-mediated suppression of  NEFA levels after a 
meal are associated with ALT levels (63), and in adults, adipose 
tissue insulin resistance and lipolysis are directly correlated with 
increasing severity of  MASH (64). Interestingly, an important 
driver of  this relationship appears to be markers of  adipose tissue 
fibrosis (65), an effect that may involve the release of  endotrophin 
(66, 67). Importantly, numerous clinical trials with different PPAR 
(68–71) and GLP-1 receptor agonists (60, 72–74) support the con-
cept that reducing adipose tissue insulin resistance and lipolysis has 
favorable effects on MASH and fibrosis (Figure 3).

Brown adipose tissue (BAT) could also potentially play a role 
in the development of  MASH. Cold exposure in mice and humans 
increases oxidation of  fatty acids from intracellular triglyceride lip-
olysis within BAT, and this leads to enhanced energy expenditure 
and heat production (75). In rodents, activated BAT also plays a 
major role in the clearance of  circulating triglycerides (76); however, 
in humans, even with sustained cold-induced metabolic activation, 
BAT contributes less than 1% to systemic clearance of  chylomicron 
fatty acids (77) and circulating NEFA (78). Similarly, while beige 
adipocytes (with intermediate thermogenic activity between white 
and brown adipocytes) have a high metabolic activity in rodents, 
in humans they do not contribute to whole-body energy expendi-
ture (79). These data suggest that in humans BAT thermogenesis is 
unlikely to protect against lipid overload. However, studies in adults 
and children have shown a negative relationship between the abun-
dance of  BAT and liver steatosis, independent of  obesity, suggest-
ing that additional mechanisms may be important (80–82).

An emerging mechanism linking white and brown adipose 
tissue with MASH may involve the branched-chain amino acids 
(BCAAs) leucine, isoleucine, and valine (83–86). Both white and 
brown adipose tissue were shown to act as sinks protecting the liver 
from BCAA effects, which were independent of  their thermogenic 
activity (87). Elevated BCAAs are a major carbon source for liv-
er DNL (discussed in detail below) (86, 88), activating a central 
enzyme in the pathway, ATP-citrate lyase (ACLY) (89). In addition 
to promoting DNL, BCAAs also promote a shift toward glycolysis 
and a proinflammatory phenotype in monocyte-derived macro-
phages, leading to increases in reactive oxygen species (ROS) and 
cytokine production that accelerated liver fibrosis in db/db mice, a 
model of  diabetes (90). Consistent with the potential importance 
of  the adipose-BCAA-liver axis, the GLP-1/GIP receptor agonist 
tirzepatide, which reduced MASH in phase II studies (72), also 
improved adipose tissue insulin sensitivity and lowered circulat-
ing BCAA (91), effects that in mice are associated with increased 
BCAA metabolism within BAT (92). Similarly, bariatric surgeries 
(also highly effective for reducing MASH; ref. 93) were found to 
lower BCAAs in mice, through pathways that were independent 
of  GLP-1 but required FGF-21 (94). BCAAs were also reduced 
in people with MASH who were treated with an inhibitor of  the 

choline-deficient model of  MASH (26). However, when mice were 
fed a high-fat and high-cholesterol diet, pharmacological inhibition 
of  the NLRP3 inflammasome with MCC950 or genetic inhibition 
of  NLRP3 or caspase-1 did not affect fibrosis (39). These data sug-
gest that NLRP3 inflammasome inhibitors may be more effective 
in the context of  advanced fibrosis and cirrhosis than MASH, or 
alternatively, it may be necessary to combine these compounds 
with metabolically based therapies that reduce steatosis. Whether 
NLRP3 inflammasome inhibitors will be safe and effective in people 
is the focus of  several ongoing phase I/IIa clinical trials.

Cholesterol also plays a crucial role in HSC activation by 
amplifying profibrotic signaling pathways (Figure 2). Quiescent 
HSCs store cholesterol in an esterified form to prevent toxicity; 
however, free cholesterol accumulation in HSCs enhances fibro-
genic activation by disrupting membrane integrity, altering intracel-
lular signaling, and sensitizing HSCs to profibrotic stimuli through 
multiple pathways. One mechanism involves cholesterol-driven 
TLR4 activation, which enhances HSC responsiveness to TGF-β 
by downregulating its inhibitory receptor BAMBI (25, 40). Cho-
lesterol also stabilizes Yes-associated protein/transcriptional coact-
ivator with PDZ-binding motif  (YAP/TAZ) in hepatocytes (41, 
42) through a soluble adenylyl cyclase/calcium/RhoA–mediated 
pathway (43), which promotes HSC activation through the secre-
tion of  communication network factor 1 (CYR61) (44). YAP/TAZ 
activation also promotes the secretion of  Indian hedgehog ligand, 
which further propagates HSC activation and promotes ECM pro-
duction (45, 46). These effects are further perpetuated as cholester-
ol accumulation enhances mechanotransduction pathways, stabi-
lizing YAP/TAZ signaling, which reinforces HSC contractility and 
ECM remodeling (47). The activation of  the Hedgehog pathway is 
also associated with activation of  type I natural killer T cells and 
increases in osteopontin, which further accelerates liver fibrosis 
in mice (48, 49). Importantly, recent studies have found that com-
mon loss-of-function polymorphisms linked to MASH, including 
MBOAT7 (50) and EHBP1 (51), lead to increases in free cholesterol 
and activation of  the YAP/TAZ pathway, independently of  dif-
ferences in steatosis (Figure 2). As targeted inhibition of  hepato-
cyte TAZ (52, 53) or HSC YAP (54) has been shown to reverse 
fibrosis in mouse models, these data suggest that individuals with 
these polymorphisms or high levels of  circulating Indian hedgehog 
ligand may be particularly responsive to potential therapies inhibit-
ing the YAP/TAZ pathway.

Together these data suggest that in MASH, increased circulat-
ing dietary fatty acids from impaired adipose tissue clearance of  
chylomicron remnants may increase saturated fatty acids, which 
promote accumulation of  free cholesterol that drives proinflamma-
tory and profibrotic activation of  hepatic macrophages and HSCs, 
creating a feed-forward cycle of  immune activation and fibrogene-
sis that accelerates MASH progression.

White and brown adipose tissue  
insulin resistance
Most of  the hepatic fat accumulation in MASLD originates from 
white adipose tissue, particularly through increased flux of  non- 
esterified fatty acids (NEFAs) (Figure 1). In healthy subjects, post-
prandial insulin release rapidly suppresses lipolysis and hepatic 
NEFA delivery; however, adipose insulin resistance blunts this sup-
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investigating these pathways will be important to better understand 
which populations may benefit most from these therapies.

Mechanisms regulating DNL
The generation of  fatty acids from glucose, fructose, and other 
substrates, including lactate, acetate, and amino acids, is mediated 

mitochondrial pyruvate carrier (95). These data suggest that meta-
bolically based therapies associated with improvements in adipose 
tissue insulin sensitivity such as those targeting GLP-1 receptors, 
PPARs, and FGF-21 may not only reduce steatosis by reduc-
ing NEFA flux but may also potentially exert antifibrotic effects 
by inhibiting endotrophin and BCAAs (Figure 3). Future studies 

Figure 3. Targets in pathways contributing to elevated DNL and ceramide production in MASH. Delivery of diet-derived FAs, amino acids, fructose, and 
glucose to the liver supplies carbon for hepatic DNL. Both white and brown adipose tissues function as metabolic sinks for FAs and BCAAs, which also con-
tribute carbon to DNL. GLP -1R agonists reduce food intake via central mechanisms and improve adipose tissue insulin sensitivity, reducing steatosis and 
MASH. DNL is initiated when excess substrate availability via FAO, carbohydrates, and amino acids converges at the TCA cycle and increases mitochondrial 
citrate levels. The citrate isotransporter (SLC25A1) exports excess citrate to the cytosol, where it is converted to acetyl-CoA by ATP-citrate lyase (ACLY). 
Gut microbiome–derived ethanol can also contribute to the hepatic acetyl-CoA pool via ACSS2. Acetyl-CoA may translocate to the nucleus and modulate 
gene expression programs related to DNL. Nuclear receptors such as FXR, THRβ, and PPAR also regulate gene expression to inhibit DNL, promote FAO, 
and suppress transcriptional regulators, including ChREBP and SREBP-1c, which both drive expression of DNL enzymes. FXR, THRβ, and PPAR agonists 
improve MASH by simultaneously inhibiting DNL and enhancing FAO. Acetyl-CoA is also a precursor for cholesterol synthesis, a process closely linked to 
liver inflammation and fibrosis. Most cytosolic acetyl-CoA is converted to malonyl-CoA and then to FAs. Targeting key nodes in this pathway — including 
inhibition of the citrate isotransporter, ACLY, ACC, or FAS or activation of AMPK — suppresses DNL and ameliorates hepatic steatosis. Additionally, inhibi-
tion of DGAT2 and activation of SCD1 reduces triglyceride synthesis, thereby attenuating DNL and improving MASH. Ceramides derived from FAs activate 
the NLRP3 inflammasome in macrophages and contribute to HSC activation. Furthermore, ER stress and mitochondrial-derived ROS activate apoptosis 
signal-regulating kinase 1 (ASK1), which promotes HSC activation and drives liver fibrosis. ASK1 inhibition has been shown to improve hepatic inflamma-
tion and fibrosis. WAT, white adipose tissue; BAT, brown adipose tissue; KHK, ketohexokinase; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; 
TAG, triacylglycerol; DGAT2, diacylglycerol O-acyltransferase 2; DAG, diacylglycerol; UFA, unsaturated fatty acids; SCD1, stearoyl-CoA desaturase 1; FAS, 
fatty acid synthase; ACC, acetyl-CoA carboxylase; HMG-CoA, 3-hydroxy-3-methylglutaryl–CoA; HMGCR, 3-hydroxy-3-methylglutaryl–CoA reductase; SPT, 
serine palmitoyltransferase; ACSS2, acetyl-CoA synthetase.
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through DNL (96, 97) (Figure 3). DNL is elevated in people with 
MASLD and MASH (98–100) and is initiated when excess sub-
strate availability from the oxidation of  fatty acids, carbohydrates, 
and amino acids converges at the first step of  the tricarboxylic acid 
(TCA) cycle, leading to increases in mitochondrial citrate (101). As 
the TCA cycle cannot store metabolic intermediates, in the absence 
of  an energetic sink (i.e., ATP demand), citrate is exported from the 
mitochondria into the cytosol by the citrate isotransporter (CIC/
SLC25A1) (96). Once in the cytosol, citrate is converted to acetyl- 
CoA and oxaloacetate by ACLY. Acetyl-CoA is also used to gen-
erate cholesterol via the mevalonate pathway, and inhibition of  
ACLY by bempedoic acid leads to increases in the LDL receptor 
in the liver and reductions in LDL-cholesterol and atherosclerosis 
(102). Acetyl-CoA can also enter the nucleus, where it influences 
histone acetylation and gene expression, therefore linking substrate 
supply with transcriptional control (103). However, the majority 
of  cytosolic acetyl-CoA is converted to malonyl-CoA in the first 
committed step of  the DNL pathway by acetyl-CoA carboxylase 
(ACC). Malonyl-CoA also inhibits the activity of  carnitine pal-
mitoyl-transferase-1 (CPT1), the rate-limiting enzyme controlling 
entry of  fatty acyl-CoA to the mitochondria and fatty acid oxida-
tion; thus DNL and fatty acid oxidation are usually inversely regu-
lated (104). ACC exists as two distinct isoforms in the liver, ACC1 
and ACC2, and while dogma suggests they have distinct functions 
controlling DNL and fatty acid oxidation, respectively, it is now 
recognized that they have overlapping roles and that inhibition of  
both isoforms is necessary to maximize therapeutic responses for 
MASLD and MASH (105, 106). Importantly, DNL remains elevat-
ed in people with MASH and cirrhosis despite reductions in steato-
sis, suggesting that it is a key driver of  disease development (107).

Among dietary nutrients, fructose (a component of  table sugar 
and high-fructose corn syrup) is a particularly potent inducer of  
hepatic DNL (reviewed in ref. 108). Fructose and metabolic inter-
mediates generated by the gut microbiome, e.g., acetate, bypass 
normal insulin-regulated checkpoints of  glycolysis, leading to the 
accumulation of  acetyl-CoA (108, 109) (Figure 3). At the same 
time, fructose and its metabolites, like glucose-6-phosphate and 
xylulose-5-phosphate, activate carbohydrate-responsive element–
binding protein (ChREBP) and sterol regulatory element–binding 
protein 1c (SREBP-1c), regulators of  transcriptional programs that 
increase the expression of  DNL enzymes (108). Lastly, fructose-in-
duced endotoxemia activates MyD88-mediated inflammatory pro-
cesses in liver myeloid cells, increasing TNF (110). TNF suppresses 
AMP-activated protein kinase (AMPK), leading to reduced phos-
phorylation of  ACC (111), which increases liver DNL, steatosis, 
inflammation, and fibrosis (106). In people with MASLD, fructose 
has a much greater DNL-stimulating effect than glucose (112–114). 
Pharmacological inhibition of  ketohexokinase, the first step in the 
metabolism of  fructose, lowers liver ChREBP, hyperinsulinemia, 
hypertriglyceridemia, and hepatic steatosis in mice fed a Western 
diet (115, 116) while also reducing liver steatosis, serum uric acid, 
and high-sensitivity CRP in people with MASLD (117). Howev-
er, this reduction in steatosis of  about 25% was relatively modest, 
which may be related to the multiple substrates feeding into DNL, 
including elevations in gut microbiome–derived ethanol (118), 
which would be converted in the liver to acetate and acetyl-CoA 
via acetyl-CoA synthetase 2 (ACSS2) (109), thus bypassing regula-

tion via ketohexokinase. These findings suggest that while targeting 
fructose metabolism can reduce hepatic steatosis, its overall impact 
may be limited by alternative substrates that continue to drive DNL 
through bypass pathways such as ACSS2.

In addition to carbohydrates such as fructose, fatty acids derived 
from insulin-resistant adipose tissue are also an important factor 
contributing to elevations in DNL in MASLD and MASH (114, 
119). Mechanistically, increased adipose tissue–derived free fatty 
acids delivered to the liver allosterically activate AMPK, leading to 
increases in fatty acid oxidation (120, 121), which leads to genera-
tion of  acetyl-CoA (122) independently of  ACLY (86). Highlighting 
the important contribution and overlap between adipose tissue insu-
lin resistance and DNL are recent findings showing that in people 
with MASLD, DNL accounts for approximately 40% of  total tri-
glyceride accretion during the postprandial period (119). These data 
suggest that, in contrast to previous studies that were done under 
fasting conditions (98–100), DNL is the major contributing factor 
to steatosis, and indicate the critical and interrelated role for adipose 
tissue insulin resistance in priming the DNL pathway (Figure 1).

DNL inhibitors and ceramides
Highlighting the critical role of  DNL in MASH are findings with 
pharmacological inhibitors of  cytosolic citrate (123, 124), ACLY 
(125), ACC (126, 127), or fatty acid synthase (FAS) (128, 129), 
which exert favorable activities on reducing DNL and lowering ste-
atosis in preclinical models and, in some cases, clinical populations 
(reviewed in refs. 96, 130) (Figure 3). Inhibition of  DNL can also 
be achieved indirectly by inhibition of  distal steps in triglyceride 
synthesis, including stearoyl-CoA desaturase 1 (SCD1) (131) and 
diacylglycerol acyltransferase 2 (DGAT2) (132–135); recent studies 
with DGAT2 inhibitors have revealed that this is due to increases 
in endoplasmic reticulum phosphatidylethanolamine, which blocks 
cleavage and activation of  SREBP-1c (136). In addition to inhibit-
ing steatosis, blockade of  ACC (137), ACLY (125), FAS (128), or 
SCD1 (138) or activation of  AMPK (which inhibits ACC) (139) 
also reduces TGF-β–induced activation of  HSCs. In liver macro-
phages, activation of  AMPK (140) or inhibition of  ACLY (141) 
or ACC (142) also reduces liver inflammation in mouse models. 
These actions on multiple cell types within the liver may explain 
in part the discordant findings between beneficial effects with 
pharmacological inhibitors and the benign or detrimental findings 
with hepatocyte-selective genetic inhibition of  these targets (109, 
143–145). Despite the positive effects of  ACC and FAS inhibitors 
to reduce MASH, they also increase serum triglycerides by increas-
ing liver VLDL production and/or potentially clearance (126, 127, 
129), effects that can be blocked by inhibition of  DGAT2 (146, 
147). These effects are not observed with AMPK activators (139), 
the dual AMPK activator/ACLY inhibitor bempedoic acid (102), 
or the SCD1 inhibitor/AMPK activator Aramchol (131).

An important mechanism linking inhibition of  DNL with 
reductions in inflammation and fibrosis are ceramides, which are 
preferentially synthesized via this pathway in MASH (126, 127, 
148). Recent studies using spatial lipidomics integrated with tran-
scriptomics and imaging have revealed that sphingolipid metabo-
lism is dysregulated in liver fibrosis and closely associated with myo-
fibroblast-rich regions in both humans and mouse models of  MASH 
(149). In mice fed a Western diet with glucose in the drinking water 
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(i.e., the DIAMOND model), loss-of-function mutations in Pnpla3  
increase liver ceramide and genetic signatures linked to eleva-
tions in ceramide synthesis, STAT3, and both innate and adaptive 
immune-inflammatory pathways (150). In macrophages, ceramides 
activate the NLRP3 inflammasome, leading to caspase-1 activation 
and the release of  IL-1β and IL-18, which propagate liver inflamma-
tion and fibrosis (151), effects that may involve direct binding to the 
Gq receptors CYSLTR2 and P2RY6 (152). Similarly, the expression 
of  acid ceramidases, which break down ceramide into sphingosine 
and fatty acids, is correlated with MASH and fibrosis, and acid 
ceramidase inhibition leads to greater fibrosis through activation 
of  YAP/TAZ (153, 154). Pharmacological inhibition of  ceramide 
synthesis, by suppression of  serine palmitoyltransferase (SPT) using 
myriocin (155, 156), CH5169356 (157), or adiponectin (which also 
activates PPARγ) (158), suppresses HSC activation and attenuates 
fibrosis in preclinical models. These data suggest that inhibition of  
DNL may exert dual therapeutic benefits in MASH by lowering 
both steatosis and ceramide-driven paracrine signaling that links 
hepatocyte injury to chronic immune and fibrotic activation.

Given that DNL is upregulated across all stages of  MASLD, 
including MASH and cirrhosis, these data suggest that inhibiting 
enzymes critical for the control of  DNL may exert favorable effects 
across the disease spectrum by not only reducing steatosis but also 
inhibiting the activation of  HSCs. However, given the metabolic 
flexibility and substantial redundancy in the pathway, therapies that 
inhibit multiple enzymes may be necessary to maximize efficacy 
and avoid increases in atherogenic risk profiles.

Impaired hepatic fatty acid oxidation and 
mitochondrial dysfunction
Liver fatty acid oxidation is critical for generating ATP and reduc-
ing equivalents required for gluconeogenesis, DNL, and ketone 
body and lipid droplet production as well VLDL packaging. The 
liver oxidizes approximately 35% of  circulating NEFA over 6 hours 
after a meal (16), making impaired fatty acid oxidation an import-
ant mechanism contributing to MASLD (159).

Stable isotope studies have found that hepatic fatty acid oxi-
dation rates are unaltered (160) or can be elevated by 30%–50% 
in individuals with MASLD compared with controls (161–164), 
suggesting this is unlikely to be the cause of  steatosis. However, 
rates of  fatty acid oxidation do appear to decline with advancement 
to MASH (161, 165). Similar findings using a noninvasive 13C-pal-
mitate breath test have also found that individuals with MASLD 
oxidized approximately 27% less of  an orally administered fat-
ty acid load than healthy individuals (166). In mice, MASLD is 
associated with increased whole-liver fatty acid oxidative metab-
olism (assessed using deuterium magnetic resonance imaging) 
but with reduced ATP, citrate synthase, and fatty acid oxidation 
when expressed relative to the weight of  the liver (167). A similar 
reduction in fatty acid oxidation is observed in isolated liver slic-
es in people with MASH compared with those with obesity and 
MASLD (160, 168). Consistent with impairments in liver fatty acid 
oxidation being important in MASH, increasing mitochondrial 
uncoupling reduces hepatic steatosis in clinical trials (169). And 
while the beneficial effects of  mitochondrial uncouplers are com-
monly ascribed to increases in fatty acid oxidation, it is import-
ant to note that these compounds also reduce the reductive force 

and ATP required for DNL (97, 170), suggesting that this may be 
a more important mechanism for lowering steatosis in individuals 
with MASLD but not MASH. Taken together, these data suggest 
that during early stages of  MASLD there may be increases in fatty 
acid oxidation, but with MASH, reductions in fatty acid oxidation 
per gram of  tissue may occur (Figure 4).

Complicating interpretation of  findings on fatty acid oxida-
tion are emerging observations using spatially resolved metabo-
lomics and proteomics that there may also be zone-specific shifts 
in intercellular mitochondrial activity (171). For example, studies 
have found that mitochondria from periportal hepatocytes have a 
higher capacity for fatty acid oxidation than those from pericentral 
hepatocytes (172). These zonal shifts in periportal mitochondrial 
metabolism correlate with increases in AMPK phosphorylation of  
ACC (172), which is critical for fatty acid oxidation in the liver 
(106). Consistent with increases in fatty acid oxidation and activa-
tion of  AMPK, fasting induces interactions between the endoplas-
mic reticulum and mitochondria in periportal hepatocytes but not 
in pericentral hepatocytes, effects that are blunted in obesity (173). 
Fasting also promotes interactions between perilipid droplets and 
mitochondria (174), a relationship that is increased in early stages 
of  MASLD but then declines with progression of  fibrosis in the 
choline-deficient high-fat diet mouse model of  MASH (175). These 
findings highlight the emerging importance of  hepatic zonation in 
regulating mitochondrial fatty acid oxidation and suggest that dis-
ruptions to periportal mitochondrial dynamics may contribute to 
the metabolic dysfunction observed in MASH.

Reductions in mitochondrial function in MASH have been 
associated with megamitochondria and disorganized and fragment-
ed cristae (165, 176). These mitochondrial derangements are con-
sistent with reductions in a process called mitophagy, the selective 
degradation of  mitochondria via autophagy, that is reduced in livers 
of  people with MASH (168). Genetic variants linked with MASH 
including TM6SF2 and MBOAT7 promote swollen and fragmented 
cristae when overexpressed in cultured cells (177), while individu-
als with mutations in PNPLA3 also have impaired mitochondrial 
function (178) (Figure 4). In the setting of  high-fat diet, a mouse 
model expressing a phospho-deficient point mutation in AMPK, 
leading to reduced AMPK activity in liver, exhibited increased 
MASH and megamitochondria with disordered cristae that were 
associated with impaired fatty acid oxidation and mitophagy (121). 
In contrast, an AMPK activator that binds to the same residue on 
AMPK reduced steatosis, inflammation, and fibrosis in mice (139) 
and reduced steatosis in people with type 2 diabetes (179). Inter-
estingly, thyroid receptor β (THRβ) agonists have been shown to 
also activate AMPK and increase mitophagy (180). Future studies 
investigating whether liver AMPK is important for mediating the 
beneficial effects of  the recently approved THRβ agonist resmeti-
rom in reducing MASH and fibrosis (181) will be important for 
understanding the therapeutic importance of  this pathway.

Incomplete oxidative by-products link 
mitochondria, inflammation, and fibrosis
In addition to having a reduced capacity for oxidizing fatty acids, 
dysfunctional mitochondria also perpetuate hepatic injury by gen-
erating incomplete oxidation by-products including ROS, lactate, 
and succinate, which in turn activate macrophages and HSCs (Fig-
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Another hallmark of  impaired oxidative phosphorylation is an 
increase in lactate. In Kupffer cells and monocyte-derived macro-
phages, lactate has been shown to upregulate genes associated with 
tissue remodeling and fibrosis including CD86 and iNOS, effects 
that are mediated through histone lactylation of  H3K18la, an 
epigenetic modification that directly stimulates gene transcription 
from chromatin (187). HSCs activated by Hedgehog or Wnt/β-cat-
enin signaling (188) utilize lactate as a fuel source to promote their 
differentiation into myofibroblasts (189), an effect that also involves 
histone lactylation (190) and stabilization of  hypoxia-inducible 
factor-1α (HIF-1α) (191). Importantly, therapies that directly target 
either HSC and/or macrophage lactate uptake (by inhibiting MCT1 
[ref. 189]) or lactate production (by blocking lactate dehydrogenase 
[ref. 192] or hexokinase 2 [refs. 187, 193]) reduce inflammation and 
fibrosis in mouse models of  MASH. Thus, manipulation of  lac-
tate serves as a critical metabolic bridge between hepatocyte mito-

ure 4). Steatotic hepatocytes exhibit evidence of  chronic oxidative 
stress including high levels of  mitochondrial hydrogen peroxide and 
lipid peroxidation by-products (168, 176). Oxidation of  fructose 
also generates uric acid, which contributes to mitochondrial oxida-
tive stress (182). Increases in oxidative stress deplete glycine, which 
is important for the synthesis of  glutathione (GSH), the main cellu-
lar antioxidant that maintains intracellular redox status. Treatment 
of  mice and nonhuman primates with DT-109, which stimulates 
de novo glutathione synthesis, restores hepatic fatty acid oxidation, 
while suppressing inflammation and fibrosis, effects associated 
with the suppression of  NF-κB target genes and TGF-β/SMAD 
signaling, respectively (183–185). Similarly, treatment of  mice with 
the SCD1 inhibitor Aramchol increases glutathione and fatty acid 
oxidation (186). These data suggest that restoration of  glutathione 
metabolism may have positive effects on reducing inflammation 
and fibrosis by enhancing mitochondrial fatty acid oxidation.

Figure 4. Impaired FAO and mitochondrial dysfunction in MASH. (A) Megamitochondria are a hallmark of MASH. Impaired mitophagy contributes to 
mitochondrial structural abnormalities in the livers of individuals with MASH, leading to reduced FAO. Fasting promotes interactions between the ER 
and mitochondria in periportal hepatocytes. Fasting also enhances mitochondria–lipid droplet interactions, which are increased during early MASLD 
but decline as fibrosis progresses. Genetic variants, such as TM6SF2, MBOAT7, and PNPLA3, promote mitochondrial dysfunction, which is characterized 
by swollen, fragmented cristae, and impaired bioenergetic capacity. (B) Dysfunctional mitochondria exacerbate liver injury by generating incomplete 
oxidation byproducts, including ROS, lactate, and succinate. Fructose metabolism further contributes to mitochondrial oxidative stress by generating uric 
acid, which depletes glycine and lowers levels of glutathione (GSH), the primary cellular antioxidant responsible for maintaining redox homeostasis. This 
oxidative imbalance activates proinflammatory and fibrogenic signaling pathways, including NF-κB and TGF-β/SMAD. A key feature of impaired oxidative 
phosphorylation is elevated lactate production. In Kupffer cells and monocyte-derived macrophages, lactate induces histone lactylation at H3K18la, 
upregulating fibrogenic genes such as CD86 and iNOS. In HSCs, activation via hedgehog or Wnt/β-catenin signaling enhances lactate utilization to fuel dif-
ferentiation into myofibroblasts. The TCA cycle intermediate succinate binds to succinate receptor 1 (SUCNR1/GPR91), activating MEK/ER/c-Jun and PI3K/
Akt/IKK/NF-κB pathways to promote inflammation. Succinate also stabilizes hypoxia-inducible factor 1α (HIF-1α), stimulating macrophage recruitment 
and the production of proinflammatory cytokines, including IL-6 and TNF.
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Despite substantial progress with multiple therapies in phase 
III clinical trials for MASH targeting diverse pathways, many ques-
tions remain about how current therapies reduce MASH and fibro-
sis, and why only a subset of  individuals respond (Figure 3). Agents 
such as THRβ, GLP-1 receptor, FGF-21 receptor, and PPAR ago-
nists clearly reduce liver fat, but their effects on inflammation, fibro-
sis, and crosstalk between hepatocytes, macrophages, and HSCs 
remain incompletely understood. One critical area that requires fur-
ther investigation is how these therapies influence the handling of  
specific fatty acid species. Saturated, monounsaturated, and poly-
unsaturated fatty acids have distinct metabolic fates and biological 
effects, yet most studies have relied on palmitate tracers to assess 
lipid flux. Stable isotope labeling with additional tracers, combined 
with spatial imaging and metabolomic approaches, will be need-
ed to determine how these therapies impact cell type–specific lipid 
metabolism and intercellular signaling. In particular, understand-
ing how they affect mitochondrial function, including oxidation, 
redox balance, and incomplete metabolite production, in distinct 
hepatic zones may help explain differential responses and guide 
therapeutic optimization. In parallel, designing small molecules 
that act on multiple metabolic targets may be necessary to effec-
tively disrupt the feed-forward loops driving disease progression. 
Machine learning–based approaches, such as those recently used 
to develop dual ACC and DGAT inhibitors (200), offer promising 
strategies to target complex metabolic networks in a more integrat-
ed and personalized manner. Ultimately, combining mechanistic 
insight with a new generation of  precision tools will be essential 
to move beyond liver fat and toward therapies that durably resolve 
inflammation and fibrosis.

Acknowledgments
GRS acknowledges the support of  a Diabetes Canada Project 
Grant, a Canadian Institutes of  Health Research Foundation 
Grant, a Tier 1 Canada Research Chair in Metabolism and Obesi-
ty, and a J. Bruce Duncan Endowed Chair in Metabolic Diseases. 
ACC acknowledges the support of  the Canada Research Chair in 
Molecular Imaging of  Diabetes and Canadian Institutes of  Health 
Research project grants (PJT-180323 and PJT-195983).

Address correspondence to: Gregory R. Steinberg, Centre for 
Metabolism, Obesity and Diabetes Research, Division of  Endo
crinology and Metabolism, Department of  Medicine, Faculty 
of  Health Sciences, McMaster University, Hamilton, Ontario, 
L8N3Z5, Canada. Email: gsteinberg@mcmaster.ca.

chondrial function immune activation and HSC-mediated fibrosis; 
however, therapies must be specifically tailored to HSCs or mac-
rophages, since inhibiting uptake in hepatocytes may accelerate 
inflammation and fibrosis (189).

Lastly, an emerging regulator of  inflammation and fibrosis in 
MASH is the TCA cycle metabolic intermediate succinate. Liver and 
serum succinate are increased in MASLD and MASH (194). While 
increases in liver succinate are thought to be derived primarily from 
hepatocytes, increases in succinate may also be related to reductions 
in BAT (195). Succinate receptor 1 (SUCNR1/GPR91) is expressed 
in both liver macrophages and HSCs and leads to dissociation of  
the Gα subunit from the Gβγ dimer, which activates MEK/ERK/ 
c-Jun and Akt/PI3K/IKK/NF-κB signaling (196, 197). Succinate 
also promotes inflammation and macrophage recruitment through 
stabilization of  HIF-1α, leading to production of  proinflammatory 
cytokines such as IL-6 and TNF (195). In HSCs, succinate activates 
fibrotic remodeling in rodent models, promoting HSC activation, 
proliferation, and migration (194, 196, 198, 199). Interestingly, con-
sistent with a role for succinate-mediated immune activation and 
HSC fibrogenesis, treatment with an FGF-21 analog (LY2405319) 
in the methionine/choline-deficient (MCD) diet model of  MASH 
reduces succinate accumulation in the liver and serum, findings that 
correspond with reductions in HSC activation and inflammation 
(197). Future studies investigating whether the beneficial effects of  
FGF-21 analogs in people with advanced fibrosis and cirrhosis are 
also correlated with reductions in succinate may be important for 
identifying the mechanisms by which these therapies resolve inflam-
mation and fibrosis independently of  their potential metabolic 
actions on adipocyte insulin sensitivity.

Conclusion
The development of MASH reflects a breakdown in metabolic coor-
dination between hepatocytes, macrophages, and HSCs. Excess fatty 
acid delivery from the diet and insulin-resistant adipose tissue, com-
bined with elevated lipogenesis and impaired mitochondrial oxida-
tion, leads to the buildup of metabolites like cholesterol, ceramides, 
lactate, and succinate. These intermediates trigger stress and inflam-
matory pathways in hepatocytes and immune cells, while also pro-
moting stellate cell activation and matrix production. Rather than act-
ing independently, these signals converge across cell types, reinforcing 
a cycle of metabolic dysfunction, immune activation, and fibrosis, 
highlighting numerous potential therapeutic targets for MASLD/
MASH (Figure 3). Spatial shifts in mitochondrial activity and nutri-
ent handling further amplify this response as the disease progresses.
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